DISTRIBUTION 404 CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE

1 Distribution 404 1St Edition

Printing and Saving Instructions

The best thing to do is to download this pdf document to your computer desktop and open it with Adobe Acrobat reader.

Adobe Acrobat reader is a free computer software program and you can find it at Adobe Acrobat's website.

You can complete the course by viewing the course materials on your computer or you can print it out. We give you permission to print this document.

Printing Instructions: If you are going to print this document, this document is designed to be printed double-sided or duplexed but can be single-sided.

This course booklet does not have the assignment. Please visit our website and download the assignment also.

Internet Link to Assignment...

http://www.abctlc.com/PDF/Distribution404ASS.pdf

State Approval Listing Link, check to see if your State accepts or has preapproved this course. Not all States are listed. Not all courses are listed. If the course is not accepted for CEU credit, we will give you the course free if you ask your State to accept it for credit.

Professional Engineers; Most states will accept our courses for credit but we do not officially list the States or Agencies acceptance or approvals.

State Approval Listing URL...

http://www.tlch2o.com/PDF/CEU%20State%20Approvals.pdf

You can obtain a printed version from TLC for an additional \$49.95 plus shipping charges.

Hand digging, getting soaked with water and mud, being run over from traffic are just a few tasks and major portions of repairing the distribution system. We hope to be able to teach you about the system.

You'll understand the distribution system and water quality as well. We welcome your comments and digital photographs.

Before any excavation, always determine the location of the other buried utilities, before tapping a main for a new service connection, the operator should call Bluestake or One-Call centers.

This course contains EPA's federal rule requirements. Please be aware that each state implements drinking water regulations that may be more stringent than EPA's regulations. Check with your state environmental agency for more information.

We've taught this course to over 5,000 students in a conventional classroom setting. Call and schedule a class at your facility or utilize the distance learning course to obtain your CEUs.

Library of Congress Card Number TX-6-825-267 DISTRIBUTION BASICS II

Contributing Editors

Joseph Camerata has a BS in Management with honors (magna cum laude). He retired as a Chemist in 2006 having worked in the field of chemical, environmental, and industrial hygiene sampling and analysis for 40 years. He has been a professional presenter at an EPA analytical conference at the Biosphere in Arizona and a presenter at an AWWA conference in Mesa, Arizona. He also taught safety classes at the Honeywell and City of Phoenix, and is a motivational/inspirational speaker nationally and internationally.

Dr. Eric Pearce S.M.E., chemistry and biological review.

Dr. Pete Greer, S.M.E., retired biology instructor.

Jack White, Environmental, Health, Safety expert, Art Credits.

Important Information about this Manual

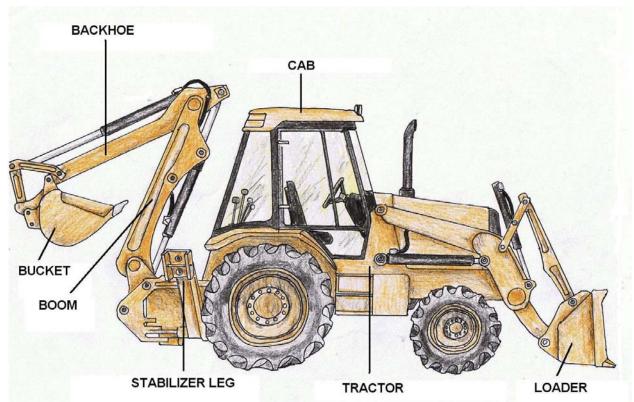
Disclaimer

This CEU training manual has been prepared to assist employees in the general awareness of the water distribution system and groundwater production system, complex pumping ideas, dangerous excavation techniques, water regulatory sampling and dealing with often-complex procedures and requirements for safely handling hazardous and toxic materials. The scope of the material is quite large, requiring a major effort to bring it under control. Employee health and safety, as well as that of the public, depend upon careful application of federal and state regulations and safe working procedures.

This manual will cover general laws, regulations, required procedures and work rules relating to water distribution and sampling. It should be noted, however, that the federal and state regulations are an ongoing process and subject to change over time. For this reason, a list of resources and hyperlinks is provided to assist in obtaining the most upto-date information on various subjects. You can find these on our website or in this manual. This manual is a guidance document for employees who are involved with water distribution, water quality and pollution control. It is not designed to meet the full requirements of the United States Environmental Protection Agency (EPA) or the Department of Labor-Occupational Safety and Health Administration (OSHA) rules and regulations.

This course manual will provide general guidance and should not be used as a preliminary basis for developing general water/wastewater sampling plans or water distribution safety plans or procedures. This document is not a detailed water/wastewater textbook or a comprehensive source book on water/wastewater/safety rules and regulations. Technical Learning College makes no warranty, guarantee or representation as to the absolute correctness or appropriateness of the information in this manual and assumes no responsibility in connection with the implementation of this information.

It cannot be assumed that this manual contains all measures and concepts required for specific conditions or circumstances. This document should be used for guidance and is not considered a legal document. Individuals who are responsible for water distribution, production and/or sampling and the health and safety of workers at hazardous waste sites should obtain and comply with the most recent federal, state, and local regulations relevant to these sites and are urged to consult with OSHA, the EPA and other appropriate federal, state, and local agencies.


Copyright Notice

©2000-2018 Technical Learning College (TLC). No part of this work may be reproduced or distributed in any form or by any means without TLC's prior written approval. Permission has been sought for all images and text where we believe copyright exists and where the copyright holder is traceable and contact-able. All material that is not credited or acknowledged is the copyright of Technical Learning College. This information is intended for educational purposes only. Most unaccredited photographs have been taken by TLC instructors or TLC students. We will be pleased to hear from any copyright holder and will make proper attribution for your work if any unintentional copyright infringements were made as soon as these issues are brought to the editor's attention.

Every possible effort is made to ensure that all information provided in this course is accurate. All written, graphic, photographic, or other material is provided for information only. Therefore, Technical Learning College (TLC) accepts no responsibility or liability whatsoever for the application or misuse of any information included herein. Requests for acknowledgemnt or permission to make copies should be made to the following address:

TLC, P.O. Box 3060 Chino Valley, AZ 86323

Information in this document is subject to change without notice. TLC is not liable for errors or omissions appearing in this document.

Backhoes are one of the most common types of distribution construction equipment found today. And rightly so as their versatility and maneuverability makes the back hoe the equipment of choice for most construction jobs. Backhoe loaders can dig, scrape, load material, lift and with specialized attachments do almost any required task. No one should operate a back hoe unless specifically trained and authorized by the company. Backhoe operators are skilled professionals responsible for an expensive piece of equipment as well as the safety of those working on the project. Backhoe operators need a few items for personal safety. Safety shoes, hard hat, safety glasses, heavy gloves, reflective clothing, hearing protection and quite possibly a respirator where necessary. Backhoe loaders are complicated machines. Be sure to know your equipment's capabilities and limitations such as its load capacity, stability speed, braking and steering before operating the equipment. Check to make sure you have an operator's manual before you use the equipment. Inspect your back hoe for protective devices. Are seat belts provided? Seat belts are required for back hoes or any equipment which has rollover protection. Inspect your lights, warning lights, and audible buzzer or signal to make sure they are working. Double check the instruments and controls. The operator maintenance inspection procedure is really very important before you operate the equipment. Breakdowns can be disastrous. You can get more dependability of the equipment if you take care of it and the first step is operator maintenance. Check the hydraulic system for leaks. Check all the fluid levels, oil, water, battery, transmission and fuel. Check hoses and fittings for leaks or damage. Inspect the condition of the tires for proper pressure and any noticeable cuts or damage. OK, the equipment is in good operating condition - you're ready to go. Use the handrail or steps when mounting the machine. Don't use the controls as handholds. Put your seat belt on snugly, set the controls in neutral or park with the parking brake on. Never start the back hoe from any position other than from the driver's seat. After the vehicle is started and warming up, check your brakes and other equipment to make sure it's functioning properly.

Technical Learning College's Scope and Function

Welcome to the Program,

Technical Learning College (TLC) offers affordable continuing education for today's working professionals who need to maintain licenses or certifications. TLC holds several different governmental agency approvals for granting of continuing education credit.

TLC's delivery method of continuing education can include traditional types of classroom lectures and distance-based courses or independent study. TLC's distance based or independent study courses are offered in a print-based format and you are welcome to examine this material on your computer with no obligation. We will beat any other training competitor's price for the same CEU material or classroom training.

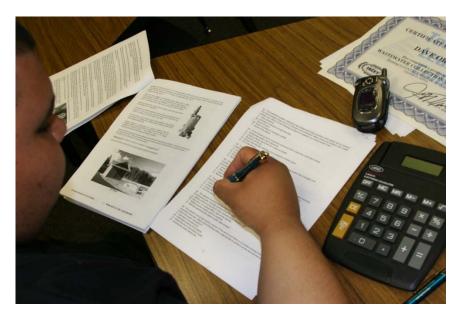
Our courses are designed to be flexible and for you do finish the material on your leisure. Students can also receive course materials through the mail. The CEU course or e-manual will contain all your lessons, activities and assignments. All of TLC's CEU courses allow students to submit assignments using e-mail or fax, or by postal mail. (See the course description for more information.)

Students have direct contact with their instructor—primarily by e-mail or telephone. TLC's CEU courses may use such technologies as the World Wide Web, e-mail, CD-ROMs, videotapes and hard copies. (See the course description.) Make sure you have access to the necessary equipment before enrolling, i.e., printer, Microsoft Word and/or Adobe Acrobat Reader. Some courses may require proctored closed-book exams depending upon your state or employer requirements.

Flexible Learning

At TLC, there are no scheduled online sessions or passwords you need contend with, nor are you required to participate in learning teams or groups designed for the "typical" younger campus based student. You will work at your own pace, completing assignments in time frames that work best for you. TLC's method of flexible individualized instruction is designed to provide each student the guidance and support needed for successful course completion.

Course Structure


TLC's online courses combine the best of online delivery and traditional university textbooks. You can easily find the course syllabus, course content, assignments, and the post-exam (Assignment). This student friendly course design allows you the most flexibility in choosing when and where you will study.

Classroom of One

TLC offers you the best of both worlds. You learn on your own terms, on your own time, but you are never on your own. Once enrolled, you will be assigned a personal Student Service Representative who works with you on an individualized basis throughout your program of study. Course specific faculty members are assigned at the beginning of each course providing the academic support you need to successfully complete each course.

Satisfaction Guaranteed

We have many years of experience, dealing with thousands of students. We assure you, our customer satisfaction is second to none. This is one reason we have taught more than 20,000 students.

We welcome you to do the electronic version of the assignment and submit the answer key and registration to us either by fax or e-mail.

If you need this assignment graded and a certificate of completion within a 48-hour turn around, prepare to pay an additional rush charge of \$50.

Contact Numbers Fax (928) 468-0675 Email Info@tlch2o.com Telephone (866) 557-1746

CEU Course Description

DISTRIBUTION 404 CEU TRAINING COURSE

A 36 hour continuing education review of various water distribution components and systems. This course will cover the basic requirements of the Safe Drinking Water Act, water sampling, safety, pumps, and general water distribution principles. You will not need any other materials for this course.

Water Distribution, Well Drillers, Pump Installers, Water Treatment Operators. The

target audience for this course is the person interested in working in a water treatment or distribution facility and/or wishing to maintain CEUs for certification license or to learn how to do the job safely and effectively, and/or to meet education needs for promotion.

Final Examination for Credit

Opportunity to pass the final comprehensive examination is limited to three attempts per course enrollment.

Course Procedures for Registration and Support

All of Technical Learning College's correspondence courses have complete registration and support services offered. Delivery of services will include, e-mail, web site, telephone, fax and mail support. TLC will attempt immediate and prompt service.

When a student registers for a distance or correspondence course, he/she is assigned a start date and an end date. It is the student's responsibility to note dates for assignments and keep up with the course work. If a student falls behind, he/she must contact TLC and request an end date extension in order to complete the course. It is the prerogative of TLC to decide whether to grant the request. All students will be tracked by a unique number assigned to the student.

Instructions for Written Assignments

The Distribution 404 CEU Training course uses a multiple choice answer key. If you should need any assistance, please email all concerns and the final test to: info@tlch2o.com.

You may write your answers or type out your own answer key. TLC would prefer that you utilize the answer key found on the TLC website under Assignments and e-mail the answer key to TLC, but it is not required. You may also fax the answer key. Please call us a couple hours later to ensure we received your information.

Feedback Mechanism (examination procedures)

Each student will receive a feedback form as part of their study packet. You will be able to find this form in the front of the course assignment or lesson.

Security and Integrity

All students are required to do their own work. All lesson sheets and final exams are not returned to the student to discourage sharing of answers. Any fraud or deceit and the student will forfeit all fees and the appropriate agency will be notified.

Grading Criteria

TLC will offer the student either pass/fail or a standard letter grading assignment. If TLC is not notified, you will only receive a pass/fail notice.

Required Texts

The Distribution 404 CEU Training course will not require any other materials. This course comes complete. No other materials are needed.

Recordkeeping and Reporting Practices

TLC will keep all student records for a minimum of seven years. It is the student's responsibility to give the completion certificate to the appropriate agencies.

ADA Compliance

TLC will make reasonable accommodations for persons with documented disabilities. Students should notify TLC and their instructors of any special needs. Course content may vary from this outline to meet the needs of this particular group.

You will have 90 days from receipt of this manual to complete it in order to receive your Continuing Education Units (**CEUs**) or Professional Development Hours (**PDHs**). A score of 70% or better is necessary to pass this course.

Educational Mission

The educational mission of TLC is:

To provide TLC students with comprehensive and ongoing training in the theory and skills needed for the environmental education field,

To provide TLC students with opportunities to apply and understand the theory and skills needed for operator certification,

To provide opportunities for TLC students to learn and practice environmental educational skills with

members of the community for the purpose of sharing diverse perspectives and experience,

To provide a forum in which students can exchange experiences and ideas related to environmental education,

To provide a forum for the collection and dissemination of current information related to environmental education, and to maintain an environment that nurtures academic and personal growth.

TABLE OF CONTENTS

Safe Drinking Water Act Summary	15
Primary Drinking Water MCLs	21
Secondary Drinking Water MCLs	27
New EPA Rules	29
Waterborne Pathogens	47
Protozoan Diseases	49
Waterborne Diseases	50
Bacteriological Monitoring	51
HPC	57
Periodic Chart	97
pH	99
Chlorine Section	175
DPD Residual Method	180
Chemistry of Chlorination	.181
Chlorinator Parts	189
Troubleshooting Hypochlorination	193
Disinfection Policy	195
Alternant Disinfectants	196
Amperometric Titration	199
Chlorine Dioxide	199
Corrosion Control	201
Alkalinity / pH Adjustment	
Activated Carbon	204
Hydraulic Section	243
Geometric Principles	252
Atmospheric Pressure	253
Pressure and Force	255
Hydraulic Development	257
Hydraulic Lever	260
Forces on a Submerged Surface	264
Hydrostatic Paradox	265
Variations	268
Pascal's Law	269
Pump Introduction	277
Complicated Pumps	278
Types of Pumps	279
Positive Displacement Pumps	285
Key Words	286
Suction Lift	300
Cavatation	
Motor and Pump Calculation	305
Motor Section	311
Coupling Section	323
Pump Troubleshooting	331
SCADA	333

Backflow Section Recent Backflow Situations Common Cross-Connection Backpressure Backflow Responsibility Types of Assemblies Water Distribution Section Distribution Valves Meters Water Theft System Layouts Distribution Pipes Joints & Fittings Water Main Installation Water Softening Water Softening Water Filters Water Treatment System Aquifer Groundwater Section Water Well Reports Water Bearing Zone Casing Driver Methods Choice of Casing Water Demand Disinfection of Reservoirs Hydropneumatic Tank. Excavation Safety Shoring System One Call Center Confined Space Glossary Microorganism Glossary Chlorine Charts Conversion Factors Review	$\begin{array}{c} 338\\ 341\\ 343\\ 345\\ 365\\ 369\\ 390\\ 397\\ 401\\ 405\\ 409\\ 412\\ 417\\ 405\\ 409\\ 412\\ 417\\ 418\\ 421\\ 435\\ 441\\ 451\\ 451\\ 451\\ 485\\ 481\\ 491\\ 505\\ 527\\ 589\\ 653\\ 665\\ 665\\ \end{array}$
References	669

Safe Drinking Water Act (SDWA)

On August 6, 1996, President Clinton signed the Reauthorization of the Safe Drinking Water Act, bringing to a successful conclusion to years of work on the part of water professionals and a broad range of public interest groups throughout the nation. This new law strikes a balance among federal, state, local, urban, rural, large and small water systems in a manner that improves the protection of public health and brings reason and good science to the regulatory process.

The major elements of this law include:

- ✓ The law updates the standard-setting process by focusing regulations on contaminants known to pose greater public health risks.
- ✓ It replaces the current law's demand for 25 additional standards every three years with a new process based on occurrence, relative risk, and cost-benefit considerations.
- ✓ It also requires the EPA to select at least five new candidate contaminants to consider for regulation every five years.
- ✓ The EPA is directed to require public water systems to provide customers with annual "Consumer Confidence Reports" in newspapers and by direct mail.
- ✓ The reports must list levels of regulated contaminants along with Maximum Contaminant Levels (MCLs) and Maximum Contaminant Level Goals (MCLGs), along with plainly worded definitions of both.
- ✓ The reports must also include a plainly worded statement of the health concerns for any contaminants for which there has been a violation, describe the utility's sources of drinking water and provide data on unregulated contaminants for which monitoring is required, including Cryptosporidium and radon.
- ✓ The EPA must establish a toll-free hot line customers can call to get additional information.
- ✓ The EPA is required to publish guidelines for states to develop water source assessment programs that delineate protection areas and assess contamination risks.
- The EPA is required to identify technologies that are affordable for small systems to comply with drinking water regulations.
- ✓ Technical assistance funds and Small System Technical Assistance Centers are authorized to meet the training and technical needs of small systems.
- ✓ States are authorized to grant variances for compliance with drinking water regulations for systems serving 3,300 or fewer persons.
- ✓ The EPA is required to publish certification guidelines for operators of community and nontransient noncommunity public water systems.
- ✓ States that do not have operator certification programs that meet the requirements of the guidelines will lose 20 percent of their SRLF grant.
- ✓ A source water petition program for voluntary, incentive-based partnerships among public water systems and others to reduce contamination in source water is authorized.
- ✓ The law establishes a new State Revolving Loan Fund (SRLF) of \$1 billion per year to provide loans to public water systems to comply with the new SDWA.
- ✓ It also requires states to allocate 15 percent of the SRLF to systems serving 10,000 or fewer people unless no eligible projects are available for loans.
- ✓ It also allows states to jointly administer SDWA and Clean Water Act loan programs and transfer up to 33 percent between the two accounts.
- ✓ States must ensure that all new systems have compliance capacity and that all current systems maintain capacity, or lose 20 percent of their SRLF grant.
- ✓ Although the EPA will continue to provide policy, regulations and guidance, state governments will now have more regulatory flexibility allowing for improved communication between water providers and their local regulators.

Increased collaboration will result in solutions that work better and are more fully supported by the regulated community. States that have a source water assessment program may adopt alternative monitoring requirements to provide permanent monitoring relief for public water systems in accordance with EPA guidance.

Safe Drinking Water Act of 1974 (*PL 93-523*) as amended by: The Safe Drinking Water Act Amendments of 1986 National Primary Drinking Water Regulations, 40 CFR 141 National Interim Primary Drinking Water Regulations Implementation, 40 CFR142 National Secondary Drinking Water Regulations, 40 CFR 143

This is the primary Federal legislation protecting drinking water supplied by public water systems (those serving more than 25 people). The Environmental Protection Agency (EPA) is lead agency and is mandated to set standards for drinking water. The EPA establishes national standards of which the states are responsible for enforcing.

The act provides for the establishment of primary regulations for the protection of the public health and secondary regulations relating to the taste, odor, and appearance of drinking water. Primary drinking water regulations, by definition, include either a maximum contaminant level (MCL) or, when a MCL is not economically or technologically feasible, a prescribed treatment technique which would prevent adverse health effects to humans. An MCL is the permissible level of a contaminant in water that is delivered to any user of a public water system. Primary and secondary drinking water regulations are stated in 40 CFR 141 and 143, respectively. As amended in 1986, the EPA is required to set maximum contaminant levels for 83 contaminants deemed harmful to humans (with specific deadlines). It also has authority over groundwater. Water agencies are required to monitor water to ensure it meets standards.

National Drinking Water Regulations

The Act instructs the EPA on how to select contaminants for regulation and specifies how EPA must establish national primary drinking water regulations once a contaminant has been selected (Section 1412). As of late 1996, the EPA had promulgated 84 drinking water regulations.

Contaminant Selection

P.L. 104-182 establishes a new process for the EPA to select contaminants for regulatory consideration based on occurrence, health effects, and meaningful opportunity for health risk reduction. By February 1998 and every 5 years thereafter, the EPA must publish a list of contaminants that may warrant regulation. Starting in 2001, and every 5 years thereafter, the EPA must determine whether or not to regulate at least 5 of the listed contaminants. The Act directs the EPA to evaluate contaminants that present the greatest health concern and to regulate contaminants that occur at concentration levels and frequencies of public health concern.

The law also includes a schedule for the EPA to complete regulations for disinfectants and disinfection byproducts (D/DBPs) and *Cryptosporidium* (a waterborne pathogen).

Standard Setting

Developing national drinking water regulations is a two-part process. For each contaminant that the EPA has determined merits regulation, the EPA must set a non-enforceable maximum contaminant level goal (MCLG) at a level at which no known or anticipated adverse health effects occur, and which allows an adequate margin of safety. The EPA must then set an enforceable standard, a maximum contaminant level (MCL), as close to the MCLG as is "*feasible*" using best technology, treatment techniques, or other means available (taking costs into consideration).

Standards are generally based on technologies that are affordable for large communities; however, under P.L. 104-182, each regulation establishing an MCL must list any technologies, treatment techniques or other means that comply with the MCL and that are affordable for three categories of small public water systems. The 1996 Amendments authorize the EPA to set a standard at other than the feasible level if the feasible level would lead to an increase in health risks by increasing the concentration of other contaminants or by interfering with the treatment processes used to comply with other SDWA regulations. In such cases, the standard or treatment techniques must minimize the overall health risk. Also, when proposing a regulation, the EPA must now publish a determination as to whether or not the benefits of the standard justify the costs. If EPA determines that the benefits do not justify the costs, the EPA may, with certain exceptions, promulgate a standard that maximizes health risk reduction benefits at a cost that is justified by the benefits.

Risk Assessment

P.L. 104-182 adds risk assessment and communication provisions to SDWA. When developing regulations, the EPA is now required to: (1) use the best available, peer-reviewed science and supporting studies and data; and (2) make publicly available a risk assessment document that discusses estimated risks, uncertainties, and studies used in the assessment.

When proposing drinking water regulations, the EPA must publish a health risk reduction and cost analysis. The law permits the EPA to promulgate an interim standard without first preparing a benefit-cost analysis or making a determination as to whether the benefits of a regulation would justify the costs if the EPA determines that a contaminant presents an urgent threat to public health.

New regulations generally become effective 3 years after promulgation. Up to 2 additional years may be allowed if the EPA (or a state in the case of an individual system) determines the time is needed for capital improvements. Section 1412 includes specific provisions for arsenic, sulfate, and radon. The law authorizes states to grant Systems variances from a regulation if raw water quality prevents meeting the standards despite application of best technology (Section 1415). A new provision authorizes small system variances based on best affordable technology.

States may grant these variances to systems serving 3,300 or fewer persons if the system cannot afford to comply (through treatment, an alternative water source, or restructuring) and the variance ensures adequate protection of public health; states may grant variances to systems serving between 3,300 and 10,000 persons with EPA approval. To receive a small system variance, the system must install a variance technology identified by EPA. The variance technology need not meet the MCL, but must protect public health.

The EPA must identify variance technologies for existing regulations. Variances are not available for microbial contaminants. The Act also provides for exemptions if a regulation cannot be met for other compelling reasons (including costs) and if the system was in operation before the effective date of a standard or treatment requirement (Section 1416). An exemption is intended to give a public water system more time to comply with a regulation and can be issued only if it will not result in an unreasonable health risk. Small systems may receive exemptions for up to 9 years.

State Primacy

The primary enforcement responsibility for public water systems lies with the states, provided they adopt regulations as stringent as the national requirements, adopt authority for administrative penalties, develop adequate procedures for enforcement, maintain records, and create a plan for providing emergency water supplies (Section 1413). Currently, 55 of 57 states and territories have primacy authority. P.L. 104-182 authorizes \$100 million annually for the EPA to make grants to states to carry out the public water system supervision program. States may also use a portion of their SRLF grant for this purpose (Section 1443). Whenever the EPA finds that a public water system in a state with primary enforcement authority does not comply with regulations, the Agency must notify the state and the system and provide assistance to bring the system into compliance. If the state fails to commence enforcement action within 30 days after the notification, the EPA is authorized to issue an administrative order or commence a civil action.

Nonprimacy State

In a non-primacy state, the EPA must notify an elected local official (if any has jurisdiction over the water system) before commencing an enforcement action against the system (Section 1414). Primacy states may establish alternative monitoring requirements to provide interim monitoring relief for systems serving 10,000 or fewer persons for most contaminants, if a contaminant is not detected in the first quarterly sample. States with approved source water protection programs may adopt alternative monitoring requirements to provide systems for chemical contaminants (Section 1418).

P.L. 104-182 requires states to adopt programs for training and certifying operators of community and nontransient noncommunity systems. The EPA must publish guidelines specifying minimum standards for operator certification by February 1999. Two years thereafter, the EPA must withhold 20% of a state's SRLF grant unless the state has an operator certification program (Section 1419). States are also required to establish capacity development programs based on EPA guidance. State programs must include: 1) legal authority to ensure that new systems have the technical, financial, and managerial capacity to meet SDWA requirements; and 2) a strategy to assist existing systems that are experiencing difficulties to come into compliance. The EPA is required to withhold a portion of SRF grants from states that do not have compliance development strategies (Section 1420).

Underground Injection Control

Another provision of the Act requires the EPA to promulgate regulations for state underground injection control (UIC) programs to protect underground sources of drinking water. These regulations contain minimum requirements for the underground injection of wastes in five well classes to protect underground sources of drinking water and to require that a state prohibit, by December 1977, any underground injection that was not authorized by state permit (Section 1421).

Ground Water Protection Grant Programs

The Act contains three additional ground water protection programs. Added in 1986, Section 1427 established procedures for demonstration programs to develop, implement, and assess critical aquifer protection areas already designated by the Administrator as sole source aquifers. Section 1428, also added in 1986, and established an elective state program for protecting wellhead areas around public water system wells. If a state established a wellhead protection program by 1989, and the EPA approved the state's program, then the EPA may award grants covering between 50% and 90% of the costs of implementing the program. Section 1429, added by P.L. 104-182 authorizes the EPA to make 50% grants to states to develop programs to ensure coordinated and comprehensive protection of ground water within the states.

Source Water Protection Programs

P.L. 104-182 broadens the pollution prevention focus of the Act to embrace surface water as well as ground water protection. New Section 1453 directs the EPA to publish guidance for states to implement source water assessment programs that delineate boundaries of assessment areas from which systems receive their water, and identify the origins of contaminants in delineated areas to determine systems' susceptibility to contamination. States with approved assessment programs may adopt alternative monitoring requirements to provide systems with monitoring relief under Section 1418.

New Section 1454 authorizes a source water petition program based on voluntary partnerships between state and local governments. States may establish a program under which a community water system or local government may submit a source water quality partnership petition to the state requesting assistance in developing a voluntary partnership to: (1) reduce the presence of contaminants in drinking water; (2) receive financial or technical assistance; and (3) develop a long-term source water protection strategy. This section authorizes \$5 million each year for grants to states to support petition programs. Also, states may use up to 10% of their annual SRF capitalization grant for the source water assessment activities or for the petition program.

State Revolving Funds

Section 1452, added by P.L. 104-182 authorizes a State Revolving Loan Fund (**SRF**) program to help systems finance improvements needed to comply with drinking water regulations. The law authorizes the EPA to make grants to states to capitalize SDWA SRFs, which states then use to make loans to public water systems. States must match 20% of the federal grant.

Grants will be allotted to states using the formula for distributing state PWSS grants through FY1997; then, grants will be allotted based on a needs survey. Each state will receive at least 1% of funds. The District of Columbia will receive 1% of funds as well. A state may transfer up to 33% of the grant to the Clean Water Act (CWA) SRF, or an equivalent amount from the CWA SRF to the SDWA SRF.

Drinking water SRFs may be used to provide loan and grant assistance for expenditures that the EPA has determined will facilitate compliance or significantly further the Act's health protection objectives. States must make available 15% of their annual allotment for loan assistance to systems that serve 10,000 or fewer persons. States may use up to 30% of their SRF grant to provide grants or forgive loan principle to help economically disadvantaged communities. Also, states may use a portion of funds for technical assistance, source water protection and capacity development programs, and for operator certification.

Other Provisions

Public water systems must notify customers of violations with potential for serious health effects within 24 hours. Systems must also issue to customers annual reports on contaminants detected in their drinking water (Section 1414).

Section 1417 requires any pipe, solder, or flux used in the installation or repair of public water systems or of plumbing in residential or nonresidential facilities providing drinking water to be "*lead free*" (as defined in the Act). As of August 1998, it will be unlawful to sell pipes, plumbing fittings or fixtures that are not "lead free" or to sell solder or flux that is not lead free(unless it is properly labeled); with the exception of pipes used in manufacturing or industrial processing. P.L. 104-182 sets limits on the amount of lead that may leach from new plumbing fixtures, and allows one year for a voluntary standard to be established before requiring the EPA to take regulatory action. The Administrator has emergency powers to issue orders and commence civil action if a contaminant likely to enter a public drinking water supply system poses a substantial threat to public health and state or local officials have not taken adequate action (Section 1431).

If a chemical necessary for water treatment is not reasonably available, the Administrator can issue a "certification of need," in which case the President can order an allocation of the chemical to those needing it (Section 1441). The EPA is provided authority to conduct research, studies, and demonstrations related to the causes, treatment, control, and prevention of diseases resulting from contaminants in water. The Agency is directed to provide technical assistance to the states and municipalities in administering their public water system regulatory responsibilities.

The law authorizes annually, \$15 million for technical assistance to small systems and Indian Tribes, and \$25 million for health effects research (Section 1442). P.L. 104-182 authorizes additional appropriations for drinking water research, not to exceed \$26.6 million annually.

The Administrator may make grants to develop and demonstrate new technologies for providing safe drinking water and to investigate health implications involved in the reclamation/reuse of waste waters (Section 1444). Also, suppliers of water who may be subject to regulation under the Act are required to establish and maintain records, monitor, and provide any information that the Administrator requires to carry out the requirements of the Act (Section 1445). The Administrator may also enter and inspect the property of water suppliers to enable him/her to carry out the purposes of the Act. Failure to comply with these provisions may result in criminal penalties. The Act established a National Drinking Water Advisory Council, composed of 15 members (with at least 2 representing rural systems), to advise, consult, and make recommendations to the Administrator on activities and policies derived from the Act (Section 1446).

National Security

Any federal agency having jurisdiction over federally owned and maintained public water systems must comply with all federal, state, and local drinking water requirements as well as any underground injection control programs (Section 1447). The Act provides for waivers in the interest of national security. Procedures for judicial review are outlined (Section 1448), and provision for citizens' civil actions is made (Section 1449). Citizen suits may be brought against any person or agency allegedly in violation of provisions of the Act, or against the Administrator for alleged failure to perform any action or duty which is not discretionary.

The EPA may use the new estrogenic substances screening program created in the Food Quality Protection Act of 1996 (P.L. 104-170) to provide for testing of substances that may be found in drinking water if the Administrator determines that a substantial population may be exposed to such substances (Section 1457). The EPA is directed to conduct drinking water studies involving subpopulations at greater risk and biological mechanisms, and studies to support several rules including those addressing D/DBPs and *Cryptosporidium*.

The Act includes a provision amending the Federal Food, Drug, and Cosmetic Act, generally requiring the Secretary of Health and Human Services to issue bottled drinking water standards for contaminants regulated under the Safe Drinking Water Act. Other provisions of P.L. 104-182 authorize water and wastewater grants for colonies and Alaska rural and native villages, and authorize the transfer of the Washington (D.C.) Aqueduct to a regional authority. The 1996 Amendments also authorize a \$50 million per year grant program for additional infrastructure and watershed protection projects; the conference report lists, and directs the EPA to give priority consideration to 24 such projects.

Because of the events of 9/11, we have to prepare for an attack on our water distribution system. This includes preparing for hurricanes, floods and terrorist actions.

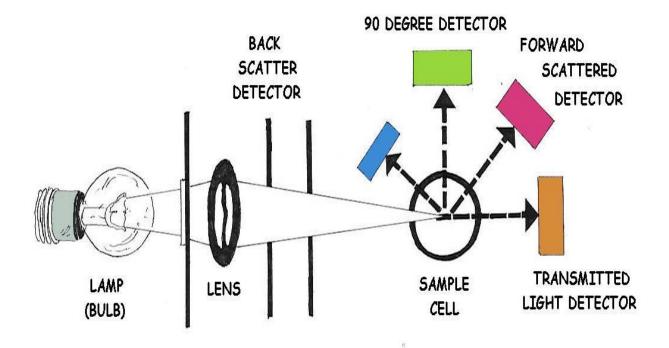
National Primary Drinking Water Regulations

Inorganic Chemicals	MCLG ¹ (mg/L) ⁴	MCL ² or TT ³ (mg/L) ⁴	Potential Health Effects from Ingestion of Water	Sources of Contaminant in Drinking Water
Antimony	0.006	0.006	Increase in blood cholesterol; decrease in blood glucose	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic	none ⁵	0.010	Skin damage; circulatory system problems; increased risk of cancer	Discharge from semiconductor manufacturing; petroleum refining; wood preservatives; animal feed additives; herbicides; erosion of natural deposits
Asbestos (fiber >10 micrometers)	7 million fibers per Liter		Increased risk of developing benign intestinal polyps	Decay of asbestos cement in water mains; erosion of natural deposits
Barium	2	2	Increase in blood pressure	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium	0.004	0.004	Intestinal lesions	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries
Cadmium	0.005	0.005	Kidney damage	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium (total)	0.1	0.1	Some people who use water containing chromium well in excess of the MCL over many years could experience allergic dermatitis	Discharge from steel and pulp mills; erosion of natural deposits
Copper	1.3	Action Level=1. 3; TT ⁶	Short term exposure: Gastrointestinal distress. Long term exposure: Liver or kidney damage. Those with Wilson's Disease should consult their personal doctor if their water systems exceed the copper action level.	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Cyanide (as free cyanide)	0.2	0.2	Nerve damage or thyroid problems	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride	4.0	4.0	Bone disease (pain and tenderness of the bones); Children may get mottled teeth.	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories
Lead	zero	Action Level=0. 015; TT⁰	Infants and children: Delays in physical or mental development. Adults: Kidney problems; high blood pressure	Corrosion of household plumbing systems; erosion of natural deposits

Inorganic Mercury	0.002	0.002	Kidney damage	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
Nitrate (measured as Nitrogen)	10	10	"Blue baby syndrome" in infants under six months - life threatening without immediate medical attention. Symptoms: Infant looks blue and has shortness of breath.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrite (measured as Nitrogen)	1	1	"Blue baby syndrome" in infants under six months - life threatening without immediate medical attention. Symptoms: Infant looks blue and has shortness of breath.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	0.05	0.05	Hair or fingernail loss; numbness in fingers or toes; circulatory problems	Discharge from petroleum refineries; erosion of natural deposits; discharge from mines
Thallium	0.0005	0.002	Hair loss; changes in blood; kidney, intestine, or liver problems	Leaching from ore-processing sites; discharge from electronics, glass, and pharmaceutical companies

Organic Chemicals	MCLG ¹ (mg/L) ⁴	MCL ² or TT ³ (mg/L) ⁴	Potential Health Effects from Ingestion of Water	Sources of Contaminant in Drinking Water
Acrylamide	zero	TTZ	Nervous system or blood problems; increased risk of cancer	Added to water during sewage/wastewater treatment
Alachlor	zero	0.002	Eye, liver, kidney or spleen problems; anemia; increased risk of cancer	Runoff from herbicide used on row crops
Atrazine	0.003	0.003	Cardiovascular system problems; reproductive difficulties	Runoff from herbicide used on row crops
Benzene	zero	0.005	Anemia; decrease in blood platelets; increased risk of cancer	Discharge from factories; leaching from gas storage tanks and landfills
Benzo(a)pyrene	zero	0.0002	Reproductive difficulties; increased risk of cancer	Leaching from linings of water storage tanks and distribution lines
Carbofuran	0.04	0.04	Problems with blood or nervous system; reproductive difficulties.	Leaching of soil fumigant used on rice and alfalfa
Carbon tetrachloride	zero	.005	Liver problems; increased risk of cancer	Discharge from chemical plants and other industrial activities
Chlordane	zero	0.002	Liver or nervous system problems; increased risk of cancer	Residue of banned termiticide
Chlorobenzene	0.1	0.1	Liver or kidney problems	Discharger from chemical and agricultural chemical factories
2,4-D	0.07	0.07	Kidney, liver, or adrenal gland problems	Runoff from herbicide used on row crops
Dalapon	0.2	0.2	Minor kidney changes	Runoff from herbicide used on rights of way
1,2-Dibromo-3- chloropropane (DBCP)	zero	0.0002	Reproductive difficulties; increased risk of cancer	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards

o-Dichlorobenzene	0.6	0.6	Liver, kidney, or circulatory	Discharge from industrial chemical factories
p-Dichlorobenzene	0.075	0.075	system problems Anemia; liver, kidney or spleen	Discharge from industrial
1,2-Dichloroethane	zero	0.005	damage; changes in blood Increased risk of cancer	chemical factories Discharge from industrial chemical factories
1-1- Dichloroethylene	0.007	0.007	Liver problems	Discharge from industrial chemical factories
cis-1, 2- Dichloroethylene	0.07	0.07	Liver problems	Discharge from industrial chemical factories
trans-1,2- Dichloroethylene	0.1	0.1	Liver problems	Discharge from industrial chemical factories
Dichloromethane	zero	0.005	Liver problems; increased risk of cancer	Discharge from pharmaceutical and chemical factories
1-2- Dichloropropane	zero	0.005	Increased risk of cancer	Discharge from industrial chemical factories
Di(2- ethylhexyl)adipate	0.4	0.4	General toxic effects or reproductive difficulties	Leaching from PVC plumbing systems; discharge from chemical factories
Di(2- ethylhexyl)phthalate	zero	0.006	Reproductive difficulties; liver problems; increased risk of cancer	Discharge from rubber and chemical factories
Dinoseb	0.007	0.007	Reproductive difficulties	Runoff from herbicide used on soybeans and vegetables
Dioxin (2,3,7,8- TCDD)	zero	0.000000 03	Reproductive difficulties; increased risk of cancer	Emissions from waste incineration and other combustion; discharge from chemical factories
Diquat	0.02	0.02	Cataracts	Runoff from herbicide use
Endothall	0.1	0.1	Stomach and intestinal problems	Runoff from herbicide use
Endrin Epichlorohydrin	0.002 zero	0.002 TT ⁷	Nervous system effects Stomach problems; reproductive difficulties;	Residue of banned insecticide Discharge from industrial chemical factories; added to
Ethylbenzene	0.7	0.7	increased risk of cancer Liver or kidney problems	water during treatment process Discharge from petroleum refineries
Ethelyne dibromide	zero	0.00005	Stomach problems; reproductive difficulties; increased risk of cancer	Discharge from petroleum refineries
Glyphosate	0.7	0.7	Kidney problems; reproductive difficulties	Runoff from herbicide use
Heptachlor	zero	0.0004	Liver damage; increased risk of cancer	Residue of banned termiticide
Heptachlor epoxide	zero	0.0002	Liver damage; increased risk of cancer	Breakdown of hepatachlor
Hexachlorobenzene	zero	0.001	Liver or kidney problems; reproductive difficulties;	Discharge from metal refineries and agricultural chemical
Hexachlorocyclopen tadiene	0.05	0.05	increased risk of cancer Kidney or stomach problems	factories Discharge from chemical factories
Lindane	0.0002	0.0002	Liver or kidney problems	Runoff/leaching from insecticide used on cattle, lumber, gardens
Methoxychlor	0.04	0.04	Reproductive difficulties	Runoff/leaching from insecticide used on fruits, vegetables,
Oxamyl (Vydate)	0.2	0.2	Slight nervous system effects	alfalfa, livestock Runoff/leaching from insecticide used on apples, potatoes, and tomatoes
Polychlorinated biphenyls (PCBs)	zero	0.0005	Skin changes; thymus gland problems; immune deficiencies; reproductive or nervous system difficulties; increased risk of cancer	Runoff from landfills; discharge of waste chemicals


Distribution 404 1St Edition

Pentachlorophenol	zero	0.001	Liver or kidney problems; increased risk of cancer	Discharge from wood preserving factories
Picloram Simazine Styrene	0.5 0.004 0.1	0.5 0.004 0.1	Liver problems Problems with blood Liver, kidney, and circulatory problems	Herbicide runoff Herbicide runoff Discharge from rubber and plastic factories; leaching from landfills
Tetrachloroethylene	zero	0.005	Liver problems; increased risk of cancer	Discharge from factories and dry cleaners
Toluene	1	1	Nervous system, kidney, or liver problems	Discharge from petroleum factories
Total Trihalomethanes (TTHMs)	none ⁵	0.10	Liver, kidney or central nervous system problems; increased risk of cancer	Byproduct of drinking water disinfection
Toxaphéne	zero	0.003	Kidney, liver, or thyroid problems; increased risk of cancer	Runoff/leaching from insecticide used on cotton and cattle
2,4,5-TP (Silvex)	0.05	0.05	Liver problems	Residue of banned herbicide
1,2,4- Trichlorobenzene	0.07	0.07	Changes in adrenal glands	Discharge from textile finishing factories
1,1,1- Trichloroethane	0.20	0.2	Liver, nervous system, or circulatory problems	Discharge from metal degreasing sites and other factories
1,1,2- Trichloroethane	0.003	0.005	Liver, kidney, or immune system problems	Discharge from industrial chemical factories
Trichloroethylene	zero	0.005	Liver problems; increased risk of cancer	Discharge from petroleum refineries
Vinyl chloride	zero	0.002	Increased risk of cancer	Leaching from PVC pipes; discharge from plastic factories
Xylenes (total)	10	10	Nervous system damage	Discharge from petroleum factories; discharge from chemical factories

Radionuclides	MCLG ¹ (mg/L) ⁴	MCL ² or TT ³ (mg/L) ⁴	Potential Health Effects from Ingestion of Water	Sources of Contaminant in Drinking Water
Beta particles and photon emitters	none ⁵	4 millirems per year	Increased risk of cancer	Decay of natural and man- made deposits
Gross alpha particle activity	none ⁵	15 picocurie s per Liter (pCi/L)	Increased risk of cancer	Erosion of natural deposits
Radium 226 and Radium 228 (combined)	none ⁵	5̈ pCi/Ĺ	Increased risk of cancer	Erosion of natural deposits

Microorganisms	MCLG ¹ (mg/L) ⁴	MCL ² or TT ³ (mg/L) ⁴	Potential Health Effects from Ingestion of Water	Sources of Contaminant in Drinking Water
Giardia lamblia	zero	TT <u>8</u>	Giardiasis, a gastroenteric disease	Human and animal fecal waste
Heterotrophic plate count	N/A	TT ⁸	HPC has no health effects, but can indicate how effective treatment is at controlling microorganisms.	n/a
Legionella	zero	TT <u>⁸</u>	Legionnaire's Disease, commonly known as pneumonia	Found naturally in water; multiplies in heating systems
Total Coliforms (including fecal coliform and <i>E. Coli</i>)	zero	5.0% ⁹	•	Human and animal fecal waste
Turbidity	N/A	TT ⁸	Turbidity has no health effects but can interfere with disinfection and provide a medium for microbial growth. It may indicate the presence of microbes.	Soil runoff
Viruses (enteric)	zero	ТТ <u>⁸</u>	Gastroenteric disease	Human and animal fecal waste

This course contains EPA's federal rule requirements. Please be aware that each state implements drinking water regulations that may be more stringent than EPA's regulations. Check with your state environmental agency for more information.

HOW AN TURBIDIMETER WORKS

National Secondary Drinking Water Regulations

National Secondary Drinking Water Regulations (NSDWRs or secondary standards) are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water.

The EPA recommends secondary standards to water systems but does not require systems to comply. However, states may choose to adopt them as enforceable standards.

Contaminant	Secondary Standard
Aluminum Chloride Color Copper Corrosivity Fluoride Foaming Agents Iron Manganese Odor pH Silver	0.05 to 0.2 mg/L 250 mg/L 15 (color units) 1.0 mg/L noncorrosive 2.0 mg/L 0.5 mg/L 0.3 mg/L 0.05 mg/L 3 threshold odor number 6.5-8.5 0.10 mg/L
Sulfate Total Dissolved Solids Zinc	250 mg/L 500 mg/L 5 mg/L

Important Notes

¹ Maximum Contaminant Level Goal (MCLG) - The maximum level of a contaminant in drinking water at which no known or anticipated adverse effect on the health effect of persons would occur, and which allows for an adequate margin of safety. MCLGs are non-enforceable public health goals.

² Maximum Contaminant Level (MCL) - The maximum permissible level of a contaminant in water which is delivered to any user of a public water system. MCLs are enforceable standards. The margins of safety in MCLGs ensure that exceeding the MCL slightly does not pose significant risk to public health.

³ Treatment Technique - An enforceable procedure or level of technical performance which public water systems must follow to ensure control of a contaminant.

⁴ Units are in milligrams per Liter (mg/L) unless otherwise noted.

⁵ MCLGs were not established before the 1986 Amendments to the Safe Drinking Water Act. Therefore, there is no MCLG for this contaminant.

⁶ Lead and copper are regulated in a Treatment Technique which requires systems to take tap water samples at sites with lead pipes or copper pipes that have lead solder and/or are served by lead service lines. The action level, which triggers water systems into taking treatment steps if exceeded in more than 10% of tap water samples, for copper is 1.3 mg/L, and for lead is 0.015mg/L.

⁷ Each water system must certify, in writing, to the state (using third-party or manufacturer's certification) that when acrylamide and epichlorohydrin are used in drinking water systems, the combination (or product) of dose and monomer level does not exceed the levels specified, as follows:

Acrylamide = 0.05% dosed at 1 mg/L (or equivalent)

Epichlorohydrin = 0.01% dosed at 20 mg/L (or equivalent)

⁸ The Surface Water Treatment Rule requires systems using surface water or ground water under the direct influence of surface water to (1) disinfect their water, and (2) filter their water or meet criteria for avoiding filtration so that the following contaminants are controlled at the following levels:

Giardia lamblia: 99.9% killed/inactivated

Viruses: 99.99% killed/inactivated

Legionella: No limit, but EPA believes that if *Giardia* and viruses are inactivated, *Legionella* will also be controlled.

Turbidity: At no time can turbidity (cloudiness of water) go above 5 Nephelolometric turbidity units (NTU); systems that filter must ensure that the turbidity go no higher than 1 NTU (0.5 NTU for conventional or direct filtration) in at least 95% of the daily samples in any month. **HPC**: NO more than 500 bacterial colonies per milliliter.

⁹ No more than 5.0% samples total coliform-positive in a month. (For water systems that collect fewer than 40 routine samples per month, no more than one sample can be total coliform-positive). Every sample that has total coliforms must be analyzed for fecal coliforms. There cannot be any fecal coliforms.

¹⁰ Fecal coliform and *E. coli* are bacteria whose presence indicates that the water may be contaminated with human animal wastes. Microbes in these wastes can cause diarrhea, cramps, nausea, headaches, or other symptoms.

New EPA Rules

Arsenic

Arsenic is a chemical that occurs naturally in the earth's crust. When rocks, minerals, and soil erode, they release arsenic into water supplies. When people either drink this water or eat animals and plants that drink it, they are exposed to arsenic. For most people in the U.S., eating and drinking are the most common ways that people are exposed to arsenic, although it can also come from industrial sources. Studies have linked long-term exposure of arsenic in drinking water to a variety of cancers in humans.

To protect human health, an EPA standard limits the amount of arsenic in drinking water. In January 2001, the EPA revised the standard from 50 parts per billion (ppb), ordered that it fall to 10 ppb by 2006. After adopting 10ppb as the new standard for arsenic in drinking water, the EPA decided to review the decision to ensure that the final standard was based on sound science and accurate estimates of costs and benefits. In October 2001, the EPA decided to move forward with

implementing the 10 ppb standard for arsenic in drinking water.

More information on the rulemaking process and the costs and benefits of setting the arsenic limit in drinking water at 10 ppb can be found at www.epa.gov/safewater/arsenic.html.

ICR

The EPA has collected data required by the Information Collection Rule (ICR) to support future regulation of microbial contaminants, disinfectants, and disinfection byproducts. The rule is intended to provide EPA with information on chemical byproducts that form when disinfectants used for microbial control react with chemicals already present in source water (disinfection byproducts (DBPs)); disease-causing microorganisms (pathogens), including Cryptosporidium; and engineering data to control these contaminants.

Drinking water microbial and disinfection byproduct information collected for the ICR is now available in the EPA's Envirofacts Warehouse website.

Disinfection Rules Stages 1 & 2 DBPR

The following are EPA's federal rule requirements. Please be aware that each state implements drinking water regulations that may be more stringent than EPA's regulations. Check with your state environmental agency for more information.

Stage 2 DBPR

EPA finalized the Stage 2 Disinfectants and Disinfection Byproduct Rule (DBPR) to reduce potential health risks from DBPs. The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) is being finalized and implemented at the same time as the Stage 2 DBPR to ensure that drinking water is safe from both microbial pathogens and DBPs.

General Requirements

To comply with the Stage 2 Disinfectants and Disinfection Byproducts Rule (Stage 2 DBPR), published on January 4, 2006 (71 FR 388) systems must do the following:

• Conduct an Initial Distribution System Evaluation (IDSE) to find locations in the distribution system that have high levels of TTHM and HAA5 and that can be used as compliance monitoring sites for the Stage 2 DBPR.

• Use a locational running annual average (LRAA) calculation to determine compliance with the Stage 2 DBPR maximum contaminant levels (MCLs) of:

- 0.080 mg/L for total trihalomethanes (TTHM), and

- 0.060 mg/L for five haloacetic acids (HAA5).

Note: The MCL values are the same as the Stage 1 MCLs; only the calculation method changes.

• Monitor for Stage 2 compliance at the required number of locations for each system's retail population

• Identify when TTHM or HAA5 levels exceed the operational evaluation level and, when this happens, look at source water, operational practices, and treatment to find ways to reduce TTHM and HAA5 concentrations in the distribution system. Each of these general requirements are covered in more detail in the rest of this guidance manual. The Stage 2 DBPR is an extension of the Stage 1 Disinfectants and Disinfection Byproducts Rule (Stage 1 DBPR). Systems must also continue to comply with the other requirements of the Stage 1 DBPR in addition to meeting the requirements of the Stage 2 DBPR. This includes compliance with the MCLs for bromate (for systems using ozone) and chlorite (for systems using chlorine dioxide), the MRDLs for chlorine or chloramine (depending on the residual disinfectant used), as well as TOC removal requirements.

Compliance Timeline

Your compliance schedule for the Stage 2 DBPR are based on whether your system is part of a *combined distribution system*:

• If your system **is** part of a combined distribution system, you must comply with the revised MCLs by the same date as required for the largest system in your combined distribution system.

Example: if your system serves 8,000 people, but you purchase water from a system that serves 250,000 people, you must comply by the dates shown in Schedule 1.

• If your system **is not** part of a combined distribution system, compliance dates are based on the population served by your system.

Note: You are on the same schedule for Stage 2 DBPR compliance as you were on for the IDSE. The timeline on the next page shows important dates for the Stage 2 DBPR as well as periods for *Cryptosporidium* and *E. coli* required under the LT2ESWTR.

Note: The figure shows the 2-year period after systems must begin compliance as a "possible extension." States may give you up to an additional 2 years to comply if you need time to install capital improvements.

How Does this Rule Relate to Other Federal, State, and Local Requirements?

As noted earlier, the Stage 2 DBPR is an extension of the Stage 1 Disinfectants and Disinfection Byproducts Rule (Stage 1 DBPR). The Stage 2 DBPR and the Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) were published together to address the balance between protection from microbial pathogens and the potential health effects from disinfectants and their byproducts. You are still required to continue to meet all existing federal requirements. You may call the Safe Drinking Water Hotline at (800) 426-4791 (e-mail: hotline-sdwa@epa.gov) for more information on other drinking water rules.

Where do DBPs come from?

Chlorine and other chemical disinfectants have been widely used by public water systems (along with filtration) to protect the public from microbial pathogens in drinking water. DBPs are formed when certain disinfectants react with DBP precursors (organic and inorganic materials) in source waters. In most cases, natural organic matter (NOM) is an important factor that affects the levels of DBPs that form (NOM is usually measured as TOC). The levels of DBPs in drinking water can vary significantly from one point in a distribution system to another, as many continue to form in the distribution system. DBP levels are generally higher in surface water systems because surface water usually contains higher DBP precursor levels and requires stronger disinfection.

Ensuring Safe Drinking Water

All drinking water systems want to provide water that is safe. One aspect of providing safe drinking water is limiting the levels of DBPs in it. Long-term exposure to DBPs has been linked to bladder cancer, and possibly colon and rectal cancers. More recent studies have shown that shorter-term exposure to high levels of DBPs may be associated with adverse reproductive and developmental health effects.

Limiting the levels of DBPs in your drinking water may require you to make some adjustments to your current operations, such as:

• Making operational improvements at the plant or in the distribution system • Modifying current treatment operations to remove more DBP precursors or form lower levels of DBPs

• Upgrading or installing a new treatment technology

What Does Compliance Monitoring Involve?

Monitoring requirements for TTHM and HAA5 are based on your source water type and the population your system serves. Note that this is different than the Stage 1 DBPR monitoring requirements that were based on the number of treatment plants in your system.

With population-based monitoring, there are five categories of small systems under the Stage 2 DBPR:

- Subpart H systems that serve fewer than 500 people.
- Subpart H systems that serve 500 to 3,300 people.
- Subpart H systems that serve 3,301 to 9,999 people.
- Ground water systems that serve fewer than 500 people.
- Ground water systems that serve 500 to 9,999 people.

If you do not know what type of system you are, you should contact your State to confirm this information.

Older Stage 1 DBPR Information

Disinfection Byproduct Regulations

In December 1998, the EPA established the Stage 1 Disinfectants/Disinfection Byproducts Rule that requires public water systems to use treatment measures to reduce the formation of disinfection byproducts and to meet the following specific standards:

> 31 Distribution 404 1St Edition

Total Trihalomethanes (TTHM)	80 parts per billion (ppb)
Haloacetic Acids (HAA5)	60 ppb
Bromate	10 ppb
Chlorite	1.0 parts per million (ppm)

Trihalomethanes were regulated at a maximum allowable annual average level of 100 parts per billion for water systems serving over 10,000 people under the Total Trihalomethane Rule finalized by the EPA in 1979. The Stage 1 Disinfectant/Disinfection Byproduct Rule standards became effective for trihalomethanes and other disinfection byproducts listed above in December 2001 for large surface water public water systems. Those standards became effective in December 2003 for small surface water and all ground water public water systems.

Disinfection byproducts are formed when disinfectants used in water treatment plants react with bromide and/or natural organic matter (i.e., decaying vegetation) present in the source water. Different disinfectants produce different types or amounts of disinfection byproducts. Disinfection byproducts for which regulations have been established have been identified in drinking water, including trihalomethanes, haloacetic acids, bromate, and chlorite.

Trihalomethanes (**THM**) are a group of four chemicals that are formed along with other disinfection byproducts when chlorine or other disinfectants used to control microbial contaminants in drinking water react with naturally occurring organic and inorganic matter in water. The trihalomethanes are chloroform, bromodichloromethane, dibromochloromethane, and bromoform. The EPA has published the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate total trihalomethanes (TTHM) at a maximum allowable annual average level of 80 parts per billion. This new standard replaced the old standard of a maximum allowable annual average level of 100 parts per billion back in December 2001 for large surface water public water systems. The standard became effective for the first time back in December 2003 for small surface water and all ground water systems.

Haloacetic Acids (**HAA5**) are a group of chemicals that are formed along with other disinfection byproducts when chlorine or other disinfectants used to control microbial contaminants in drinking water react with naturally occurring organic and inorganic matter in water. The regulated haloacetic acids, known as HAA5, are: monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid. EPA has published the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate HAA5 at 60 parts per billion annual average.

This standard became effective for large surface water public water systems back in December 2001 and for small surface water and all ground water public water systems back in December 2003.

Revised Total Coliform Rule (RTCR)

The following are EPA's federal rule requirements. Please be aware that each state implements drinking water regulations that may be more stringent than EPA's regulations. Check with your state environmental agency for more information.

EPA published the Revised Total Coliform Rule (RTCR) in the Federal Register (FR) on February 13, 2013 (78 FR 10269). It is the revision to the 1989 Total Coliform Rule (TCR).

Why revise the 1989 TCR?

The 1996 amendments to the Safe Drinking Water Act [Section 1412(b) (9)] require the Administrator to review and revise, as appropriate, each national primary drinking water regulation not less often that every six years. EPA published its decision to revise the TCR in July 2003 as part of its National Primary Drinking Water Regulation (NPDWR) review.

The RTCR:

- Upholds the purpose of the 1989 TCR to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbial contamination.
- Requires public water systems (PWSs) to meet a legal limit for E. coli, as demonstrated by required monitoring.
- Specifies the frequency and timing of required microbial testing based on population served, public water system type and source water type: ground water or surface water.

When must PWSs comply with the RTCR requirements?

Unless a State determines an earlier effective date, all PWSs must comply with the RTCR requirements starting April 1, 2016. All PWSs include:

- Community Water Systems (CWSs),
- Non-Transient Non-Community Water Systems (NTNCWSs), and
- Transient Non-Community Water Systems (TNCWSs).

Minor Corrections to the Revised Total Coliform Rule (RTCR)

Minor corrections to the final RTCR became effective on April 28, 2014. No comments were received on the Direct Final Rule published on February 26, 2014 and the corrections therefore became effective without further notice. See the **Direct Final Rule** Federal Register Notice.

Revised Total Coliform Rule (RTCR) - Final Rule

On February 13, 2013, EPA published in the Federal Register the revisions to the 1989 TCR. EPA anticipates greater public health protection under the Revised Total Coliform Rule (RTCR) requirements. The RTCR:

- Requires public water systems that are vulnerable to microbial contamination to identify and fix problems; and
- Establishes criteria for systems to qualify for and stay on reduced monitoring, which could reduce water system burden and provide incentives for better system operation.

Public water systems (PWSs) and primacy agencies must comply with the revised requirements by April, 2016. Until then, PWSs and primacy agencies must continue complying with the 1989 TCR.

Provision Category	Key Provisions
Contaminant Level	 Addresses the presence of total coliforms and E. coli in drinking water. For E. coli (EC), the Maximum Contaminant Level Goal (MCLG) is set at zero and the Maximum Contaminant Level (MCL) is based on the occurrence of a condition that includes routine and repeat samples. For total coliforms (TC), PWSs must conduct a Level 1 or Level 2 assessment of their system when they exceed a specified frequency of total coliform occurrence. Other events such as an MCL violation or failure to take repeat samples following a routine total coliform-positive sample will also trigger an assessment must be corrected by the PWS. These are the treatment technique requirements of the RTCR.
Monitoring	 Develop and follow a sample siting plan that designates the PWS's collection schedule and location of routine and repeat water samples. Collect routine water samples on a regular basis (monthly, quarterly, annually) and have them tested for the presence of total coliforms by a state certified laboratory. Analyze all routine or repeat samples that are total coliform positive (TC+) for E. coli. Collect repeat samples (at least 3) for each TC+ positive routine sample. For PWSs on quarterly or annual routine sampling, collect additional routine samples (at least 3) in the month after a TC+ routine or repeat sample. Seasonal systems must monitor and certify the completion of a state-approved start-up procedures
Level 1 and Level 2 Assessments and Corrective Actions	• PWSs are required to conduct a Level 1 or Level 2 assessment if certain conditions indicate that they might be vulnerable to contamination, and fix any sanitary defects within a required timeframe.
Reporting and Recordkeeping	 PWSs are required to report certain items to their states. These reporting and recordkeeping requirements are essentially the same as under TCR with the addition of Level 1 and Level 2 requirements.
Violations, Public Notification (PN) and Consumer Confidence Report (CCR)	 PWSs incur violations if they do not comply with the requirements of the RTCR. The violation types are essentially the same as under the TCR with few changes. The biggest change is no acute or monthly MCL violation for total coliform positive samples only. PN is required for violations incurred. Within required timeframes, the PWS must use the required health effects language and notify the public if they did not comply with

What are the key provisions PWSs must comply with under the RTCR?

 certain requirements of the RTCR. The type of PN depends on the severity of the violation. Community water systems (CWSs) must use specific language in their CCRs when they must conduct an assessment or if they incur an E_coli MCL violation
assessment or if they incur an E. coli MCL violation.

More on the Current Stage 2 DBP Rule

The following are EPA's federal rule requirements. Please be aware that each state implements drinking water regulations that may be more stringent than EPA's regulations. Check with your state environmental agency for more information.

The Stage 2 DBP rule is one part of the Microbial and Disinfection Byproducts Rules (MDBPs), which are a set of interrelated regulations that address risks from microbial pathogens and disinfectants/disinfection byproducts. The Stage 2 DBP rule focuses on public health protection by limiting exposure to DBPs, specifically total trihalomethanes (TTHM) and five haloacetic acids (HAA5), which can form in water through disinfectants used to control microbial pathogens. This rule will apply to all community water systems and nontransient noncommunity water systems that add a primary or residual disinfectant other than ultraviolet (UV) light or deliver water that has been disinfected by a primary or residual disinfectant other than UV.

Amendments to the SDWA in 1996 require EPA to develop rules to balance the risks between microbial pathogens and disinfection byproducts (DBPs). The Stage 1 Disinfectants and Disinfection Byproducts Rule and Interim Enhanced Surface Water Treatment Rule, promulgated in December 1998, were the first phase in a rulemaking strategy required by Congress as part of the 1996 Amendments to the Safe Drinking Water Act.

The Stage 2 Disinfectants and Disinfection Byproducts Rule (Stage 2 DBPR) builds upon the Stage 1 DBPR to address higher risk public water systems for protection measures beyond those required for existing regulations. The Stage 2 DBPR and the Long Term 2 Enhanced Surface Water Treatment Rule are the second phase of rules required by Congress. These rules strengthen protection against microbial contaminants, especially *Cryptosporidium*, and at the same time, reduce potential health risks of DBPs.

What is the Stage 2 DBPR?

The Stage 2 Disinfection Byproducts Rule will reduce potential cancer and reproductive and developmental health risks from disinfection byproducts (DBPs) in drinking water, which form when disinfectants are used to control microbial pathogens. Over 260 million individuals are exposed to DBPs.

This final rule strengthens public health protection for customers by tightening compliance monitoring requirements for two groups of DBPs, trihalomethanes (TTHM) and haloacetic acids (HAA5). The rule targets systems with the greatest risk and builds incrementally on existing rules. This regulation will reduce DBP exposure and related potential health risks and provide more equitable public health protection. The Stage 2 DBPR is being promulgated simultaneously with the Long Term 2 Enhanced Surface Water Treatment Rule to address concerns about risk tradeoffs between pathogens and DBPs.

What does the rule require?

Under the Stage 2 DBPR, systems will conduct an evaluation of their distribution systems, known as an Initial Distribution System Evaluation (IDSE), to identify the locations with high disinfection byproduct concentrations.

These locations will then be used by the systems as the sampling sites for Stage 2 DBPR compliance monitoring. Compliance with the maximum contaminant levels for two groups of disinfection byproducts (TTHM and HAA5) will be calculated for each monitoring location in the distribution system. This approach, referred to as the locational running annual average (LRAA), differs from current requirements, which determine compliance by calculating the running annual average of samples from all monitoring locations across the system.

The Stage 2 DBPR also requires each system to determine if they have exceeded an operational evaluation level, which is identified using their compliance monitoring results. The operational evaluation level provides an early warning of possible future MCL violations, which allows the system to take proactive steps to remain in compliance.

A system that exceeds an operational evaluation level is required to review their operational practices and submit a report to their state that identifies actions that may be taken to mitigate future high DBP levels, particularly those that may jeopardize their compliance with the DBP MCLs.

Who must comply with the rule?

Entities potentially regulated by the Stage 2 DBPR are community and nontransient noncommunity water systems that produce and/or deliver water that is treated with a primary or residual disinfectant other than ultraviolet light.

A community water system (CWS) is a public water system that serves year-round residents of a community, subdivision, or mobile home park that has at least 15 service connections or an average of at least 25 residents.

A nontransient noncommunity water system (NTNCWS) is a water system that serves at least 25 of the same people more than six months of the year, but not as primary residence, such as schools, businesses, and day care facilities.

What are disinfection byproducts (DBPs)?

Disinfectants are an essential element of drinking water treatment because of the barrier they provide against waterborne disease-causing microorganisms. Disinfection byproducts (DBPs) form when disinfectants used to treat drinking water react with naturally occurring materials in the water (e.g., decomposing plant material).

Total trihalomethanes (TTHM - chloroform, bromoform, bromodichloromethane, and dibromochloromethane) and haloacetic acids (HAA5 - monochloro-, dichloro-, trichloro-, monobromo-, dibromo-) are widely occurring classes of DBPs formed during disinfection with chlorine and chloramine. The amount of trihalomethanes and haloacetic acids in drinking water can change from day to day, depending on the season, water temperature, amount of disinfectant added, the amount of plant material in the water, and a variety of other factors.

Are THMs and HAAs the only disinfection byproducts?

No. The four THMs (TTHM) and five HAAs (HAA5) measured and regulated in the Stage 2 DBPR act as indicators for DBP occurrence. There are many other known DBPs, in addition to the possibility of unidentified DBPs present in disinfected water. THMs and HAAs typically occur at higher levels than other known and unknown DBPs. The presence of TTHM and HAA5 is

representative of the occurrence of many other chlorination DBPs; thus, a reduction in the TTHM and HAA5 generally indicates a reduction of DBPs from chlorination.

Microbial Regulations

One of the key regulations developed and implemented by the United States Environmental Protection Agency (USEPA) to counter pathogens in drinking water is the Surface Water Treatment Rule.

Among its provisions, the rule requires that a public water system, using surface water (or ground water under the direct influence of surface water) as its source, have sufficient treatment to reduce the source water concentration of *Giardia* and viruses by at least 99.9% and 99.99%, respectively. The Surface Water Treatment Rule specifies treatment criteria to assure that these performance requirements are met; they include turbidity limits, disinfectant residual and disinfectant contact time conditions.

Disinfectant Review Statements:

Disinfectant residual: The CT values for disinfection are used to determine the disinfection efficiency based upon time and what other parameter?

Bacteria, Virus and Intestinal parasites: What types of organisms may transmit waterborne diseases?

Disinfection By-Products (DBPs): The products created due to the reaction of chlorine with organic materials (e.g. leaves, soil) present in raw water during the water treatment process. The EPA has determined that these DBPs can cause cancer.

How is the effectiveness of disinfection determined? From the results of coliform testing.

The treatment of water to inactivate, destroy, and/or remove pathogenic bacteria, viruses, protozoa, and other parasites.

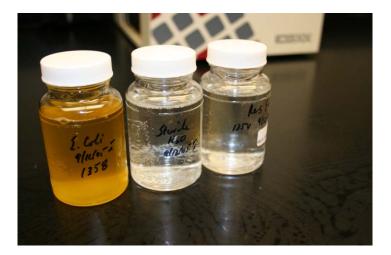
What types of source water are required by law to treat water using filtration and disinfection? *Groundwater under the direct influence of surface water, and related surface water sources.*

E. Coli, *Escherichia coli*: A bacterium commonly found in the human intestine. For water quality analyses purposes, it is considered an indicator organism. These are considered evidence of water contamination. Indicator organisms may be accompanied by pathogens, but do not necessarily cause disease themselves.

pH Strips

pH is on a scale from 0-14. 7 is considered neutral and acid is on the 0 to 7 side and the base is 7-14. pH is known as the Power of Hydroxyl Ion activity.

Common water distribution sample bottles, Radiochems, VOCs, (Volatile Organic Compounds), TTHMs, Total Trihalomethanes), Nitrate, Nitrite.


Most of these sample bottles will come with the preservative already inside the bottle. Some bottles will come with a separate preservative (acid) for the field preservation. Slowly add the acid or other preservative to the water sample; not water to the acid or preservative.

Bac-T Sample Bottle, often referred to as a Standard Sample, 100 mls. Notice the white powder inside the bottle. That is Sodium Thiosulfate, a de-chlorination agent. Be careful not to wash-out this chemical while sampling. Notice the custody seal on the bottle.

Coliform bacteria are common in the environment and are generally

not harmful. However, the presence of these bacteria in drinking water is usually a result of a problem with the treatment system or the pipes which distribute water, and indicates that the water may be contaminated with germs that can cause disease.

The bottle with the yellow color on the left indicates coliform bacteria is present. If the bottle fluoresces under a black light, fecal bacteria is present.

Common Water Quality Definitions

Units of Measurement

mg/l = Milligrams per liter. One milligram per liter equals one packet of artificial sweetener sprinkled into 250 gallons of iced tea.

µg/l = Micrograms per liter. One microgram per liter is equal to one packet of artificial sweetener sprinkled into an Olympic-size swimming pool.

NTU = Nephelometric Turbidity Units. A measurement on the cloudiness of the water. **pCi/I** = Picocuries per liter. A measure of radioactivity.

Acronyms

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL) - The concentration of a contaminant that, if exceeded, triggers treatment or other requirements which a water system must follow.

Timeline of Existing Federal Water and State Drinking Water Quality Regulations

National Interim Primary Drinking Water Regulations (NIPDWR) Promulgated 1975-1981 Contained 7 contaminants Targeted: Trihalomethanes, Arsenic, and Radionuclides Established 22 drinking water standards.

Phase 1 Standards Promulgated 1987 Contained 8 contaminants Targeted: VOCs.

Phase 2 Standards Promulgated 1991 Contained 36 contaminants Targeted: VOCs, SOCs, and IOCs.

Phase 5 Standards Promulgated 1992 Contained 23 contaminants Targeted: VOCs, SOCs, and IOCs.

Surface Water Treatment Rule (SWTR) Promulgated 1989 Contained 5 contaminants Targeted: Microbiological and Turbidity.

Stage 1 Disinfectant/Disinfection By-product (D/DBP) Rule Promulgated 1998 Contained 14 contaminants Targeted: DBPs and precursors.

Interim Enhanced Surface Water Treatment Rule (IESWTR) Promulgated 1998 Contained 2 contaminants Targeted: Microbiological and Turbidity.

Radionuclide Rule Promulgated 2000 Contained 4 contaminants Targeted: Radionuclides.

Arsenic Rule Promulgated 2001 Contained 1 contaminant Targeted: Arsenic.

Filter Backwash Recycling Rule Promulgated 2001 Contained - Targeted: Microbiological and Turbidity.

Water Quality Key Words

2,4-D: A chlorinated phenoxy compound, functions as a systemic herbicide and is used to control many types of broadleaf weeds. There are many forms or derivatives (esters, amines, salts) of 2,4-D and these vary in solubility and volatility. Unless otherwise specified, this document will refer to the acid form of 2,4-D. This compound is used in cultivated agriculture and in pasture and rangeland applications, forest management, home and garden situations and for the control of aquatic vegetation. 2,4-D was a major component (about 50%) of the product Agent Orange used extensively throughout Vietnam. However most of the problems associated with the use of Agent Orange were associated with a contaminant (dioxin) in the 2,4,5-T component of the defoliant. The association of 2,4-D with Agent Orange has prompted a vast amount of study on the herbicide.

ANTIMONY: A chemical element with the symbol Sb (Latin: stibium, meaning "mark") and atomic number 51. A metalloid, antimony has four allotropic forms. The stable form of antimony is a blue-white metalloid. Yellow and black antimony are unstable non-metals. Antimony is used in flame-proofing, paints, ceramics, enamels, a wide variety of alloys, electronics, and rubber.

ASBESTOS: A mineral fiber that has been used commonly in a variety of building construction materials for insulation and as a fire-retardant. EPA and CPSC have banned several asbestos products. Manufacturers have also voluntarily limited uses of asbestos. Today, asbestos is most commonly found in older homes, in pipe and furnace insulation materials, asbestos shingles, millboard, textured paints and other coating materials, and floor tiles.

BARIUM: A chemical element. It has the symbol Ba, and atomic number 56. Barium is a soft silvery metallic alkaline earth metal. It is never found in nature in its pure form due to its reactivity with air. Its oxide is historically known as baryta but it reacts with water and carbon dioxide and is not found as a mineral. The most common naturally occurring minerals are the very insoluble barium sulfate, BaSO4 (barite), and barium carbonate, BaCO3 (witherite). Benitoite is a rare gem containing barium.

BERYLLIUM: A chemical element with the symbol Be and atomic number 4. A bivalent element, beryllium is a steel grey, strong, light-weight yet brittle alkaline earth metal. It is primarily used as a hardening agent in alloys, most notably beryllium copper. Commercial use of beryllium metal presents technical challenges due to the toxicity (especially by inhalation) of beryllium-containing dusts.

BROMATE: An inorganic anion, bromate is tasteless and colorless, with a low volatility. As a moderately strong oxidant, bromate is reactive. BrO3- is a bromine-based oxoanion. A bromate is a chemical compound that contains this ion. Examples of bromates include sodium bromate, (NaBrO3), and potassium bromate, (KBrO3).

CADMIUM: A chemical element with the symbol Cd and atomic number 48. A relatively abundant, soft, bluish-white, transition metal, cadmium is known to cause cancer and occurs with zinc ores. Cadmium is used largely in batteries and pigments, for example in plastic products.

CHLORITE: The chlorite ion is CIO2–. A chlorite (compound) is a compound that contains this group, with chlorine in oxidation state +3. Chlorites are also known as salts of chlorous acid.

CHROMIUM: A chemical element which has the symbol Cr and atomic number 24. It is a steelgray, lustrous, hard metal that takes a high polish and has a high melting point. It is also odorless, tasteless, and malleable.

CONTACT TIME (CT): To inactivate viruses and bacteria, the minimum disinfection contact time measured before the first customer should be six milligrams per minute per liter (6 mg-min/L).

This value is called "Chlorine Contact Time" or CT. To calculate CT, multiply the free chlorine residual concentration (C) times the contact time (T). To get the required CT value of 6, adjust the free chlorine residual concentration or the contact time.

DISINFECTION BYPRODUCTS: Disinfection byproducts are chemical, organic and inorganic substances that can form during a reaction of a disinfectant with naturally present organic matter in the water.

DPD METHOD: Presence of free chlorine in the distribution network is indication of correct disinfection. Chlorine in water is determined according to ISO 7393-2 by colorimetric HACH method on the basis of DPD (N, N-diethyl - p – phenylendiamine). The photometric detection uses the wave lengths of 490 – 555 nm. Hach elected, for most of his DPD colorimetric systems, the wave length of 530 nm.

FORMAZIN TURBIDITY UNIT (FTU): A unit used to measure the clarity of water. The ISO refers to the units as FNU (Formazin Nephelometric Units). The technique is the same as that for the NTU, but the calibration uses microspheres of the polymer formazin.

HALOACETIC ACIDS: Haloacetic acids are carboxylic acids in which a halogen atom takes the place of a hydrogen atom in acetic acid. Thus, in a monohaloacetic acid, a single halogen would replace a hydrogen atom. For example, chloroacetic acid would have the structural formula CH_2CICO_2H . In the same manner, in dichloroacetic acid two chlorine atoms would take the place of two hydrogen atoms ($CHCl_2CO_2H$).

HIGH-TEST HYPOCHLORITE: A composition composed mainly of calcium hypochlorite is commonly called high test hypochlorite. High-Test Hypochlorite contains not less than 60.0% of available chlorine.

HYDROCHLORIC ACID: It is the aqueous solution of hydrogen chloride gas (HCl). It is a strong acid, and the major component of gastric acid, and of wide industrial use. Hydrochloric acid must be handled with appropriate safety precautions because it is a highly corrosive liquid.

INFORMATION COLLECTION RULE (ICR): EPA collected data required by the Information Collection Rule (May 14, 1996) to support future regulation of microbial contaminants, disinfectants, and disinfection byproducts. The rule was intended to provide EPA with information on chemical byproducts that form when disinfectants used for microbial control react with chemicals already present in source water (disinfection byproducts (DBPs)); disease-causing microorganisms (pathogens), including Cryptosporidium; and engineering data to control these contaminants.

IRON BACTERIA: In the management of water-supply wells, iron bacteria are bacteria that derive the energy they need to live and multiply by oxidizing dissolved ferrous iron (or the less frequently available manganese and aluminum). The resulting ferric oxide is insoluble, and appears as brown gelatinous slime that will stain plumbing fixtures, and clothing or utensils washed with the water carrying it, and may contribute to internal corrosion of the pipes and fixtures the water flows through. They are known to grow and proliferate in waters containing as low as 0.1mg/l of iron. However, at least 0.3 ppm of dissolved oxygen is needed to carry out oxidation. The proliferation of iron bacteria, in some way, increases the chance of sulfur bacteria infestation.

LETHAL CONCENTRATION 50: Also referred to as LC50, a concentration of a pollutant or effluent at which 50 percent of the test organisms die; a common measure of acute toxicity.

MANGANESE (IV) OXIDE: The chemical compound MnO2, commonly called manganese dioxide. This blackish or brown solid occurs naturally as the mineral pyrolusite, which is the main ore of manganese. It is also present in manganese nodules. The principal use for MnO2 is for dry-cell batteries, such as the alkaline battery and the zinc-carbon battery. In 1976 this application accounted for 500,000 tons of pyrolusite. MnO2 is also used for production of MnO4–. It is used extensively as an oxidizing agent in organic synthesis, for example, for the oxidation of allylic alcohols.

MAXIMUM CONTAMINANT LEVEL (MCL): The maximum concentration of a chemical that is allowed in public drinking water systems.

MAXIMUM CONTAMINANT LEVEL GOAL (MCLG): The maximum level at which a contaminant can exist in drinking water without having an adverse effect on human health.

NEPHELOMETRIC TURBIDITY UNIT (NTU): The unit used to describe turbidity. Nephelometric refers to the way the instrument, a nephelometer, measures how much light is scattered by suspended particles in the water. The greater the scattering, the higher the turbidity. Therefore, low NTU values indicate high water clarity, while high NTU values indicate low water clarity.

PERMISSIBLE EXPOSURE LIMIT (PEL or OSHA PEL): A legal limit in the United States for exposure of an employee to a substance or physical agent. For substances it is usually expressed in parts per million (ppm), or sometimes in milligrams per cubic meter (mg/m³). Units of measure for physical agents such as noise are specific to the agent. Permissible Exposure Limits are established by the Occupational Safety and Health Administration (OSHA).

POWDERED ACTIVATED CARDON TREATMENT (PACT): A wastewater technology in which powdered activated carbon is added to an anaerobic or aerobic treatment system. The carbon in the biological treatment process acts as a "buffer" against the effects of toxic organics in the wastewater.

PPM: Abbreviation for parts per million.

QUICKLIME: A calcium oxide material produced by calcining limestone to liberate carbon dioxide, also called "calcined lime" or "pebble lime", commonly used for pH adjustment. Chemical formula is CaO.

RECOMMENDED EXPOSURE LIMIT (REL): An occupational exposure limit that has been recommended by the U.S. National Institute for Occupational Safety and Health to OSHA for adoption as a Permissible Exposure Limit. The REL is a level that NIOSH believes would be protective of worker safety and health over a working lifetime if used in combination with engineering and work practice controls, exposure and medical monitoring, posting and labeling of hazards, worker training and personal protective equipment. No REL has ever been adopted by OSHA, but they have been used as guides by some industry and advocacy organizations.

SCADA: A remote method of monitoring pumps and equipment. 130 degrees F is the maximum temperature that transmitting equipment is able to with stand. If the level controller may be set with too close a tolerance 45 could be the cause of a control system that is frequently turning a pump on and off.

TRANSIENT, NON-COMMUNITY WATER SYSTEM: TNCWS A water system which provides water in a place such as a gas station or campground where people do not remain for long periods of time. These systems do not have to test or treat their water for contaminants which pose long-term health risks because fewer than 25 people drink the water over a long period. They still must test their water for microbes and several chemicals. A Transient Non-community Water System: Is not required to sample for VOC's.

U.S. ENVIRONMENTAL PROTECTION AGENCY: In the United States, this agency responsible for setting drinking water standards and for ensuring their enforcement. This agency sets federal regulations which all state and local agencies must enforce.

VOLATILE ORGANIC COMPOUNDS (VOCs): Solvents used as degreasers or cleaning agents. Improper disposal of VOCs can lead to contamination of natural waters. VOCs tend to evaporate very easily. This characteristic gives VOCs very distinct chemical odors like gasoline, kerosene, lighter fluid, or dry cleaning fluid. Some VOCs are suspected cancer-causing agents. Volatile organic compounds (VOCs) are organic chemical compounds that have high enough vapor pressures under normal conditions to significantly vaporize and enter the atmosphere. A wide range of carbon-based molecules, such as aldehydes, ketones, and other light hydrocarbons are VOCs. The term often is used in a legal or regulatory context and in such cases the precise definition is a matter of law. These definitions can be contradictory and may contain "loopholes"; e.g. exceptions, exemptions, and exclusions. The United States Environmental Protection Agency defines a VOC as any organic compound that participates in a photoreaction; others believe this definition is very broad and vague as organics that are not volatile in the sense that they vaporize under normal conditions can be considered volatile by this EPA definition. The term may refer both to well characterized organic compounds and to mixtures of variable composition.

Top photograph, HPC plate. Bottom, Bac-T or Colilert samples, the yellow indicates coliform bacteria, if this sample fluoresces under a black light that means that fecal or e. coli is present.

Coliform bacteria are common in the environment and are generally not harmful. However, the presence of these bacteria in drinking water is usually a result of a problem with the treatment system or the pipes which distribute water, and indicates that the water may be contaminated with germs that can cause disease.

Water Sampling Terms, and Definitions

Microbes

Coliform bacteria are common in the environment and are generally not harmful. However, the presence of these bacteria in drinking water is usually a result of a problem with the treatment system or the pipes which distribute water, and indicates that the water may be contaminated with germs that can cause disease.

Fecal Coliform and E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms.

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

Cryptosporidium is a parasite that enters lakes and rivers through sewage and animal waste. It causes cryptosporidiosis, a mild gastrointestinal disease. However, the disease can be severe or fatal for people with severely weakened immune systems. The EPA and the CDC have prepared advice for those with severely compromised immune systems who are concerned about *Cryptosporidium*.

Giardia lamblia is a parasite that enters lakes and rivers through sewage and animal waste. It causes gastrointestinal illness (e.g. diarrhea, vomiting, cramps).

Radionuclides

Alpha emitters. Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the EPA standard over many years may have an increased risk of getting cancer.

Beta/photon emitters. Certain minerals are radioactive and may emit forms of radiation known as photons and beta radiation. Some people who drink water containing beta and photon emitters in excess of the EPA standard over many years may have an increased risk of getting cancer.

Combined Radium 226/228. Some people who drink water containing radium 226 or 228 in excess of EPA standard over many years may have an increased risk of getting cancer.

Radon gas can dissolve and accumulate in underground water sources, such as wells, and in the air in your home. Breathing radon can cause lung cancer. Drinking water containing radon presents a risk of developing cancer. Radon in air is more dangerous than radon in water.

Inorganic Contami	nants		
Antimony	Cadmium	Cyanide	Nitrite
Asbestos	Chromium	Mercury	Selenium
Barium	Copper	Nitrate	Thallium
Beryllium			

Arsenic. Some people who drink water containing arsenic in excess of the EPA standard over many years could experience skin damage or problems with their circulatory system, and may have an increased risk of getting cancer.

Fluoride. Many communities add fluoride to their drinking water to promote dental health. Each community makes its own decision about whether or not to add fluoride. The EPA has set an enforceable drinking water standard for fluoride of 4 mg/L (some people who drink water containing fluoride in excess of this level over many years could get bone disease, including pain and tenderness of the bones). The EPA has also set a secondary fluoride standard of 2 mg/L to protect against dental fluorosis. Dental fluorosis, in its moderate or severe forms, may result in a brown staining and/or pitting of the permanent teeth. This problem occurs only in developing teeth, before they erupt from the gums. Children under nine should not drink water that has more than 2 mg/L of fluoride.

Lead typically leaches into water from plumbing in older buildings. Lead pipes and plumbing fittings have been banned since August 1998. Children and pregnant women are most susceptible to lead health risks. For advice on avoiding lead, see the EPA's *"Lead in Your Drinking Water"* fact sheet.

Synthetic Organic Contaminants, including pesticides & herbicides

2,4-D 2,4,5-TP (Silvex) Acrylamide Alachlor Atrazine Benzoapyrene Carbofuran Chlordane Dalapon Di 2-ethylhexyl adipate Di 2-ethylhexyl phthalate Dibromochloropropane Dinoseb Dioxin (2,3,7,8-TCDD) Diquat Endothall Endrin Epichlorohydrin Ethylene dibromide Glyphosate Heptachlor Heptachlor epoxide Hexachlorobenzene Hexachlorocyclopentadiene Lindane Methoxychlor Oxamyl [Vydate] PCBs [Polychlorinated biphenyls] Pentachlorophenol Picloram Simazine Toxaphene

Volatile Organic Contaminants

Benzene	trans-1,2-Dicholoroethylene
Carbon Tetrachloride	Dichloromethane
Chlorobenzene	1,2-Dichloroethane
o-Dichlorobenzene	1,2-Dichloropropane
p-Dichlorobenzene	Ethylbenzene
1,1-Dichloroethylene	Styrene
cis-1,2-Dichloroethylene	Tetrachloroethylene

1,2,4-Trichlorobenzene 1,1,1,-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Toluene Vinyl Chloride Xylenes

Point-of-Entry P.O.E. will usually be a designated sampling point on a water treatment or distribution system.

Waterborne Pathogens and Disease Section

Bacteria, viruses, and protozoan that cause disease are known as pathogens. Most pathogens are generally associated with diseases that cause intestinal illness and affect people in a relatively short amount of time, generally a few days to two weeks. They can cause illness through exposure to small quantities of contaminated water or food, or from direct contact with infected people or animals.

How Diseases are Transmitted

Pathogens that may cause waterborne outbreaks through drinking water have one thing in common: they are spread by the fecal-oral or feces-to-mouth route. Pathogens may get into water and spread when infected humans or animals pass the bacteria, viruses, and protozoa in their stool. For another person to become infected, he or she must take that pathogen in through the mouth. Waterborne pathogens are different from other types of pathogens such as the viruses that cause influenza (the flu) or the bacteria that cause tuberculosis. Influenza virus and tuberculosis bacteria are spread by secretions that are coughed or sneezed into the air by an infected person. Cryptosporidium→

Human or animal wastes in watersheds, failing septic systems, failing sewage treatment plants or cross-connections of water lines with sewage lines provide the potential for contaminating water with pathogens. The water may not appear to be contaminated because the feces has been broken up, dispersed, and diluted into microscopic particles. These particles, containing pathogens, may remain in the water and be passed to humans or animals unless adequately treated.

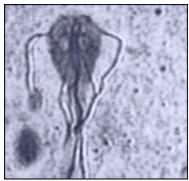
Only proper treatment will ensure eliminating the spread of disease. In addition to water, other methods exist for spreading pathogens by the fecal-oral route. The foodborne route is one of the more common methods. A frequent source is a food handler who does not wash his hands after a bowel movement and then handles food with *unclean* hands. The individual who eats feces-contaminated food may become infected and ill. It is interesting to note the majority of foodborne diseases occur in the home, not restaurants.

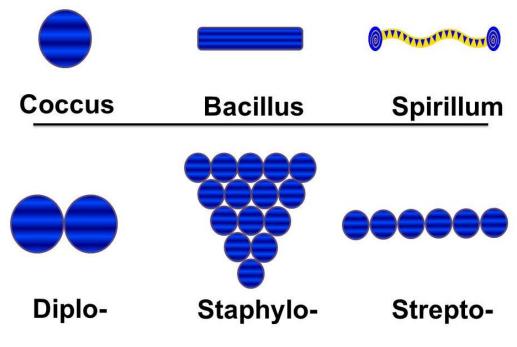
Day care centers are another common source for spreading pathogens by the fecal-oral route. Here, infected children in diapers may get feces on their fingers, then put their fingers in a friend's mouth or handle toys that other children put into their mouths. The general public and some of the medical community usually refer to diarrhea symptoms as stomach flu.

Technically, influenza is an upper respiratory illness and rarely has diarrhea associated with it; therefore, stomach flu is a misleading description for foodborne or waterborne illnesses, yet is accepted by the general public. So the next time you get the stomach flu, you may want to think twice about what you've digested within the past few days.

Chain of Transmission

Water is contaminated with feces. This contamination may be of human or animal origin. The feces must contain pathogens (disease-causing bacteria, viruses or protozoa). If the human or animal source is not infected with a pathogen, no disease will result. The pathogens must survive in the water. This depends on the temperature of the water and the length of time the pathogens are in the water. Some pathogens will survive for only a short time in water, others, such as Giardia or Cryptosporidium, may survive for months.


The pathogens in the water must enter the water system's intake and in numbers sufficient to infect people. The water is either not treated or inadequately treated for the pathogens present. A susceptible person must drink the water that contains the pathogen. Illness (disease) will occur.


This chain lists the events that must occur for the transmission of disease via drinking water. By breaking the chain at any point, the transmission of disease will be prevented.

Bacterial Diseases

Giardia→

Campylobacteriosis is the most common diarrhea illness caused by bacteria. Symptoms include abdominal pain, malaise, fever, nausea and vomiting, and they usually begin three to five days after exposure. The illness is frequently over within two to five days and usually lasts no more than 10 days. Campylobacteriosis outbreaks have most often been associated with food, especially chicken and unpasteurized milk, as well as un-chlorinated water.

Types of Bacteria

These organisms are also an important cause of travelers' diarrhea. Medical treatment generally is not prescribed for campylobacteriosis because recovery is usually rapid. Cholera, Legionellosis, salmonellosis, shigellosis, and yersiniosis are other bacterial diseases that can be transmitted through water. All bacteria in water are readily killed or inactivated with chlorine or other disinfectants.

Viral-Caused Diseases

Hepatitis A is an example of a common viral disease that may be transmitted through water. The onset is usually abrupt with fever, malaise, loss of appetite, nausea and abdominal discomfort, followed within a few days by jaundice. The disease varies in severity from a mild illness lasting one to two weeks, to a severely disabling disease lasting several months (rare).

The incubation period is 15-50 days and averages 28-30 days. Hepatitis A outbreaks have been related to fecally contaminated water; food contaminated by infected food handlers, including sandwiches and salads that are not cooked or are handled after cooking and raw or undercooked mollusks harvested from contaminated waters. Aseptic meningitis, polio and viral gastroenteritis (Norwalk agent) are other viral diseases that can be transmitted through water. Most viruses in drinking water can be inactivated by chlorine or other disinfectants.

Protozoan Caused Diseases

Protozoan pathogens are larger than bacteria and viruses but still microscopic. They invade and inhabit the gastrointestinal tract. Some parasites enter the environment in a dormant form, with a protective cell wall, called a *cyst*. The cyst can survive in the environment for long periods of time and is extremely resistant to conventional disinfectants such as chlorine. Effective filtration treatment is therefore critical to removing these organisms from water sources.

Giardiasis is a commonly reported protozoan-caused disease. It has also been referred to as *backpacker's disease* and *beaver fever* because of the many cases reported among hikers and others who consume untreated surface water. Symptoms include chronic diarrhea, abdominal cramps, bloating, frequent loose and pale greasy stools, fatigue and weight loss. The incubation period is 5-25 days or longer, with an average of 7-10 days. Many infections are asymptomatic (no symptoms). Giardiasis occurs worldwide. Waterborne outbreaks in the United States occur most often in communities receiving their drinking water from streams or rivers without adequate disinfection or a filtration system.

Giardia lamblia

Giardia lamblia has been responsible for more community-wide outbreaks of disease in the U.S. than any other pathogen. Drugs are available for treatment, but these are not 100% effective.

Cryptosporidiosis

Cryptosporidiosis is an example of a protozoan disease that is common worldwide, but was only recently recognized as causing human disease. The major symptom in humans is diarrhea, which may be profuse and watery. The diarrhea is associated with cramping abdominal pain. General malaise, fever, anorexia, nausea and vomiting occur less often.

Symptoms usually come and go, and end in fewer than 30 days in most cases. The incubation period is 1-12 days, with an average of about seven days. *Cryptosporidium* organisms have been identified in human fecal specimens from more than 50 countries on six continents. The mode of transmission is fecal-oral, either by person-to-person or animal-to-person. There is no specific treatment for *Cryptosporidium* infections.

All of these diseases, with the exception of hepatitis A, have one symptom in common: diarrhea. They also have the same mode of transmission, fecal-oral, whether through person-to-person or animal-to-person contact, and the same routes of transmission, being either foodborne or waterborne. Although most pathogens cause mild, self-limiting disease, on occasion, they can cause serious, even life threatening illness. Particularly vulnerable are persons with weak immune systems such as those with HIV infections or cancer.

By understanding the nature of waterborne diseases, the importance of properly constructed, operated and maintained public water systems becomes obvious. While water treatment cannot achieve sterile water (no microorganisms), the goal of treatment must clearly be to produce drinking water that is as pathogen-free as possible at all times. For those who operate water systems with inadequate source protection or treatment facilities, the potential risk of a waterborne disease outbreak is real. For those operating systems that currently provide adequate source protection and treatment, operating, and maintaining the system at a high level on a continuing basis is critical to prevent disease.

Waterborne Diseases

Name	Causative organism	Source of organism	Disease
Viral gastroenteritis	Rotavirus (mostly in young children)	Human feces	Diarrhea or vomiting
Norwalk Agent	Noroviruses (genus <i>Norovirus</i> , family <i>Caliciviridae</i>) *1	Human feces; also, shellfish; lives in polluted waters	Diarrhea and vomiting
Salmonellosis	Salmonella (bacterium)	Animal or human feces	Diarrhea or vomiting
Gastroenteritis Escherichia <i>coli</i>	<i>E. coli O1</i> 57:H7 (bacterium): Other <i>E. coli</i> organisms:	Human feces	Symptoms vary with type caused
Typhoid	Salmonella typhi (bacterium)	Human feces, urine	Inflamed intestine, enlarged spleen, high temperature- sometimes fatal
Shigellosis	Shigella (bacterium)	Human feces	Diarrhea
Cholera	<i>Vibrio choleras</i> (bacterium)	Human feces; also, shellfish; lives in many coastal waters	Vomiting, severe diarrhea, rapid dehydration, mineral loss-high mortality
Hepatitis A	Hepatitis A virus	Human feces; shellfish grown in polluted waters	Yellowed skin, enlarged liver, fever, vomiting, weight loss, abdominal pain- low mortality, lasts up to four months
Amebiasis	<i>Entamoeba histolytica</i> (protozoan)	Human feces	Mild diarrhea, dysentery, extra intestinal infection
Giardiasis	Giardia lamblia (protozoan)	Animal or human feces	Diarrhea, cramps, nausea, and general weakness — lasts one week to months
Cryptosporidiosis	Cryptosporidium parvum	Animal or human feces	Diarrhea, stomach pain — lasts (protozoan) days to weeks

Notes: *1 http://www.cdc.gov/

Bacteriological Monitoring Section

Most waterborne diseases and illnesses have been related to the microbiological quality of drinking water. The routine microbiological analysis of your water is for coliform bacteria. The coliform bacteria group is used as an indicator organism to determine the biological quality of your water.

The presence of an indicator or pathogenic bacteria in your drinking water is an important health concern. Indicator bacteria signal possible fecal contamination, and therefore, the potential presence of pathogens. They are used to monitor for pathogens because of the difficulties in determining the presence of specific disease-causing microorganisms.

Indicator bacteria are usually harmless, occur in high densities in their natural environment and are easily cultured in relatively simple bacteriological media. Indicators in common use today for routine monitoring of drinking water include total coliforms, fecal coliforms, and *Escherichia coli* (*E. coli*).

Bacteria Sampling

Water samples for bacteria tests must always be collected in a sterile container. Take the sample from an inside faucet with the aerator removed. Sterilize by spraying a 5% household bleach or alcohol solution or flaming the end of the tap with disposable butane lighter.

Run the water for five minutes to clear the water lines and bring in fresh water. Do not touch or contaminate the inside of the bottle or cap. Carefully open the sample container and hold the outside of the cap. Fill the container and replace the top. Refrigerate the sample and transport it to the testing laboratory within six hours (in an ice chest). Many labs will not accept

bacteria samples on Friday so check the lab's schedule. Mailing bacteria samples is not recommended because laboratory analysis results are not as reliable. Iron bacteria forms an obvious slime on the inside of pipes and fixtures. A water test is not needed for identification. Check for a reddish-brown slime inside a toilet tank or where water stands for several days.

Bac-T Sample Bottle, often referred to as a Standard Sample, 100 mls, Notice the white powder inside the bottle. That is Sodium Thiosulfate, a de-chlorination agent. Be careful not to wash-out this chemical while sampling. Notice the custody seal on the bottle.

Coliform bacteria are common in the environment and are generally not harmful. However, the presence of these bacteria in drinking water is usually a result of a problem with the treatment system or the pipes which distribute water, and indicates that the water may be contaminated with germs that can cause disease.

Laboratory Procedures

The laboratory may perform the total coliform analysis in one of four methods approved by the U.S. EPA and your local environmental or health division.

Methods

The MMO-MUG test, a product marketed as Colilert, is the most common. The sample results will be reported by the laboratories as simply coliforms present or absent. If coliforms are present, the laboratory will analyze the sample further to determine if these are fecal coliforms or E. coli and report their presence or absence.

Types of Water Samples

It is important to properly identify the type of sample you are collecting. Please indicate in the space provided on the laboratory form the type

of sample.

The three (3) types of samples are:

1. **Routine:** Samples collected on a routine basis to monitor for contamination. Collection should be in accordance with an approved sampling plan.

2. **Repeat:** Samples collected following a *coliform present'* routine sample. The number of repeat samples to be collected is based on the number of routine samples you normally collect.

3. **Special:** Samples collected for other reasons.

Examples would be a sample collected after repairs to the system and before it is placed back into operation or a sample collected at a wellhead prior to a disinfection injection point.

Water Quality Review Statements

What are disease causing organisms such as bacteria and viruses called? Pathogens

Name the 4 broad categories of water quality. Physical, chemical, biological, radiological.

What does a positive bacteriological sample indicate? The presence of bacteriological contamination.

When must source water monitoring for lead and copper be preformed? When a public water system exceeds an action level for lead of copper.

Noncommunity and nontransient noncommunity public water systems will sample at the same frequency as a like sized community public water system if:

1. It has more than 1,000 daily population and has ground water as a source, or 2. It serves 25 or more daily population and utilizes surface water as a source or ground water under the direct influence of surface water as its source.

Noncommunity and nontransient, noncommunity water systems with less than 1,000 daily population and groundwater as a source will sample on a quarterly basis.

Routine Coliform Sampling

The number of routine samples and frequency of collection for community public water systems is shown in Table 3-1 below.

No. of Samples per System Population

	o jotoini i opulati
Persons served - Sa	amples per month
up to 1,000	1
1,001-2,500	2
2,501-3,300	3
3,301 to 4,100	4
4,101 to 4,900	5
4,901 to 5,800	6
5,801 to 6,700	7
6,701 to 7,600	8
7,601 to 8,500	9
8,501 to 12,900	10
12,901 to 17,200	15
17,201 to 21,500	20
21,501 to 25,000	25
25,001 to 33,000	30
33,001 to 41,000	40
41,001 to 50,000	50
50,001 to 59,000	60
59,001 to 70,000	70
70,001 to 83,000	80
83,001 to 96,000	90
96,001 to 130,000	100
130,001 to 220,000	120
220,001 to 320,000	150
320,001 to 450,000	180
450,001 to 600,000	210
600,001 to 780,000	240

Using a black light to see fecal bacteria.

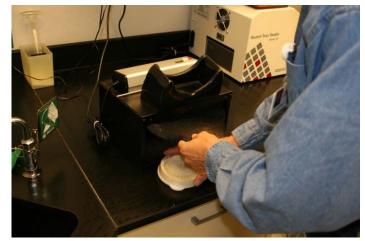
Repeat Sampling

Repeat sampling replaces the old check sampling with a more comprehensive procedure to try to identify problem areas in the system. Whenever a routine sample is total coliform or fecal coliform present, a set of repeat samples must be collected within 24 hours after being notified by the laboratory. The follow-up for repeat sampling is:

1. If only one routine sample per month or quarter is required, four (4) repeat samples must be collected.

2. For systems collecting two (2) or more routine samples per month, three (3) repeat samples

must be collected.


3. Repeat samples must be collected from:

a. The original sampling location of the coliform present sample.

b. Within five (5) service connections upstream from the original sampling location.

c. Within five (5) service connections downstream from the original sampling location.

d. Elsewhere in the distribution system or at the wellhead, if necessary.

4. If the system has only one service connection, the repeat samples must be collected from the same sampling location over a four-day period or on the same day.

5. All repeat samples are included in the MCL compliance calculation.

6. If a system which normally collects fewer than five (5) routine samples per month has a coliform present sample, it must collect five (5) routine samples the following month or quarter regardless of whether an MCL violation occurred or if repeat sampling was coliform absent.

Positive or Coliform Present Results

What do you do when your sample is positive or coliform present?

When you are notified of a positive test result you need to contact either the Drinking Water Program or your local county health department within 24 hours, or by the next business day after the results are reported to you. The Drinking Water Program contracts with many of the local health departments to provide assistance to water systems. After you have contacted an agency for assistance, you will be instructed as to the proper repeat sampling procedures and possible corrective measures for solving the problem. It is very important to initiate the repeat sampling immediately as the corrective measures will be based on those results.

Some examples of typical corrective measures to coliform problems are:

1. Shock chlorination of a ground water well. The recommended dose of 5% household bleach is 2 cups per 100 gallons of water in the well. This should be done anytime the bell is opened for repair (pump replacement, etc.). If you plan to shock the entire system, calculate the total gallonage of storage and distribution.

2. Conduct routine distribution line flushing. Install blowoffs on all dead end lines.

3. Conduct a cross connection program to identify all connections with non-potable water sources. Eliminate all of these connections or provide approved back flow

prevention devices.

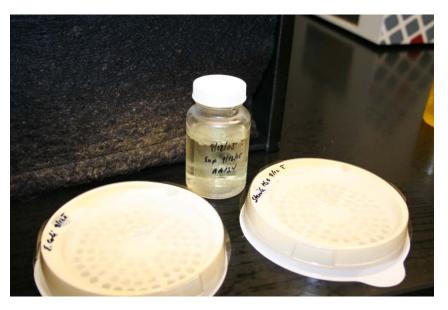
4. Upgrade the wellhead area to meet current construction standards as set your state environmental or health agency.

5. If you continuously chlorinate, review your operation and be sure to maintain a detectable residual (0.2 mg/l free chlorine) at all times in the distribution system.

6. Perform routine cleaning of the storage system.

This list provides some basic operation and maintenance procedures that could help eliminate potential bacteriological problems, check with your state drinking water section or health department for further instructions.

Maximum Contaminant Levels (MCLs)


State and federal laws establish standards for drinking water quality. Under normal circum-stances when these standards are being met, the water is safe to drink with no threat to human health. These standards are known as maximum contaminant levels (MCL). When a particular contaminant exceeds its MCL a potential health threat may occur.

The MCLs are based on extensive research on toxicological properties of the contaminants, risk assessments and factors, short term (acute) exposure and long term (chronic) exposure. You conduct the monitoring to make sure your water is in compliance with the MCL. There are two types of MCL violations for coliform bacteria. The first is for total coliform; the second is an acute risk to health violation characterized by the confirmed presence of fecal coliform or E. coli.

Heterotrophic Plate Count HPC

Heterotrophic Plate Count (**HPC**) --- formerly known as the standard plate count, is a procedure for estimating the number of live heterotrophic bacteria and measuring changes during water treatment and distribution in water or in swimming pools. Colonies may arise from pairs, chains, clusters, or single cells, all of which are included in the term "*colony-forming units*" (**CFU**).

Method: There are three methods for standard plate count:

1. Pour Plate Method

The colonies produced are relatively small and compact, showing fewer tendencies to encroach on each other than those produced by surface growth. On the other hand, submerged colonies often are slower growing and are difficult to transfer.

2. Spread Plate Method

All colonies are on the agar surface where they can be distinguished readily from particles and bubbles. Colonies can be transferred quickly, and colony morphology easily can be discerned and compared to published descriptions.

3. Membrane Filter Method

This method permits testing large volumes of low-turbidity water and is the method of choice for low-count waters.

Material Necessary for Testing:

- i) Apparatus Glass rod Erlenmeyer flask Graduated Cylinder Pipet Petri dish Incubator ii) Reagent and sample
- ii) Reagent and sample Reagent-grade water Nutrient agar Sample

Procedure*

1. Boil mixture of nutrient agar and nutrient broth for 15 minutes, and then cool for about 20 minutes.

2. Pour approximately 15 ml of medium in each Petri dish, let medium solidify.

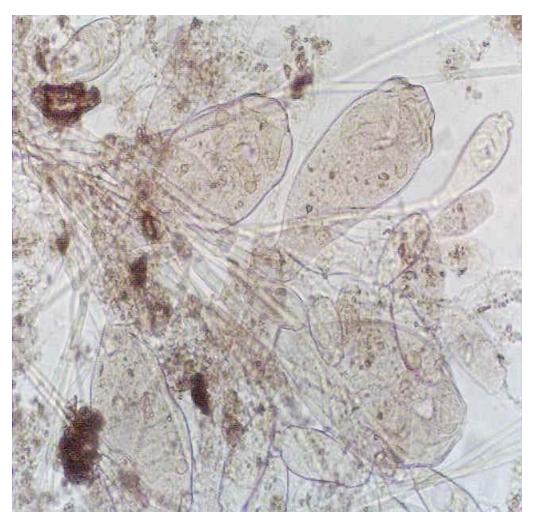
3. Pipette 0.1 ml of each dilution onto surface of pre-dried plate, starting with the highest dilution.

4. Distribute inoculum over surface of the medium using a sterile bent glass rod.

5. Incubate plates at 35°C for 48h.

6. Count all colonies on selected plates promptly after incubation; consider only plates having 30 to 300 colonies in determining the plate count.

*Duplicate samples


Computing and Reporting:

Compute bacterial count per milliliter by the following equation:

CFU/ml = colonies counted / actual volume of sample in dish a)If there is no plate with 30 to 300 colonies, and one or more plates have more than 300 colonies, use the plate(s) having a count nearest 300 colonies.

b) If plates from all dilutions of any sample have no colony, report the count as less than 1/actual volume of sample in dish estimated CFU/ml.

c) Avoid creating fictitious precision and accuracy when computing CFU by recording only the first two left-hand digits.

Ciliates, a wastewater bug, it shouldn't be in drinking water, but can be found if a well is close to a septic tank or marsh.

Heterotrophic Plate Count

(Spread Plate Method)

Heterotrophic organisms utilize organic compounds as their carbon source (food or substrate). In contrast, autotrophic organisms use inorganic carbon sources. The Heterotrophic Plate Count provides a technique to quantify the bacteriological activity of a sample. The R2A agar provides a medium that will support a large variety of heterotrophic bacteria. After an incubation period, a bacteriological colony count provides an estimate of the concentration of heterotrophs in the sample of interest.

Laboratory Equipment: 100 x 15 Petri Dishes

Turntable Glass Rods: Bend fire polished glass rod 45 degrees about 40 mm from one end. Sterilize before using. Pipet: Glass, 1.1 mL Sterilize before using. Quebec Colony Counter Hand Tally Counter

Reagents:

1) R2A Agar: Dissolve and dilute 0.5 g of yeast extract, 0.5 g

of proteose peptone No. 3, 0.5 g of casamino acids, 0.5 g of glucose, 0.5 g of soluble starch, 0.3 g of dipotassium hydrogen phosphate, 0.05 g of magnesium sulfate heptahydrate, 0.3 g of sodium pyruvate, 15.0 g of agar to 1 L. Adjust pH to 7.2 with dipotassium hydrogen phosphate **before adding agar.** Heat to dissolve agar and sterilize at 121 C for 15 minutes.

2) Ethanol: As needed for flame sterilization.

Preparation of Spread Plates

Immediately after agar sterilization, pour 15 mL of R2A agar into sterile 100 x 15 Petri dishes; let agar solidify. Pre-dry plates inverted so that there is a 2 to 3 g water loss overnight with the lids on. Use pre-dried plates immediately or store up to two weeks in sealed plastic bags at 4 degrees C.

Sample Preparation

Mark each plate with sample type, dilution, date, and any other information before sample application. Prepare at least duplicate plates for each volume of sample or dilution examined. Thoroughly mix all samples by rapidly making about 25 complete up-anddown movements.

Sample Application

Uncover pre-dried agar plate. Minimize time plate remains uncovered. Pipet 0.1 or 0.5 mL sample onto surface of pre-dried agar plate.

Record volume of sample used. Using a sterile bent glass rod, distribute the sample over surface of

the medium by rotating the dish by hand on a turntable. Let the sample be absorbed completely into the medium before incubating. Put cover back on Petri dish and invert for duration of incubation time. Incubate at 28 degrees C for 7 days. Remove Petri dishes from incubator for counting.

Counting and Recording:

After incubation period, promptly count all colonies on the plates. To count, uncover plate and place on Quebec colony counter. Use hand tally counter to maintain count. Count all colonies on the plate, regardless of size. Compute bacterial count per milliliter by the following equation:

$$CFU/mL = \frac{\text{colonies counted}}{\text{actual volume of sample in dish, mL}}$$

To report counts on a plate with no colonies, report the count as less than one (<1) divided by the sample volume put on that plate (remember to account for any dilution of that sample).

If plates of all dilutions for a sample have no colonies, report the count as less than one (<1) divided by the largest sample volume used. Example: if 0.1 mL of a 100:1 and 10000:1 dilution of a sample both turned up with no colonies formed, the reported result would be <1 divided by the largest sample volume 0.001 mL (0.1 mL divided by 100). The final reported result for the sample is <1000 CFU per mL.

Assignment:

- 1. Report the number of colony forming units (CFU) found on each plate.
- 2. Calculate the CFU per mL for each plate.

3. The aim of diluting samples is to produce a plate having 30 to 300 colonies, which plates meet these criteria. If no sample produces a plate with a count in this range, use the plate(s) with a count closest to 300. Based on these criteria, use your calculated results to report the **CFU** per mL for each sample.

In the conclusion of your lab report, comment on your final results for each sample type as well as the quality of your application of this analysis technique. Feel free to justify your comments using statistical analysis. Also, comment on the general accuracy of this analytical technique and the factors that affect its accuracy and or applicability.

Data Table for Samples

Sample ID	Volume of Sample, mL	Colonies Counted per plate

Total Coliforms

This MCL is based on the presence of total coliforms, and compliance is on a monthly or quarterly basis, depending on your water system type and state rule. For systems which collect *fewer* than 40 samples per month, no more than one sample per month may be positive. In other words, the second positive result (repeat or routine) in a month or quarter results in an MCL violation. For systems which collect 40 or more samples per month, no more than five (5) percent may be Positive, check with your state drinking water section or health department for further instructions.

Acute Risk to Health (Fecal coliforms and E.coli)

An acute risk to human health violation occurs if either one of the following happens:

1. A routine analysis shows total coliform present and is followed by a repeat analysis which indicates fecal coliform or E. coli present.

2. A routine analysis shows total and fecal coliform or E. coli present and is followed by a repeat analysis which indicates total coliform present. An acute health risk violation requires the water system to provide public notice via radio and television stations in the area. This type of contamination can pose an immediate threat to human health and notice must be given as soon as possible, but no later than 72 hours after notification from your laboratory of the test results.

Certain language may be mandatory for both these violations and is included in your state drinking water rule.

Public Notice

A public notice is required to be issued by a water system whenever it fails to comply with an applicable MCL or treatment technique, or fails to comply with the requirements of any scheduled variance or permit. This will inform users when there is a problem with the system and give them information. A public notice is also required whenever a water system fails to comply with its monitoring and/or reporting requirements or testing procedure. Each public notice must contain certain information, be issued properly and in a timely manner, and contain certain mandatory language. The timing and place of posting of the public notice depends on whether an acute risk is present to users. Check with your state drinking water section or health department for further instructions.

The following are acute violations:

1. Violation of the MCL for nitrate.

2. Any violation of the MCL for total coliforms, when fecal coliforms or E. coli are present in the distribution system.

3. Any outbreak of waterborne disease, as defined by the rules.

General Contaminant Information

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity.

Contaminants that may be present in sources of drinking water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife; Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming; Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater run-off and residential uses; Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater run-off and septic systems; Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

Background

Coliform bacteria and chlorine residual are the only routine sampling and monitoring requirements for small ground water systems with chlorination. The coliform bacteriological sampling is governed by the Total Coliform Rule (TCR) of the SDWA. Although there is presently no requirement for chlorination of groundwater systems under the SDWA, State regulations require chlorine residual monitoring of those systems that do chlorinate the water.

TCR The TCR requires all Public Water Systems (PWS) to monitor their distribution system for coliform bacteria according to the written sample siting plan for that system. The sample sitting plan identifies sampling frequency and locations throughout the distribution system that are selected to be representative of conditions in the entire system. Coliform contamination can occur anywhere in the system, possibly due to problems such as; low pressure conditions, line breaks, or well contamination, and therefore routine monitoring is required. A copy of the sample siting plan for the system should be kept on file and accessible to all who are involved in the sampling for the water system.

Number of Monthly Samples The number of samples to be collected monthly depends on the size of the system. The TCR specifies the minimum number of coliform samples collected but it may be necessary to take more than the minimum number in order to provide adequate monitoring. This is especially true if the system consists of multiple sources, pressure zones, booster pumps, long transmission lines, or extensive distribution system piping. Since timely detection of coliform contamination is the purpose of the sample siting plan, sample sites should be selected to represent the varying conditions that exist in the distribution system. The sample siting plan should be updated as changes are made in the water system, especially the distribution system.

Sampling Procedures The sample siting plan must be followed and all operating staff must be clear on how to follow the sampling plan. In order to properly implement the sample siting plan, staff must be aware of how often sampling must be done, the proper procedures and sampling containers to be used for collecting the samples, and the proper procedures for identification, storage and transport of the samples to an approved laboratory. In addition, proper procedures must be followed for repeat sampling whenever a routine sample result is positive for total coliform. The following diagram outlines the requirements for responding to a positive Total Coliform sample.

There is nothing in the lab that is difficult to understand or eventually master. All of you should be able to learn and master the basic lab procedures. Don't be intimidated, learn to take samples and learn all you can about the lab, it is an excellent career. Bottom, normal sampling supplies.

Chain of Custody Procedures

Because a sample is physical evidence, chain of custody procedures are used to maintain and document sample possession from the time the sample is collected until it is introduced as evidence. Chain of custody requirements will vary from agency to agency.

However, these procedures are similar and the chain of custody outlined in this manual is only a guideline. Consult your project manager for specific requirements.

If you have physical possession of a sample, have it in view, or have physically secured it to prevent tampering then it is defined as being in *"custody.*" A chain of custody record, therefore, begins when the sample containers are obtained from the laboratory. From this point on, a chain of custody record will accompany the sample containers.

Handle the samples as little as possible in the field. Each custody sample requires a chain of custody record and may require a seal. If you do not seal individual samples, then seal the containers in which the samples are shipped.

When the samples transfer possession, both parties involved in the transfer must sign, date and note the time on the chain of custody record. If a shipper refuses to sign the chain-of-custody you must seal the samples and chain of custody documents inside a box or cooler with bottle seals or evidence tape. The recipient will then attach the shipping invoices showing the transfer dates and times to the custody sheets. If the samples are split and sent to more than one laboratory, prepare a separate chain of custody record for each sample. If the samples are delivered to after-hours night drop-off boxes, the custody record should note such a transfer and be locked with the sealed samples inside sealed boxes.

Using alcohol to disinfect a special sample tap before obtaining a sample.

Laboratory 123 W. Main St Sun City, Arizona 85541	85541																		
Sampler:									DATE:	μ̈́					PAGE		1 OF	- U	
Company: Department: Address: Contact: Telephone:				See Attached	obber	ac	+ Nitrite	sinom	s'MH'	olital Organics (625)	9			(SABM) stris	N9M motil	coliform MPN-HPC	-Phosphorus Pest. (8141)	ductivity	ber/Containers
Sample Identification	Date	Time Matrix	Lab ID	TSS TSS	D/bs9J	BOD/CO	Nitrate		1/201	V im92	Chlorid	Cyanid	Floride	Surfact	Tot. Co	-	Sulfate		
					-			-											11 10 11
																		+	Million Million
												-							
Project Name	Sample Receipt			RELINQUISHED BY:	UISHE	D BY:			114	10.00		RELINQUISHED BY:	JISHEI	BY:					
	No. Containers:		The second	Signature:				, F	Time:		0	Signature				F	Time:		
Project Number	Custody Seals:			Printed Name	ame:			۵	Date:		<u>a</u>	Printed Name:	me:			٥	Date:		
Field Measurements:	Received Intact: Received Cold:	Yes	ON ON	SAMPLED RECEIVED BY:	ED RF(FIVED	BV.				0 0	Company SAMPLED RECEIVED BY:	D REC	EIVED	BY:			The second	
pH:	Temperature:			Signature:					Time:		0	Signature:				F	Time:		
Temp:	PRIORITY:			Printed Name:	ame:				Date:		۵.	Printed Name:	:eu			0	Date:		
	「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」		A DESCRIPTION OF A DESC								Ī								

Chain of Custody Example.

Carefully follow these steps when collecting a coliform sample:

1. Select the sampling site, which must be a faucet from which water is commonly taken for consumer use or a dedicated site in the distribution system.

a. The sampling point should be a non-swivel faucet.

b. If it is a faucet with an aerator, remove the aerator, screen and gasket and flush thoroughly.

c. If an outside faucet is used, disconnect any hoses or other attachments and flush the line thoroughly.

d. It should be a faucet that does not leak around the packing or valve mechanism.

Leaking faucets can promote bacterial growth.

e. Do not use fire hydrants or drinking fountains as sampling points.

f. Do not dip sample bottles in reservoirs, spring boxes or storage tanks in order to collect a sample. If you have any questions about proper sampling sites, please contact your laboratory, environmental or health department or the state drinking water section.

2. Use only sample bottles provided by the laboratory specifically for bacteriological sampling.

These bottles are sterile and should not be rinsed before sampling. A chemical, usually sodium thiosulfate, is placed in the bottle by the lab and is used for chlorine deactivation. Do not remove it.

3. Don't open the sample bottle until the moment you are going to fill it.

4. Flush the line thoroughly. Run water through the faucet for three to five minutes before opening the bottle and collecting the sample.

5. Uncap the sample bottle, being careful not to touch the inside of the bottle with your fingers or other objects. Do not set the lid down while taking the sample.

6. Reduce the water flow to a slow steady stream. Continue flushing for at least 1-2 minutes, then gently fill the sample bottle to the fill mark. At least 100 ml. of water is necessary for analysis. Leave an air space in the top of the bottle. Do not overfill.

7. Replace the cap immediately, making sure it is tight and does not leak.

8. Label the laboratory form. Complete the following information:

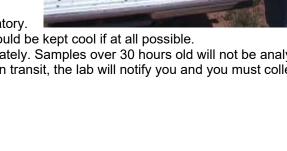
a. Your Public Water System (PWS) ID number.

b. Your water system name, address, city and phone number.

c. Collection date and time.

d. Type of sample: Routine, Repeat, and Special. Refer to previous discussion of definitions.

e. Name of person collecting sample and sample location.


f. Free chlorine residual if your system is chlorinated. The residual should be measured at the time of sample collection.

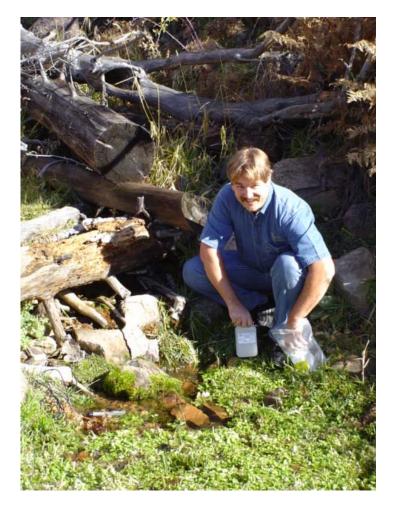
g. Complete the section for the return address where the report is to be sent.

9. Package the sample for delivery to the laboratory.

Be sure to include the lab form. The sample should be kept cool if at all possible.

10. Mail or deliver the sample to the lab immediately. Samples over 30 hours old will not be analyzed by the laboratory. If the sample is too old or leaks in transit, the lab will notify you and you must collect another.

Sampling Plan Example


A written sampling plan must be developed by the water system. These plans will be reviewed by the Health Department or State Drinking Water agency during routine field visits for sanitary surveys or technical assistance visits. This plan should include:

1. The location of routine sampling sites on a system distribution map. You will need to locate more routine sampling sites than the number of samples required per month or quarter. A minimum of three sites is advised and the sites should be rotated on a regular basis.

Map the location of repeat sampling sites for the routine sampling sites. Remember that repeat samples must be collected within five (5) connections upstream and downstream from the routine sample sites.
 Establish a sampling frequency of the routine sites.

4. Sampling technique, establish a minimum flushing time and requirements for free chlorine residuals at the sites (if you chlorinate continuously).

The sampling sites should be representative of the distribution network and pressure zones. If someone else, e.g., the lab, collects samples for you, you should provide them with a copy of your sampling plan and make sure they have access to all sample sites.

This fellow is taking a sample from a stream to check the water quality.

Collection of Surface Water Samples

Representative samples may be collected from rivers, streams and lakes if certain rules are followed: Watch out for flash floods! If a flooding event is likely and samples must be obtained, always go in twoperson teams for safety. Look for an easy route of escape.

Select a sampling location at or near a gauging station, so that stream discharge can be related to waterquality loading. If no gauging station exists, then measure the flow rate at the time of sampling, using the streamflow method described below.

Locate a straight and uniform channel for sampling.

Unless specified in the sampling plan, avoid sampling locations next to confluences or point sources of contamination.

Use bridges or boats for deep rivers and lakes where wading is dangerous or impractical.

Do not collect samples along a bank, as they may not be representative of the surface water body as a whole.

Use appropriate gloves when collecting the sample.

Streamflow Measurement

Before collecting water quality samples, record the stream's flow rate at the selected station. The flow rate measurement is important for estimating contaminant loading and other impacts.

The first step in streamflow measurement is selecting a cross-section. Select a straight reach where the stream bed is uniform and relatively free of boulders and aquatic growth. Be certain that the flow is uniform and free of eddies, slack water and excessive turbulence.

After the cross-section has been selected, determine the width of the stream by stringing a measuring tape from bank-to-bank at right angles to the direction of flow. Next, determine the spacing of the verticals. Space the verticals so that no partial section has more than 5 per cent of the total discharge within it.

At the first vertical, face upstream and lower the velocity meter to the channel bottom, record its depth, then raise the meter to 0.8 and 0.2 of the distance from the stream surface, measure the water velocities at each level, and average them. Move to the next vertical and repeat the procedure until you reach the opposite bank. Once the velocity, depth and distance of the cross-section have been determined, the mid-section method can be used for determining discharge. Calculate the discharge in each increment by multiplying the averaged velocity in each increment by the increment width and averaged depth.

(Note that the first and last stations are located at the edge of the waterway and have a depth and velocity of zero.) Add up the discharges for each increment to calculate total stream discharge. Record the flow in liters (or cubic feet) per second in your field book.

Composite Sampling

Composite sampling is intended to produce a water quality sample representative of the total stream discharge at the sampling station. If your sampling plan calls for composite sampling, use an automatic type sampler.

Chemical Monitoring

The final federal rules regarding Phase II and V contaminants were promulgated by the U.S. EPA in 1992 and initial monitoring began in January 1993. This group of contaminants consists of Inorganic Chemicals (**IOC**), Volatile Organic Chemicals (**VOC**) and Synthetic Organic Chemicals (**SOC**) and the rule applies to all community and non-transient non-community public water systems.

The monitoring schedule for these contaminants is phased in by water system population size according to a "**standardized monitoring framework**" established by the U.S. EPA. This standardized monitoring framework establishes nine-year compliance cycles consisting of three 3-year compliance periods. The first compliance cycle began in January 1993 and ended December 31, 2001, with subsequent compliance cycles following the nine-year timeframe. The three-year compliance period of each cycle is the standard monitoring period for the water system.

Turbidity Monitoring

Monitoring for turbidity is applicable to all public water systems using surface water sources or ground water sources under the direct influence of surface water in whole or part. Check with your state drinking water section or health department for further instructions.

The maximum contaminant level for turbidity for systems that provide filtration treatment:

1. Conventional or direct filtration: less than or equal to 0.5 NTU in at least 95% of the measurements taken each month. Conventional filtration treatment plants should be able to achieve a level of 0.1 NTU with proper chemical addition and operation.

2. Slow sand filtration, cartridge and alternative filtration: less than or equal to 1 NTU in at least 95% of the measurements taken each month. The turbidity levels must not exceed 5 NTU at any turbidity measurements must be performed on representative samples of the filtered water every four (4) hours that the system serves water to the public. A water system may substitute continuous turbidity monitoring for grab sample monitoring if it validates the continuous measurement for accuracy on a regular basis using a protocol approved by the Health or Drinking Water Agency, such as confirmation by a bench top turbidimeter. For systems using slow sand filtration, cartridge, or alternative filtration treatment the Health or Drinking Water Agency to once per day if it determines that less frequent monitoring is sufficient to indicate effective filtration performance.

Inorganic Chemical Monitoring

All systems must monitor for inorganics. The monitoring for these contaminants is also complex with reductions, waivers and detections affecting the sampling frequency. Please refer to the monitoring schedules provided by your state health or drinking water sections for assistance in determining individual requirements. All transient non-community water systems are required to complete a onetime inorganic chemical analysis. The sample is to be collected at entry points (**POE**) to the distribution system representative of each source after any application of treatment.

Nitrates

Nitrate is an inorganic chemical that occurs naturally in some groundwater but most often is introduced into ground and surface waters by man. The most common sources are from fertilizers and treated sewage or septic systems.

At high levels (over 10 mg/l) it can cause the "**blue baby**" syndrome in young infants, which can lead to serious illness and even death. It is regarded as an "**acute health risk**" because it can quickly cause illness.

Every water system must test for *Nitrate* at least yearly. Systems that use ground water only must test yearly. Systems that use surface water and those that mix surface and ground water must test every quarter. A surface water system may go to yearly testing if community and nontransient noncommunity water must do quarterly monitoring whenever they exceed 5 mg/l in a test. After 4 quarters of testing and the results show that the nitrate level is not going up, they may go back to yearly testing.

Radiological Contaminants

All community water systems shall monitor for gross alpha activity every four years for each source. Depending on your state rules, compliance will be based on the annual composite of 4 consecutive quarters or the average of the analyses of 4 quarterly samples. If the average annual concentration is less than one half the MCL, an analysis of a single sample may be substituted for the quarterly sampling procedure.

Total Trihalomethanes (TTHM)

All community water systems serving a population of 10,000 or more and which add a disinfectant in any part of the drinking water treatment process shall monitor for total trihalomethanes (**TTHM**). The MCL is 0.1 mg/l and consists of a calculation of the running average of quarterly analyses of the sum of the concentrations of bromodichloromethane, di-bromochloromethane, bromoform and chloroform.

Lead and Copper Rule

The Lead and Copper Rule was promulgated by the U.S. EPA on June 7, 1991, with monitoring to begin in January 1992 for larger water systems. This rule applies to all community and nontransient, noncommunity water systems and establishes action levels for these two contaminants at the consumer's tap. Action levels of 0.015 mg/l for lead and 1.3 mg/l for copper have been established.

This rule establishes maximum contaminant level goals (**MCLGs**) for lead and copper, treatment technique requirements for optimal corrosion control, source water treatment, public education and lead service line replacement. Whenever an action level is exceeded, the corrosion control treatment requirement is triggered. This is determined by the concentration measured in the 90th percentile highest sample from the samples collected at consumers' taps. Sample results are assembled in ascending order (lowest to highest) with the result at the 90th percentile being the action level for the system. For example, if a water system collected 20 samples, the result of the 18th highest sample would be the action level for the system.

The rule also includes the best available technology (**BAT**) for complying with the treatment technique requirements, mandatory health effects language for public notification of violations and analytical methods and laboratory performance requirements.

Initial monitoring began in January 1992 for systems with a population of 50,000 or more, in July 1992 for medium-sized systems (3,300 to 50,000 population) and in July 1993 for small-sized systems (less than 3,300 population),

One-liter tap water samples are to be collected at high-risk locations by either water system personnel or residents. Generally, high-risk locations are homes with lead-based solder installed after 1982 or with lead pipes or service lines. If not enough of these locations exist in the water system, the rule provides specific guidelines for selecting other sample sites.

The water must be allowed to stand motionless in the plumbing pipes for at least six (6) hours and collected from a cold water tap in the kitchen or bathroom. It is a first draw sample, which means the line is not to be flushed prior to sample collection. The number of sampling sites is determined by the population of the system and sample collection consists of two, six-month monitoring periods; check with your state rule or drinking water section for more information.

Sampling Sites by Population

System size - No. of sites - No. of sites (no. of persons served) (standard monitoring) (reduced monitoring) >100,000 100 50 10,001-100,000 60 30 3.301 to 10.000 40 20 501 to 3,300 20 10 101 to 500 10 5 < 100 5 5

If a system meets the lead and copper action levels or maintains optimal corrosion control treatment for two consecutive six-month monitoring periods, then reduced monitoring is allowed and sampling frequency drops to once per year. After three consecutive years of reduced monitoring, sample frequency drops to once every three years. In addition to lead and copper testing, all large water systems and those medium- and small-sized systems that exceed the lead or copper action levels will be required to monitor for the following water quality parameters: pH, alkalinity, calcium, conductivity, orthophosphate, silica and water temperature.

These parameters are used to identify optimal corrosion control treatment and determine compliance with the rule once treatment is installed. The sampling locations for monitoring water quality parameters are at entry points and representative taps throughout the distribution system.

Coliform sampling sites can be used for distribution system sampling. The number of sites required for monitoring water quality during each six-month period is shown below.

Number of Water Quality Parameters per Population

System size # of sites for water (no. of persons served) quality parameters

>100,000	25
10,001-100,000	10
3,301 to 10,000	3
501 to 3,300	2
101 to 500	1
<100	1

Water systems which maintain water quality parameters reflecting optimal corrosion control for two consecutive six-month monitoring periods qualify for reduced monitoring. After three consecutive years, the monitoring frequency can drop to once per year.

All large water systems must demonstrate that their water is minimally corrosive or install corrosion control treatment regardless of lead and copper sampling results.

QA/QC Measures

In addition to standard samples, the field technicians collect equipment blanks (**EB**), field cleaned equipment blanks (**FB**), split samples (**SS**), and field duplicate samples (**FD**).

Overall care must be taken in regards to equipment handling, container handling/storage, decontamination, and record keeping. Sample collection equipment and non-preserved sample containers must be rinsed three times with sample water before the actual sample is taken. Exceptions to this are any pre-preserved container or bac-t type samples.

If protective gloves are used, they shall be clean, new and disposable. These should be changed upon arrival at a new sampling point. Highly contaminated samples shall never be placed in the same ice chest as environmental samples. It is good practice to enclose highly contaminated samples in a plastic bag before placing them in ice chests. The same is true for wastewater and drinking water samples.

Ice chests or shipping containers with samples suspected of being highly contaminated shall be lined with new, clean, plastic bags. If possible, one member of the field team should take all the notes, fill out labels, etc., while the other member does all of the sampling.

Preservation of Samples

Proper sample preservation is the responsibility of the sampling team, not the lab providing sample containers. The best reference for preservatives is Standard Methods or your local laboratory.

It is the responsibility of the field team to assure that all samples are appropriately preserved.

Follow the preservative solution preparation instructions.

Always use strong safety precautions diluting the acid.

Put a new label on the dispensing bottle with the current date.

Slowly add the acid or other preservative to the water sample; not water to the acid or preservative.

Wait 3-4 hours for the preservative to cool most samples down to 4 degrees Celsius.

Most preservatives have a shelf life of one year from the preparation date.

When samples are analyzed for TKN, TP, NH4 and NOx 1 mL of 50% Trace Metal grade sulfuric acid is added to the each discrete auto sampler bottles/bags in the field lab before sampling collection. The preservative maintains the sample at 1.5<pH<2 after collection. To meet maximum holding time for these preserved samples (28 days), pull and ship samples every 14 days.

Narrow range pH paper (test strips) can be used to test an aliquot of the preserved sample.

Place the pH paper into the container and compare the color with the manufacturer's color chart.

Water Disinfectant Terminology

Many water suppliers add a disinfectant to drinking water to kill germs such as giardia and e coli. Especially after heavy rainstorms, your water system may add more disinfectant to guarantee that these germs are killed.

Chlorine. Some people who use drinking water containing chlorine well in excess of the EPA standard could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the EPA standard could experience stomach discomfort.

Chloramine. Some people who use drinking water containing chloramines well in excess of the EPA standard could experience irritating effects to their eyes and nose. Some people who drink water containing chloramines well in excess of the EPA standard could experience stomach discomfort or anemia.

Chlorine Dioxide. Some infants and young children who drink water containing chlorine dioxide in excess of the EPA standard could experience nervous system effects. Similar effects may occur in fetuses of pregnant women who drink water containing chlorine dioxide in excess of the EPA standard. Some people may experience anemia.

Disinfection Byproducts

Disinfection byproducts form when disinfectants added to drinking water to kill germs react with naturally-occurring organic matter in water.

Total Trihalomethanes. Some people who drink water containing trihalomethanes in excess of the EPA standard over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Haloacetic Acids. Some people who drink water containing haloacetic acids in excess of the EPA standard over many years may have an increased risk of getting cancer.

Bromate. Some people who drink water containing bromate in excess of the EPA standard over many years may have an increased risk of getting cancer.

Chlorite. Some infants and young children who drink water containing chlorite in excess of EPA standard could experience nervous system effects. Similar effects may occur in fetuses of pregnant women who drink water containing chlorite in excess of the EPA's standard. Some people may experience anemia.

MTBE is a fuel additive, commonly used in the United States to reduce carbon monoxide and ozone levels caused by auto emissions. Due to its widespread use, reports of MTBE detections in the nation's ground and surface water supplies are increasing. The Office of Water and other EPA offices are working with a panel of leading experts to focus on issues posed by the continued use of MTBE and other oxygenates in gasoline. The EPA is currently studying the implications of setting a drinking water standard for MTBE.

Health advisories provide additional information on certain contaminants. Health advisories are guidance values based on health effects other than cancer. These values are set for different durations of exposure (e.g., one-day, ten-day, longer-term, and lifetime).

Troubleshooting Table for Sampling Monitoring

Problem

1. Positive Total Coliform.

2. Chlorine taste and odor.

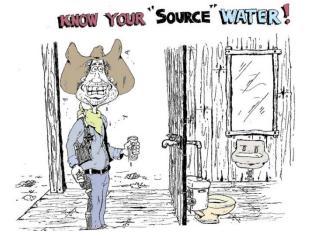
3. Inability to maintain an adequately free chlorine residual at the furthest points of the distribution system or at dead end lines.

Possible Cause

1A. Improper sampling technique.

1B. Contamination entering distribution system.1C. Inadequate chlorine residual at the sampling site.

1D. Growth of biofilm in the distribution system.


2A. High total chlorine residual and low free residual.

3A. Inadequate chlorine dose at treatment plant.

3B. Problems with chlorine feed equipment.

3C. Ineffective distribution system flushing program.

3D. Growth of biofilm in the distribution system.

Possible Solution

1A/ Check distribution system for low pressure conditions, possibly due to line breaks or excessive flows that may result in a backflow problem.

1B. Insure that all staff are properly trained in sampling and transport procedures as described in the TCR. 1C. Check the operation of the chlorination feed system. Refer to issues described in the sections on pumps and hypochlorination systems. Insure that residual test is being performed properly.

1D. Thoroughly flush effected areas of the distribution system. Superchlorination may be necessary in severe cases.

2A. The free residual should be at least 85% of the total residual. Increase the chlorine dose rate to get past the breakpoint in order to destroy some of the combined residual that causes taste and odor problems. Additional system flushing may also be required.

3A. Increase chlorine feed rate at point of application.

3B. Check operation of chlorination equipment.

3C. Review distribution system flushing program and implement improvements to address areas of inadequate chlorine residual.

3D. Increase flushing in area of biofilm problem.

Review Section

Waterborne Pathogens

Incredibly in 2012, there are around 1.1 billion people globally do not have access to improved water supply sources whereas 2.4 billion people do not have access to any type of improved sanitation facility. About 2 million people die every year due to diarrheal diseases; most of them are children less than 5 years of age. The most affected are the populations in developing countries, living in extreme conditions of poverty, normally peri-urban dwellers or rural inhabitants.

In many cases, source water from a lake, river, reservoir or ground water aquifer needs to be disinfected to inactivate (or kill) microbial pathogens. Microbial pathogens include a few types of bacteria, viruses, protozoa, and other organisms. Some pathogens are often found in water, frequently as a result of:

- Fecal matter from sewage discharges
- Leaking septic tanks
- Runoff from animal feedlots into bodies of water

To protect drinking water from these pathogens, water suppliers often add a disinfectant to drinking water such as chlorine. However, disinfectant practices can be problematic because: Certain microbial pathogens, such as *Cryptosporidium*, are highly resistant to traditional disinfection practices.

Disinfectants themselves can react with naturally-occurring materials in the water to form byproducts, such as trihalomethanes and haloacetic acids, which may pose health risks.

A major challenge for water suppliers is how to balance the risks from microbial pathogens and disinfection byproducts. It is important to provide protection from microbial pathogens while simultaneously minimizing health risks to the population from disinfection byproducts. There are several existing and future rules that are designed to achieve these goals.

Among the main problems which are responsible for this situation are: lack of priority given to the sector, lack of financial resources, lack of sustainability of water supply and sanitation services, poor hygiene behaviors, and inadequate sanitation in public places including hospitals, health centers and schools. Providing access to sufficient quantities of safe water, the provision of facilities for a sanitary disposal of excreta, and introducing sound hygiene behaviors are of capital importance to reduce the burden of disease caused by these risk factors. Water, sanitation and hygiene have important impacts on both health and disease.

Water-related diseases include:

those due to micro-organisms and chemicals in water people drink;

- diseases like schistosomiasis which have part of their lifecycle in water;
- diseases like malaria with water-related vectors;
- drowning and some injuries;
- and others such as legionellosis carried by aerosols containing certain micro-organisms.

Diseases	Responsible pathogen	Route of exposure	Mode of transmission
<u>Cholera</u>	Vibrio cholerae bacteria	gastro-intestinal	often waterborne
<u>Botulism</u>	Clostridium botulinum bacteria	gastro-intestinal	food/water borne; can grow in food
<u>Typhoid</u>	Salmonella typhi bacteria	gastro-intestinal	water/food borne
<u>Hepatitis A</u>	Hepatitis A virus	gastro-intestinal	water/food borne
Dysentery	Shigella dysenteriae bacteria or Entamoeba histolytica amoeba	gastro-intestinal	food/water
<u>Cryptosporidiosis</u>	Cryptosporidium parvum protozoa	gastro-intestinal	waterborne; resists chlorine
Polio	polioviruses	gastro-intestinal	exposure to untreated sewage; may also be waterborne
<u>Giardia</u>	Giardia lamblia protozoa	gastro-intestinal	waterborne

Microorganisms are Present Everywhere in Our Environment

Invisible to the naked eye, vast numbers of these microbes can be found in soil, air, food and water. Although humans are essentially free of microorganisms before birth, constant circumstances of exposure (e.g., breathing, eating, and drinking) quickly allow the establishment of harmless microbial flora in our bodies.

Microbial pathogens (microorganisms capable of causing disease), however, can and often do harm those who become infected. Moreover, diseases that healthy individuals "weather" well may prove fatal to individuals with compromised immune systems. In some cases, an infection can persist to create a "carrier state" where a disease causing agent is harbored by the body (and spread) without any apparent symptoms.

Waterborne diseases are typically considered to be those diseases resulting from ingestion of contaminated water. Additional pathways of infection being studied by EPA include inhalation of water vapors as well as body contact during bathing (opportunistic pathogens) in the hospital environment.

Since voluntary water ingestion (drinking water) and bathing are universal practices and accidental ingestion during recreational activities (e.g., swimming, water skiing, wading) is common, inadequate protection of water integrity could lead to widespread outbreaks (the Centers for Disease Control defines an outbreak to be two or more cases of illness that can be traced to a common source). Because symptoms can be mild and short-lived, it is estimated that only a fraction of waterborne outbreaks is recognized, reported and investigated. Of these, the pathogenic agent is identified only half of the time. Additionally, experts believe that some food-related disease outbreaks may originate with an initial infection (e.g., of a restaurant worker) caused by contaminated drinking water.

Bacteria, viruses and protozoa are the microorganism groups containing pathogens of primary concern in the study of waterborne diseases. To eliminate these pathogens from our water, especially from our drinking water, seems theoretically straightforward. Simply mix in a disinfectant, allow adequate contact time to assure inactivation (rendering the microbes unable to produce disease), and pump the water into the distribution lines.

In reality, many conditions render the above scenario unworkable. The physical characteristics of the water, primarily represented by dissolved and suspended solids content, can affect the disinfection process. The chemical content, both naturally occurring and anthropogenic (i.e., generated by humans), can also interfere with the chemical reactions desired during treatment and disinfection. Finally, pathogens associated (i.e., imbedded in or clumped) with higher organisms (e.g., algae, rotifers, worms) may be protected from the action of disinfectants. To overcome these obstacles to disinfection, successful treatment of drinking and waste water generally includes a series of steps. In the case of drinking water disinfection, once the impurities have been removed, enough disinfectant is added to inactivate pathogens.

What Progress Has Been Made?

Early in this century, the waterborne diseases of chief concern in the U.S. were typhoid fever and amebiasis. Of the 1,087 deaths associated with waterborne outbreaks between 1920 and 1991, 943 were attributed to typhoid fever while 102 were caused by amebiasis. Overall, 83% of the deaths occurred prior to 1936 and less than 1% occurred after 1970. Additionally, the number of outbreaks in community water systems since 1945 is about half as great as the number documented during the first half of this century. The reduction in fatalities and number of outbreaks indicates that progress has been made in the prevention of certain waterborne diseases. Much of the progress has been the result of increased implementation of important treatment practices (e.g., filtration, disinfection, sewage treatment).

Although progress has been significant, the nation's water continues to be a source of disease. It must be rigorously monitored for indicators of fecal contamination.

A residual level of disinfectant must be maintained throughout the distribution system to guard against potential problems (e.g., microorganisms entering through breaks in distribution lines or regrowth). Proper distribution system operation and maintenance practices are essential deterrents of pathogen entry, recovery and survival. These practices (according to Geldreich *et al., 1992*) include:

• Systematic flushing of the entire distribution system "to get more movement of the chlorine residual into all parts of the pipe network...to remove static water from slow-flow sections, deadends and stratified water in storage tanks on a periodic basis;"

• Effecting repairs and replacement of distribution line components (e.g., broken mains and service meters) in a sanitary manner (i.e., soil-free replacement parts, disinfection and flushing of repaired lines, valves and fittings);

• Preventing pathogens from being drawn into the distribution system by maintaining continuous positive pressure and preserving barriers between public water supplies and sewage or storm water drainage;

• Varying the sample sites during routine monitoring to produce data more representative of the entire system.

While the importance of source water treatment to ensure safe drinking water seems obvious, the need to devote equal effort to pathogen reduction in wastewater is not always recognized. The release of untreated or inadequately treated wastewater into source waters drawn upon by other communities presents a significant health risk. Source waters heavily loaded with disease causing microorganisms can reduce the effectiveness of "downstream" drinking water treatment processes. Such advances as ultraviolet light disinfection systems, initially investigated as a wastewater disinfection option several years ago, are presently becoming more widely accepted and reliable with recent design enhancements. This technology has been demonstrated to be capable of meeting existing disinfection criteria without the release of dangerous disinfection by-products.

Safe Drinking Water Act (SDWA) Review

In 1974, Congress passed the Safe Drinking Water Act (SDWA) setting up a regulatory program among local, state, and federal agencies to help ensure the provision of safe drinking water in the U.S. The states are expected to administer and enforce these regulations for public water systems (systems that either have 15 or more service connections or regularly serve an average of 25 or more people daily for at least 60 days each year). Public water systems must provide water treatment, ensure proper drinking water quality through monitoring, and provide public notification of contamination problems.

Relating to prevention of waterborne disease, the SDWA required EPA to:

1) set numerical standards, referred to as Maximum Contaminant Levels (MCLs — the highest allowable contaminant concentrations in drinking water) or treatment technique requirements for contaminants in public water supplies;

2) issue regulations requiring monitoring of all regulated and certain unregulated contaminants, depending on the number of people served by the system, the source of the water supply, and the contaminants likely to be found;

3) set criteria under which systems are obligated to filter water from surface water sources; it must also develop procedures for states to determine which systems have to filter;

4) develop disinfection rules for all public water supplies; and

5) require all states to develop Wellhead Protection Programs designed to protect from sources of contamination areas around wells that supply public drinking water systems.

Through the Surface Water Treatment Rule (SWTR), EPA has set treatment requirements to control microbiological contaminants in public water systems using surface water sources (and ground-water sources under the direct influence of surface water). These requirements include the following:

1) treatment must remove or inactivate at least 99.9% of *Giardia lamblia* cysts and 99.99% of viruses;

2) all systems must disinfect, and are required to filter if certain source water quality criteria and site-specific criteria are not met;

3) the regulations set criteria for determining if treatment, including turbidity (suspended particulate matter) removal and disinfection requirements, is adequate for filtered systems; and 4) all systems must be operated by qualified operators as determined by the states.

Current EPA Research –Barriers to Contamination

Although water treatment and disinfection techniques are quite effective at microbe reduction, finished drinking water is not sterile. Survival and regrowth of microorganisms in drinking water distribution systems can lead to the deterioration of water quality and even noncompliance of a supply.

Regrowth has largely been associated with heterotrophic bacteria (i.e., those bacteria – including pathogens – that require preformed organic compounds as carbon and energy sources). Bacterial growth occurs on the walls of the distribution system (referred to as "biofilms") and in the water either as free living cells or cells attached to suspended solids. A multi-faceted phenomenon, bacterial regrowth is influenced primarily by temperature, residence time in mains and storage units, the efficacy of disinfection, and nutrients.

Assimilable Organic Carbon (AOC)

Assimilable organic carbon (AOC) is the portion of the total organic carbon (TOC) dissolved in water that is easily used by microorganisms as a carbon source (i.e., nutrients). Researchers are currently investigating treatment processes to control AOC.

One promising process is biologically active filtration wherein bacterial communities are intentionally established in the filters to use up, or biodegrade, the AOC as it passes through. This treatment process must be employed before final disinfection so that bacteria escaping from the filter can be properly controlled.

Most water utilities do not disinfect with chlorine until late in the treatment train. This limits the formation of disinfection by-products (i.e., those compounds like chloroform produced when chlorine reacts with naturally occurring organic carbon).

To accomplish disinfection earlier in treatment, some water utilities employ ozonation. While ozone is a very strong disinfectant, it also converts a portion of the TOC into AOC. Researchers are examining the advantages (e.g., disinfection of bacteria, viruses and protozoan cysts, control of color, control of taste and odor, enhancement of coagulation, and partial oxidation of the naturally occurring organic carbon that reacts with chlorine) and disadvantages of ozone (e.g., enhancement of AOC, conversion of bromide to bromate, and formation of its own disinfection byproducts like formaldehyde).

EPANET

The project entitled "EPANET" involves the development and testing of a water quality model for drinking water distribution systems. The EPANET model is a computer program that performs extended period simulation of hydraulic and water quality behavior within water distribution networks. It tracks the flow of water in each pipe, the pressure at each pipe junction, the height of water in each tank, and the concentration of a contaminant throughout the network during a multiple time period simulation. Water age and source tracing can also be simulated.

EPANET can be useful for analyzing the loss of disinfectant residual, designing water quality sampling programs, performing drinking water exposure risk assessments, and calibrating network hydraulic models. It can provide insight into how changes in water source utilization, pumping water storage levels, use of satellite treatment and targeted pipe cleaning and replacement would affect drinking water quality. In support of small community and non-community (less than 3,300 people) drinking water treatment systems, researchers are designing, modifying and testing "Hybrid Drinking Water Treatment Package Plants."

These package plants are factory-built, skid-mounted, and ready to be operated in the field with minimal site preparation. They exhibit lower capital cost than custom designed facilities built onsite and can incorporate any drinking water treatment process. Promising technologies being considered for incorporation include membranes, advanced oxidation, bag filters, and photocatalytic oxidation.

By merging, modifying, and adapting conventional treatment trains with innovative treatment technologies, a broader variety of contaminants (including pathogens) can be removed and SDWA compliance can be facilitated. Concern has recently mounted over the ability of certain pathogenic protozoan (*Cryptosporidium*) cysts to survive treatment processes and enter the distribution system.

Microorganisms Associated with Waterborne Disease

The following groups of microorganisms have been linked with the occurrence of waterborne disease. As each pathogen is isolated and identified as a threat to water quality, researchers try to discover the most effective combination of barriers and disinfection methods to minimize risk of human exposure.

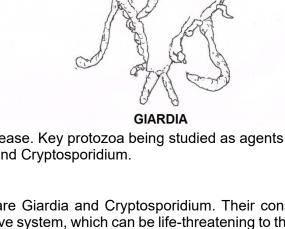
Bacteria. Bacteria are the most widely distributed life forms. Pathogenic bacteria range in length from approximately 0.4 to 14 mm (a mm or "micrometer" equals one one-thousandth of a millimeter) and 0.2 to 1.2 mm in width. Key bacterial pathogens responsible for waterborne disease include Legionella, Salmonella typhi, Shigella, and Vibrio cholerae.

Viruses. Viruses are inactive when outside of a living host cell. Viruses linked to waterborne

disease have protein coats that provide protection from environmental hazards and range in size from 0.02 to 0.09 mm. Unlike bacteria and protozoa, they contain only one type of nucleic acid (RNA or DNA). Key pathogens include hepatitis A and Norwalk virus.

Protozoa

Protozoa, common in bodies of water, are much larger than bacteria and viruses.


To survive harsh environmental conditions, some species can secrete a protective covering and form a resting stage called a "cyst."

Encystment can protect protozoa from drinking water disinfection

efforts and facilitate the spread of disease. Key protozoa being studied as agents of waterborne disease include Giardia and Cryptosporidium.

Protozoan Diseases

Two protozoans in the news today are Giardia and Cryptosporidium. Their consumption can lead to severe problems of the digestive system, which can be life-threatening to the very young, very old, or those with damaged immune systems.

Bacteriological Monitoring Section Review

Current EPA Research — Bacteria

The new National Primary Drinking Water Regulations require that all drinking water samples testing positive for total coliforms be further tested for the presence of either fecal coliforms or *E. coli*. There is a method currently available that allows the simultaneous detection of total coliforms and *E. coli* in a broth medium in 24 hours; however, there is no equivalent method for use with membrane filters. Development of such a method will allow those who prefer to obtain counts of these organisms in their distribution systems to use a membrane filter method and to have results within the 24-hour time frame. Through the project "Development of a Membrane Filter Medium for the Simultaneous Detection of Total Coliforms and *E. coli*," a membrane filter method both total coliforms and *E. coli* can be distinguished from non-coliforms will be developed and patented.

E. coli are fecal organisms that when present in drinking water are indicative of fecal pollution. Logistical concerns in sample handling and holding require evaluation of conditions for optimizing sample stability and longevity. No current regulations exist for handling samples for analysis of *E. coli*. Through the project entitled "Optimal Sample Holding Conditions for Analysis of Fecal *E. coli* in Drinking Water," sample temperature and holding time will be determined for *E. coli* or fecal coliform analysis methods (i.e., Colilert and M-FC agar).

Relative recovery of methods and storage conditions will be assessed for optimal *E. coli* recovery. The requirement (through the SDWA amendments) to test all coliform-positive drinking water samples for either fecal coliforms or *E. coli* is new. Data from available methods for detecting chlorine damaged *E. coli* in drinking water are limited. The objective of the project entitled "Detection of Low Numbers of Chlorine-Stressed *E. coli* in Drinking Water" is to evaluate and compare the abilities of a commercial method (Colilert) and a standard coliform method (ECMUG) to recover low numbers of chlorine-stressed *E. coli* from potable water. Pure cultures of *E. coli* will be washed, nutrient-stressed in finished drinking water, and treated with chlorine. The chlorine-stressed *E. coli* will then be enumerated, diluted to levels that would be found in marginally unsafe drinking water and assayed in multiple tubes by the three methods.

These experiments will be repeated using naturally occurring *E. coli* from diluted human fecal specimens, contaminated source waters and effluents. The infectious bacterial agent identified from the stools of cholera victims is *Vibrio cholerae*. The epidemic in Latin America has prompted a renewed interest in control measures for this disease. Through the project entitled "Inactivation of *Vibrio cholerae* Biotype El Tor and Biotype Classical by Chlorination," it has been determined that the strain responsible for the epidemic in Peru is capable of reverting to a variant which is more resistant to chlorination than the typical smooth variety of *Vibrio cholerae*.

Cells of the variant appear to be imbedded in a gelatinous mucoid material, facilitating the formation of aggregates, which renders them more resistant to disinfection. Although the variant is more resistant, studies have indicated that all strains are readily inactivated through adequate chlorination.

The *Legionella pneumophila* bacterial strains that cause community- and hospital-acquired pneumonia are usually spread via finished drinking water. Certain free living amoebae (protozoa) support the multiplication of *L. pneumophila* in drinking water systems.

These amoebae may also be responsible for enhancing the virulence (capacity of a microorganism to cause disease) of the *Legionellae* and for protecting them from adverse

environmental factors such as high temperature and chlorine disinfection. The project entitled "Multiplication of *Legionellae* in Amoebae and Assessment of Virulence" will determine the effect of intracellular growth of *Legionella* in amoebae on virulence and as protection against chlorine and high temperature. To accomplish this, a method will be established to study the ability of various types of amoebae to provide a protective niche for the multiplication of *Legionellae* under adverse environmental conditions.

Combinations of *Legionella* isolates and specific amoebae that result in high yields of *Legionella* after intracellular growth will be used to study the effects of intracellular growth on virulence. Preliminary studies on the ability of amoebae to supply iron to *Legionellae* growing intracellularly showed no obvious associations between growth and iron concentration. EPA is required by the SDWA to establish appropriate controls and regulations for potable water.

EPA's Office of Research and Development's (ORD) project entitled "Develop Methods for Identifying Potential Bacterial Pathogens in Drinking Water" will develop a data base on potential health hazards (i.e., pathogenicity) associated with bacteria commonly found in water distribution systems. To accomplish this, three rodent species will be compromised using nitrous oxides or immunosuppressive agents, and the animals subsequently will be challenged via the gastrointestinal route.

Although virulence is usually measured *in vivo* (animal research), the need for extensive animal testing can be significantly reduced by the development of a battery of *in vitro* (cell culture) tests for traits known to be virulence-related. This battery can be used to predict the potential an organism has for causing disease in exposed populations.

Through the project entitled "Develop *In Vitro* Methods for Identifying Potential Bacterial Pathogens in Drinking Water," model systems will be developed that can be used to determine the potential pathogenicity of bacteria found in potable water distribution systems. Additionally, gene probe and other assays to identify known opportunistic pathogens will be developed and evaluated. Bacteria common to drinking water distribution systems colonize point-of-entry, granular activated carbon (GAC) filters where they are able to grow to very high densities.

Subsequent to reaching the high densities the bacteria begin sloughing off the GAC filters. The number of bacteria in the filter effluent (i.e., water flowing out of the filter) is significantly higher than in the influent water. This amplification of bacteria in drinking water is of concern to EPA because GAC filters are being considered as a substitute for central potable (i.e., fit for drinking drinking) water treatment in small communities where the treatment system has been overwhelmed by organic substances that may be harmful to human health.

EPA's Office of Ground Water and Drinking Water (OGWDW), however, does not want to recommend the use of these filters if the possibility exists that their use poses an acute disease risk due to bacteria that grow on the filters. The health significance of the bacteria known to adsorb and grow on GAC filters used in the home will be evaluated. The OGWDW will use this information to develop appropriate controls and regulations for this type of drinking water treatment as required by the SDWA.

Chloramines in Drinking Water

Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. The typical purpose of chloramines is to provide longer-lasting water treatment as the water moves through pipes to consumers. This type of disinfection is known as secondary disinfection. Chloramines have been used by water utilities for almost 90 years, and their use is closely regulated. More than one in five Americans uses drinking water treated with chloramines. Water that contains chloramines and meets EPA regulatory standards is safe to use for drinking, cooking, bathing and other household uses.

Many utilities use chlorine as their secondary disinfectant; however, in recent years, some of them changed their secondary disinfectant to chloramines to meet disinfection byproduct regulations. In order to address questions that have been raised by consumers about this switch, EPA scientists and experts have answered 29 of the most frequently asked questions about chloramines. We have also worked with a risk communication expert to help us organize complex information and make it easier for us to express current knowledge.

What are Chloramines?

Chloramines are disinfectants used to treat drinking water.

Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. The most typical purpose of chloramines is to protect water quality as it moves through pipes. Chloramines provide long-lasting protection as they do not break down quickly in water pipes.

The different types of chloramines are monochloramine, dichloramine, trichloramine, and organic chloramines.

When chloramines are used to disinfect drinking water, monochloramine is the most common form. Dichloramine, trichloramine, and organic chloramines are produced when treating drinking water but at much lower levels than monochloramine.

Trichloramines are typically associated with disinfected water used in swimming pools.

The Environmental Protection Agency regulates the safe use of chloramines in drinking water.

- EPA requires water utilities to meet strict health standards when using chloramines to treat water.
- EPA chloramines regulations are based on the average concentration of chloramines found in a water system over time.
- EPA regulates certain chemicals formed when chloramines react with natural organic matter4 in water.

Additional Supporting Information:

Dichloramine is formed when the chlorine to ammonia-nitrogen weight ratio is greater than 5:1, however, this reaction is very slow. Organic chloramines are formed when chlorine reacts with organic nitrogen compounds. Source: *Optimizing Chloramine Treatment*, 2nd Edition, AwwaRF, 2004

Trichloramine formation does not usually occur under normal drinking water treatment conditions. However, if the pH is lowered below 4.4 or the chlorine to ammonia-nitrogen weight ratio becomes greater than 7.6:1, then trichloramine can form.

Trichloramine formation can occur at a pH between 7 and 8 if the chlorine to ammonianitrogen weight ratio is increased to 15:1. Source: *Optimizing Chloramine Treatment*, 2nd Edition, AwwaRF, 2004

The drinking water standard for chloramines is 4 parts per million (ppm) measured as an annual average. More information on water utility use of chloramines is available at http://www.epa.gov/safewater/disinfection/index.html and in the 1997-1998 Information Collection Rule, a national survey of large drinking water utilities for the Stage 2 Disinfection Byproducts Rule (DBPR).

Information on the Stage 2 DBPR is available at <u>http://www.epa.gov/safewater/disinfection/stage2/</u>.

More information on EPA's standard setting process may be found at: <u>http://www.epa.gov/OGWDW/standard/setting.html</u>.

Natural Organic Matter. Complex organic compounds that are formed from decomposing plant, animal and microbial material in soil and water. They can react with disinfectants to form disinfection by products. Total organic carbon (TOC) is often measured as an indicator of natural organic matter.

What Disinfectants are Available for Drinking Water?

Most water utilities use chlorine as a primary disinfectant because of its effectiveness in killing potentially harmful organisms.² Chlorine is effective in killing bacteria, viruses, and other potentially harmful organisms in water. One disadvantage of chlorine is it can react with natural organic matter³ present in water to form potentially harmful disinfection byproducts. Water utilities sometimes use chlorine several times during treatment because the initial dose loses its effectiveness over time.

Monochloramine is commonly used as a secondary disinfectant to protect the water as it travels from the treatment plant to consumers. Monochloramine is effective in killing bacteria, viruses, and other potentially harmful organisms but takes much longer to act than chlorine. One disadvantage of monochloramine is it can react with natural organic matter present in water to form potentially harmful disinfection byproducts. Monochloramine is more chemically stable than chlorine, which makes it longer lasting and an effective secondary disinfectant.

Water utilities may use ozone, UV light, or chlorine dioxide as primary disinfectants in the treatment plant.

Ozone, UV light, and chlorine dioxide are effective in killing bacteria, viruses, and other potentially harmful organisms in water at the treatment plant. One disadvantage of ozone, UV light, and chlorine dioxide is they do not provide protection as water travels through pipes. Either chlorine or monochloramine should still be used in addition to any primary treatment process to protect the quality of treated water as it travels from the treatment plant to the customer.

How did EPA evaluate the safety of monochloramine for use as a drinking water disinfectant? *EPA evaluated monochloramine primarily through an analysis of human health and animal data.*

Research reviewed in EPA's safety analysis is contained in EPA's *Drinking Water Criteria Document for Chloramines.* The criteria document for monochloramine provides a complete summary of health and other data considered in establishing a monochloramine standard. EPA periodically updates the monochloramine "criteria document."

EPA's monochloramine standard² is set at a level where no human health effects are expected to occur.

Data from animal and human studies provide information on the health effects of monochloramine. EPA reviews and considers new research results as they become available. EPA's standard for monochloramine takes data gaps and uncertainty into account by building safety factors into the regulatory standard.

EPA reviewed historical data in its evaluation of monochloramine.

Monochloramine has been in use as a drinking water disinfectant since the 1930's. Decades of use in the US, Canada, and Great Britain shows that monochloramine is an effective secondary drinking water disinfectant. Denver, Philadelphia, and other large cities have used monochloramine as part of their water treatment process for years.

Additional Supporting Information:

1. The *Drinking Water Criteria Document for Chloramines* can be found at <u>http://www.epa.gov/ncea/pdfs/water/chloramine/dwchloramine.pdf</u>, Publication No.: ECAO-CIN-D002, March, 1994.

2. The Maximum Residual Disinfectant Level (MRDL) for chloramines is 4 parts per million (ppm).

3. See the Contaminant Candidate List online at <u>http://www.epa.gov/OGWDW/ccl/ccl3.html</u> for contaminants that EPA proposes to review. EPA scientists review regulations of disinfectants and disinfection byproducts every six years. For information on EPA's six-year review visit: http://epa.gov/safewater/review.html

4. For additional information regarding how uncertainty factors (also known as safety factors) are applied to risk assessments to provide a wide margin of safety see: <u>http://epa.gov/risk/dose-response.htm</u>.

5. Cleveland, OH, Springfield, IL, and Lansing, MI were among the first cities to use monochloramine in 1929 (see Chapter 1 of *The Quest for Pure Water Vol II*, AWWA, 1981).

Common water sample bottles for distribution systems.

Radiochems, VOCs, (Volatile Organic Compounds), TTHMs, Total Trihalomethanes), Nitrate, Nitrite.

Most of these sample bottles will come with the preservative already inside the bottle.

Some bottles will come with a separate preservative (acid) for the field preservation.

Slowly add the acid or other preservative to the water sample; not water to the acid or preservative.

Water Disinfection Methods Review

Disinfection is an important step in ensuring that water is safe to drink. Water systems add disinfectants to destroy microorganisms that can cause disease in humans. The Surface Water Treatment Rule requires public water systems to disinfect water obtained from surface water supplies or groundwater sources under the influence of surface water. Primary methods of disinfection are chlorination, chloramines, zone, and ultraviolet light. Other disinfection methods include chlorine dioxide, potassium permanganate, and nanofiltration. Since certain forms of chlorine react with organic material naturally present in many water sources to form harmful chemical by-products, the U.S. Environmental Protection Agency has proposed maximum levels for these contaminants.

Many people in most developing countries suffer from the inadequacy or hazardous condition of public water supplies (WHO 1985). A wide variety of known waterborne diseases, including those associated with children's diarrhea, are rampant (Tartakow and Vorperian 1980; Feachem et al. 1983; WHO 1984, 1987). This prompted the establishment of the International Drinking Water Supply and Sanitation Decade. It aims at providing about 90% of the human population with an adequate, safe community water supply by 1990 (WHO 1985).

In Lebanon, the shortage of community water supplies, their actual or potential pollution from anthropogenic sources, inadequate treatment, and the resultant spread of associated diseases are still unresolved problems (Acra et al. 1985). To curb these issues would require implementing feasible measures for prevention and treatment. These should include sanitation and disinfection of drinking water.

Physical Methods

Formation of mutagenic and carcinogenic agents in water and wastewater effluent treated with chlorine has prompted research to seek alternative disinfecting methods that would minimize environmental and public health impacts. The technology, based on nonchemical methods, is undergoing rapid development. Some techniques are already available commercially. This category is represented by techniques employing such physical principles for disinfection as W radiation, ultrasound, ultrafiltration, reverse osmosis, heating, freezing, and ionizing radiation (Cheremissinoff et al. 1981). Disinfecting small quantities of water by pasteurizing with heat or solar energy is a technology with some potential, but requires further development (Cheremissinoff et al. 1981; Ciochetti and Metcalf 1984). The recently developed method for water disinfection by direct exposure to solar radiation (Acra et al. 1980, 1984) is further described in the following sections.

Chemical Methods

Chemical methods depend mostly on selected chemicals with oxidizing and biocidal properties. Their practical applications range from removing undesirable constituents to disinfecting water supplies, wastewater treatment effluent, or industrial waters. The most commonly used chemicals include ozone, chlorine and some of its compounds, potassium permanganate, and hydrogen peroxide.

Ozone has been used for water disinfection for about 80 years in France, Germany, and other European countries. It is now undergoing a critical evaluation as a possible alternative to chlorine when used alone or in conjunction with other disinfection systems (Foster et al. 1980; Kott et al. 1980; Dolora et al. 1981; Venosa 1983; Rakness et al. 1984; Wickramanayake et al. 1984; Den-Blanken 1985).

There is some evidence that it forms smaller amounts of hazardous trihalomethanes (THM) when employed to treat polluted waters or wastewater effluent than either chlorine or chlorine dioxide. However, its potential for producing other equally toxic substances is still not clearly defined (Glaze 1987). Ozonation has become popular in North America partly because of its superiority over chlorination. It enhances the coagulation process despite its inherent weakness in leaving practically no residual in the distribution system.

Interhalogen compounds, formed from two different halogens, resemble their parent substances in properties and germicidal characteristics. The interhalogens BrCl, ICl, and IBr have recently been investigated as possible alternative disinfectants for water and wastewater effluent (Groninger and Mills 1980; Cheremissinoff et al. 1981). Added to water, they rapidly hydrolyze to the corresponding hypohalous acids, which are stronger oxidants and disinfectants than hypochlorous acid. For instance, BrCl is hydrolyzed to HCl and HOBr. However, their improved germicidal activity is counterbalanced by the formation of haloforms. They react with humates in water or wastewater effluent by the haloform reaction (HOBr, for example, reacts with humates yielding bromoform). In this context, hypobromite would be formed in seawater by reaction of the natural bromides with hypochlorites in chlorinated wastewater effluent or cooling waters from power plants (Sugam and Helz 1980; Wong 1982; Bousher et al. 1986). This also applies to natural waters rich in bromides with subsequent formation of bromoform and other trihalomethanes (Amy et al. 1984; Rav-Acha, Choshen et al. 1985; Rav-Acha, Serri et al. 1985; Ishikawa et al. 1986; Guttman-Bass et al. 1987). Consequently, coastal groundwater affected by seawater infiltration should create some concern if used for drinking.

Using hydrogen peroxide for water disinfection began in the 1950s in Eastern Europe (Laubusch 1971). Although it has been well known for its high oxidative and germicidal activity, its application as a water disinfectant has not gained wide acceptance. Its increasing use, however, has been noted (Gaudy and Gaudy 1980). The degradation of organic matter in water treated sequentially with up to 0.5% by weight of hydrogen peroxide and W radiation (>200 nm) has been reported (Malaiyandi et al. 1982). In another form of application, hydrogen peroxide produced no significant oxidation of soluble manganese in water containing organic matter in the pH range of 5.0-8.0 (Knocke et al. 1987).

A newly marketed product (Sanosil, Sanosil AG, Feldmeilen, Switzerland) is claimed to be applicable to large-scale water disinfection; its effective bacteriostatic and fungicidal activity has been demonstrated at concentrations of 10-35 mg/L on *Escherichia coli, Klebsiella pneumoniae, Streptococcus aureus, Pseudomonas aeroginosa, Proteus mirabilis, Micobacter* spp., *Clamidia sporogenes*, and *Candida albicans*. The two active biocidal constituents of this product are hydrogen peroxide and colloidal silver.

Chlorination and Dechlorination

The use of chlorine and some of its derivatives will continue as an integral part of the disinfection process in water and wastewater treatment. This also applies to developing countries, where this mode of disinfection is fairly well established (Mara 1978; Droste and McJunkin 1982; Smethurst 1983). Apart from almost a century of chlorination practices (Laubusch 1962a, b; Cheremissinoff et al. 1981), two other favorable determinants are the technical expertise already acquired and the relatively low costs involved. In the wake of the recent discovery of the formation of THM in chlorinated natural waters (Rook 1974), and their potential health hazards (Glaze et al. 1980; Williamson 1981; Carpenter and Beresford 1986), its credibility is diminishing.

Alternative disinfecting agents such as chlorine dioxide (Rav-Acha et al. 1985b), UV light (Severin et al. 1984; Scheible 1987), and UV light in conjunction with hydrogen peroxide

(Crandall 1986) are being considered. However, the formation of mutagens and carcinogens in chlorinated waters and wastewaters can be abolished or minimized by modifying the unit processes (Stelter et al. 1984; Fiessinger et al. 1985; Finger et al. 1985; Huang et al. 1985; Kool et al. 1985; Moyers and Wu 1985; Suh and Abdel-Rahman 1985; Means et al. 1986; Rogers and Lauer 1986; Guttman-Bass et al. 1987; Knocke et al. 1987). The potential health impacts that are yet to be clearly discerned and the toxicity to aquatic life resulting from discharged chlorinated effluent (Brungs 1973; Jolley et al. 1980) do not seem to outweigh the public health benefits derived from chlorination practices (Cortruvo 1985). However, as the controversy continues, epidemiological studies (Craun 1985) and the pertinent drinking water standards and legislation (Toft 1985) are being revised.

Reactions of chlorine in water that form the basis for its application as a disinfectant and oxidant are as follows: $Cl_2 + H_20 --> HCl + HOCl$

HOCI --> H⁺ + OCI⁻

These reactions in water devoid of other inorganic or organic matter that could react with chlorine are pH and temperature dependent. The products, hypochlorous acid (HOCI) and hypochlorite ions (OCI⁻, are referred to as free available chlorine (FAC). The biocidal activity is attributed chiefly to HOCI, as it is more effective than the OCI⁻. In the presence of natural or added ammonium ions, HOCI reacts to form chloramines, known as combined available chlorine (CAC). As a disinfectant, FAC is more effective. It is essential to chlorinate beyond the subsequent attainment of FAC at the desired level for optimal biocidal effectiveness ("free residual" chlorination).

The influencing factors to be considered in chlorination practices are the following:

- chlorine concentration,
- contact time,
- pH,
- temperature, and
- interfering substances.

The relationship between chlorine concentration (*C*, milligrams per liter) and contact time (*T*, minutes) required for a specific percentage destruction of microorganisms is expressed as a constant (CT = K) (Gaudy and Gaudy 1980). The proper use of this *CT* relationship to determine adequate water chlorination requirements has been emphasized as an approach to prevent and control waterborne diseases. Minimum CT values of 15-30 for systems using groundwater as a source and 100-150 for those using surface supplies have been recommended (Lippy 1986). Based on these values, the required FAC concentration can be determined mathematically for a given contact time. Once the chlorine demand (D) for a water supply is determined by testing, then the optimal chlorine dose to attain the desired free chlorine residual (C) can be calculated by addition: chlorine dose = D + C.

One of the factors in the many waterborne disease outbreaks in the United States in the past decades was failure to comply with the *CT* relationship in chlorination practices (Lippy and Waltrip 1984; Bitton et al. 1986; Lippy 1986; Williams and Akin 1986).

In addition, the need for the disinfection of wastewater discharged into streams has been emphasized and justified by the 23 different kinds of pathogenic organisms present in wastewater from US communities (Shertzer 1986).

Excess chlorine residuals can be controlled by a dechlorination procedure. Of the various chemicals used for the partial or complete removal of the residual chlorine in water or wastewater, sulfur dioxide gas (SO₂) is the most common (Laubusch 1971; Cheremissinoff et al. 1981; Finger et al. 1985; Huang et al. 1985). Dechlorination is often applied to heavily dosed water supplies as they are aesthetically objectionable to consumers or undesirable for industrial water uses. Chlorinated cooling waters and wastewaters need to be dechlorinated before discharging into water bodies in view of their toxicity to aquatic life. They have also potentially harmful effects because of the formed THM.

Household Methods

There are many situations where individuals or families would need to resort to simple and effective methods for drinking-water disinfection. These include the following:

- catastrophic conditions leading to displacement (earthquakes, floods, hurricanes, wars, or civil disturbances);
- emergencies arising from flourishing waterborne diseases; and
- resident populations and foreigners at risk in endemic areas with unsafe water supplies.

Physical methods (boiling or the use of ceramic filters), chemical methods (chlorine compounds in solution or tablet form, e.g., sodium hypochlorite solutions, calcium hypochlorite tablets, organic chlorine compounds, iodine solution, and organic iodine compounds) and others have been recommended for such cases (Morris et al. 1953; Gershenfeld 1957; Hadfield 1957; Cox 1969; O'Connor and Cooper 1970; WHO 1972, 1973; Rajagopalan and Shiffman 1974; UNHCR 1982).

None of these methods is entirely free from practical problems that could induce users to revert to untreated water. Fuelwood, for instance, for boiling is no longer a tenable practice, particularly in areas where it is absent or being depleted. Besides, the flat taste of boiled water discourages some consumers. The diverse types of ceramic filters have a wide range of pore sizes and present difficulties in selection. They suffer frequent clogging of the ceramic candles and often leak through disguised fine cracks. Proprietary halogen preparations frequently lead to consumer complaints and rejection because of the undesirable tastes and odors imparted to the water. It is especially so if high doses are applied inadvertently or as required in cases of heavily polluted waters. Relief agencies are often trapped in a dilemma by the requirements for importing and distributing, in addition to shortages, cost acceptability, and expiry dates. These issues encourage attempts to resolve them through the development of practical and effective techniques, simple enough to be applied by individuals or households.

Photo-Inactivation

The concept of photodynamic inactivation (PDI) of microorganisms evolved from experiments made in the early l9th century. It was firmly established, however, after the discovery of the inactivation of *Paramecium* spp. by visible light in the presence of an exogenous photosensitizing dye (acridine) (Raab 1900). Two types of photosensitizing compounds are known (Harrison 1967; Chamberlin and Mitchell 1978; Senger 1980): exogenous: fluorescent substances or dyes such as eosin, methylene blue, and benzopyrene; and endogenous: porphyrins, cytochromes, cytochrome oxidase, aromatic amino acids, flavins, tryptophan, and chlorophylls.

Several microorganisms and aquatic ecosystems have shown sensitivity to solar UVR, including viruses, algae, and fungi (Perdrau and Todd 1933; Hiatt et al. 1960; Crowther and Melnick 1961; Jagger 1967, 1981; Billen and Green 1975; Berry and Noton 1976; Propst and Lubin 1978; Acher and Elgavish 1980; Calkins and Thordardottir 1980; Kapuscinski and Mitchell 1981; Worrest et al. 1981; Jabara 1984; Wei et al. 1985). The rapid destruction of saprophytic strains of Mycoplasma by artificial visible light in the presence of toluidine blue and air has been reported (Cooney and Krinsky 1972). Coliforms in water and sewage have been completely inactivated by exposure to sunlight for about 1 h in the presence of methylene blue or rose bengal; the added dye is removed by absorption on bentonite (Acher and Juven 1977).

A new technique for the photodynamic disinfection of municipal and industrial wastewaters, which also results in the photodegradation of pesticides and anionic surfactants therein, has been suggested. The technique is based on the use of exogenous dye sensitizers, aeration, and sunlight, with the possibility of reusing the treated effluent for crop irrigation (Acher 1985).

Aquatic Photochemistry

Photochemical reactions induced by natural or artificial light have been known for some time, but much of this field remains obscure. Of particular interest is the photochemistry of the hydrosphere, which is continuously experiencing light-induced chemical reactions in the surface layer (photic zone). Inorganic and organic chemical pollutants in natural surface waters capable of absorbing solar energy with consequent chemical changes, referred to as photoreactive chromophores, can lead to direct photolysis reactions. Some of the better known chromophores include inorganic substances such as nitrites, nitrates, iodates, hydrogen peroxide, and ferrous compounds (Zafiriou et al. 1984).

The fate of disinfectants added to wastewater effluent and cooling waters used in industries that are discharged to surface waters is of importance in aquatic biology. Sunlight plays a prime role in their photodecomposition, as was demonstrated with experiments in which hypochlorite and hypobromite (formed by interaction of chlorine and natural bromides in seawater) were found to be photosensitive, the latter being easier to decompose (Wong 1982). In addition, volatilization into the atmosphere has been proposed as a possible pathway for the dissipation of the haloforms formed in water, with subsequent enhanced dilution and further photochemical degradation (Groninger and Mills 1980).

Decay and dissipation models for chlorine residuals in natural waters have been developed. These models predict that the nocturnal discharge of chlorinated effluent would have a much greater impact on aquatic life, given the absence of light-induced decomposition (Lin et al. 1983; Yamomoto et al. 1985).

The photochemical reactions of the hypohalites formed in aqueous solutions of chlorine, bromine, and iodine are somewhat similar, except for the absorption spectra and reaction rates (Allmand et al. 1927; Allmand and Webb 1928; Farkas and Klein 1948).

Their photodecomposition is wavelength-dependent, with increased decay rates in the shorter wavebands within the spectral region of 200-440 nm and the possible liberation of the highly reactive singlet oxygen, as has been noted for the surface of fresh and coastal waters (Zafiriou et al. 1984). It can be postulated, then, that aqueous halogen solutions are subject to photodecomposition by the effective radiation in the UV-B, UV-A, and blue light bands of the solar spectrum, and that these reactions could be of practical importance.

pH Scale

Alkalinity is the capacity of water to neutralize acids. This capacity is caused by the water's content of carbonate, bicarbonate, hydroxide and occasionally borate, silicate and phosphate. pH is an expression of the intensity of the basic or acid condition of a liquid. EPA has a suggested range of 6.5 to 8.5 for pH (called a secondary maximum contaminant level or SMCL). Furthermore, alkalinity and pH are different because water does not have to be strongly basic (high pH) to have a high alkalinity.

Conclusion

Emerging waterborne pathogens constitute a major health hazard in both developed and developing nations. A new dimension to the global epidemiology of cholera-an ancient scourgewas provided by the emergence of Vibrio cholerae O139. Also, water-borne enterohaemorrhagic Escherichia coli (E. coli O157:H7), although regarded as a problem of the industrialized west, has recently caused outbreaks in Africa. Outbreaks of chlorine-resistant Cryptosporidium have motivated water authorities to reassess the adequacy of current water-quality regulations. Of late, a host of other organisms, such as hepatitis viruses (including hepatitis E virus), Campylobacter jejuni, microsporidia, cyclospora, Yersinia enterocolitica, calciviruses and environmental bacteria like Mycobacterium spp, aeromonads, Legionella pneumophila and multidrug-resistant Pseudomonas aeruginosa have been associated with water-borne illnesses.

The protection and enhancement of our nation's water quality remains a chief concern of the U.S. Environmental Protection Agency. The Office of Research and Development is committed, through the extensive waterborne disease research efforts earlier described, to ensure that the most effective and efficient methods are developed to identify, detect, and inactivate/remove pathogens that may be present in our drinking water supplies.

Life cycles, mechanisms of infection, protective or dormant states, emergence of disinfection resistant variants, optimal pathogen removal techniques, regrowth in distribution lines...all are areas that must be investigated and understood to afford the water quality safeguards that are so often taken for granted. The successes and failures of these research efforts, relayed to the public and appropriate federal, state, and local agencies, have helped to ensure safe drinking water.

Salmonella Typhi

Salmonella typhi, the basics. It's a bacteria. It causes diarrheal illness, also known as typhoid fever. And humans are the reservoir for this pathogen. Salmonella typhi, prevention. Prevention strategies for this pathogen include source protection, halogenation of water, and boiling water for one minute.

Shigella Species

Shigella species, the basics. It's a bacteria. It causes diarrheal illness known as shigellosis. Humans and primates are the reservoir for this pathogen. Shigella species, in the United States two-thirds of the shigellosis in the U.S. is caused by Shigella sonnei, and the remaining one-third is caused by Shigella flexnieri. In developing countries, Shigella dysenteriae is the primary cause of illness associated with this pathogen. Shigella species prevention. Prevention strategies for this pathogen include source protection,

halogenation of water, and boiling water for one minute.

Campylobacter

Campylobacter, the basics. It's a bacteria. It causes diarrheal illness. And Campylobacter is primarily associated with poultry, animals, and humans. Campylobacter prevention. Prevention strategies for this pathogen include source protection, halogenation of water, and boiling water for one minute.

Vibrio Cholerae

Vibrio cholerae, the basics. It's a bacteria. It causes diarrheal illness, also known as cholera. It is typically associated with aquatic environments, shell stocks, and human. Vibrio cholerae has also been associated with ship ballast water, and there will be a discussion later on in this presentation of an outbreak associated with ship ballast water. Vibrio cholerae prevention. Prevention strategies for this pathogen include source protection, halogenation of water, and boiling water for one minute.

Legionella

Legionella, the basics. It's a bacteria. It causes a respiratory illness known as legionellosis. There are two illnesses associated with legionellosis: the first, Legionnaire's disease, which causes a severe pneumonia, and the second, Pontiac fever, which is a nonpneumonia illness; it's typically an influenza-like illness, and it's less severe. Legionella is naturally found in water, both natural and artificial water sources. Legionella, prevention. Maintaining hot water systems at or above 50 degrees Centigrade and cold water below 20 degrees Centigrade can prevent or control the proliferation of Legionella in water systems. Hot water in tanks should be maintained between 71 and 77 degrees Centigrade.

Proper recreational water system maintenance and disinfection can prevent the proliferation of Legionella in recreational water systems. It is important to prevent water stagnation. This can be accomplished by eliminating dead ends in distribution systems and in recreational water systems. Additionally, preventing biofilm development is important to control this particular pathogen in water systems.

Pseudomonas

Pseudomonas, the basics. It's a bacteria. It is caused by dermal contact with water. It can cause dermatitis, which is an inflammation of the skin, or it can cause otitis, which is an infection of the ear. Pseudomonas is typically associated with soil and water. Pseudomonas prevention. Proper maintenance and disinfection of recreational water systems is important in preventing Pseudomonas.

Hepatitis A

Hepatitis A, the basics. It's a virus. It causes inflammation of the liver. And the reservoir for Hepatitis A virus is humans.

Hepatitis A, Prevention

Prevention strategies for this pathogen include source protection and adequate disinfection. Fecal matter can protect Hepatitis A virus from chlorine. Additionally, Hepatitis A virus is resistant to combined chlorines, so it is important to have an adequate free chlorine residual.

Norovirus

Norovirus, the basics. It's a virus. It causes diarrheal illness. And humans are the reservoir for this virus. Norovirus, prevention. Prevention strategies for this pathogen include source protection.

Cryptosporidium

Cryptosporidium, the basics. It's a parasite. It causes diarrheal illness known as cryptosporidiosis. It is typically associated with animals and humans, and it can be acquired through consuming fecally contaminated food, contact with fecally contaminated soil and water.

Cryptosporidium, prevention. Prevention strategies for this pathogen include source protection. A CT value of 9,600 is required when dealing with fecally accidents. CT equals a concentration, in parts per million, while time equals a contact time in minutes. Cryptosporidium can also be prevented or eliminated by boiling water for one minute.

Filtration with an "absolute" pore size of one micron or smaller can eliminate Cryptosporidium. And reverse osmosis is known to be effective as well.

Giardia

Giardia, the basics. It is a parasite. It causes diarrheal illness known as giardiasis. It is typically associated with water. It is the most common pathogen in waterborne outbreaks. It can also be found in soil and food. And humans and animals are the reservoir for this pathogen. Giardia prevention. Prevention strategies for this pathogen include source protection; filtration, coagulation, and halogenation of drinking water.

Schistosomatidae

Schistosomatidae, the basics. It is a parasite. It is acquired through dermal contact, cercarial dermatitis. It is commonly known as swimmer's itch. The reservoir for this pathogen are aquatic snails and birds. Schistosomatidae, prevention. Prevention strategies for this pathogen include eliminating snails with a molluscicide or interrupting the life cycle of the parasite by treating birds with an antihelmetic drug.

E-Coli Section

Escherichia coli. There are several pathogenic strains of Escherichia coli, which are classified under enterovirulent E. coli. They are enterohemorrhagic, enteroinvasive, enterotoxigenic, enteropathogenic, and enteroaggregative. Escherichia coli O157:H7, the basics. It's a bacteria. It causes diarrheal illness, and it's classified as an enterohemorrhagic E. coli.

In its most severe form, it can cause hemorrhagic colitis. The reservoir for this bacteria are cattle, deer, goats, and sheep. Humans can also be a reservoir. It is typically associated with contaminated food and water. E. coli O157:H7 prevention. Prevention strategies for this pathogen include source protection, halogenation of water, or boiling water for one minute.

Salmonella species, the basics. It's a bacteria. It causes diarrheal illness known as salmonellosis. Humans and animals are the reservoir, and it's typically associated with contaminated food and water. Salmonella species, prevention. Prevention strategies for this pathogen include source protection, halogenation of water, and also boiling water for one minute.

More on Evolving Disinfection Rules

In the past 25 years, the Safe Drinking Water Act (SDWA) has been highly effective in protecting public health and has also evolved to respond to new and emerging threats to safe drinking water. Disinfection of drinking water is one of the major public health advances in the 20th century. One hundred years ago, typhoid and cholera epidemics were common through American cities; disinfection was a major factor in reducing these epidemics.

However, the disinfectants themselves can react with naturally-occurring materials in the water to form unintended byproducts which may pose health risks. In addition, in the past ten years, we have learned that there are specific microbial pathogens, such as *Cryptosporidium*, which can cause illness and is resistant to traditional disinfection practices.

Chlorine is the most widely used water disinfectant due to its effectiveness and cost. Using chlorine as a drinking water disinfectant has prevented millions of water borne diseases, such as typhoid, cholera, dysentery, and diarrhea. Most states require community water systems to use chlorination. However, research shows that chlorine has side effects. It reacts with organic matter present in water and forms a series of compounds that have been linked to cancer in animals.

These compounds are called disinfection by-products (DBPs). All disinfectants form DBPs in one of two reactions:

(1) chorine and chlorine-based compounds (halogens) react with organics in water causing the chlorine atom to substitute other atoms resulting in halogenated by-products and

(2) oxidation reactions, where chlorine oxidizes compounds present in water. Secondary byproducts are also formed when multiple disinfectants are used.

All living organisms have carbon as an essential element in their cells. When trees shed their leaves, they start decomposing and are ultimately broken down by bacteria into carbon-containing compounds. Similarly, dead animals on land and fish and other aquatic life decompose and disintegrate into compounds that contain carbon as an essential element. Hence, all surface water and groundwater contain varying amounts of carbon-containing compounds called organic matter (primarily humic and fulvic acids).

The EPA Surface Water Treatment Rule (SWTR) requires systems using public water supplies from either surface water or groundwater under the direct influence of surface water to disinfect. Also, since some disinfectants produce chemical by-products, the dual objective of disinfection is to provide the required level of organism destruction and remain within the maximum contaminant level (MCL) for the SWTR disinfection set by EPA. At this time, an MCL is set for only Total Trihalomethanes, and proposed for additional disinfection byproducts.

What are the microbial/disinfection byproducts (MDBP) rules and which ones apply to me?

The Disinfectants and Disinfection Byproducts (DBP) rules apply to all community and noncommunity water systems using a disinfectant such as chlorine, chloramines, ozone and chlorine dioxide.

Compliance with the Stage 1 DBP requirements began in 2000. The Stage 2 DBP requirements began in 2006 with the Initial Distribution System Evaluation (IDSE). Compliance monitoring for the Stage 2 DBP begins in April 2012. See phased compliance schedule dependent on system population below.

The Long Term 2 Enhanced Surface Water Treatment Rule (LT2) rule applies to all water systems using surface water, groundwater under the influence of a surface water, as well as groundwater/surface water blends. The LT2 requirements began in 2006 with the characterization of raw water Cryptosporidium and E.coli levels. Systems serving <10,000 monitor for E.coli only every two weeks for one year. Compliance with the LT2 requirements begin in April 2013.

The Groundwater Rule (GWR) applies to all public water systems using groundwater. The GWR requirements begin in March 2009 with 6-months investigative monitoring (IM) for source water E.coli, for systems currently applying disinfection only. All other requirements for the GWR began back in Dec 2009.

Amendments to the SDWA in 1996 require EPA to develop rules to balance the risks between microbial pathogens and disinfection byproducts (DBPs). It is important to strengthen protection against microbial contaminants, especially *Cryptosporidium*, and at the same time, reduce potential health risks of DBPs.

The Stage 1 Disinfectants and Disinfection Byproducts Rule and Interim Enhanced Surface Water Treatment Rule, announced in December 1998, are the first of a set of rules under the 1996 SDWA Amendments. This fact sheet focuses on the Stage 1 Disinfectants and Disinfection Byproducts Rule. A separate fact sheet focuses on the Interim Enhanced Surface Water Treatment Rule (EPA 815-F-98-009).

Public Health Concerns

While disinfectants are effective in controlling many microorganisms, they react with natural organic and inorganic matter in source water and distribution systems to form DBPs. Results from toxicology studies have shown several DBPs (e.g., bromodichloromethane, bromoform, chloroform, dichloroacetic acid, and bromate) to be carcinogenic in laboratory animals. Other DBPs (e.g., chlorite, bromodichloromethane, and certain haloacetic acids) have also been shown to cause adverse reproductive or developmental effects in laboratory animals. Several epidemiology studies have suggested a weak association between certain cancers (e.g., bladder) or reproductive and developmental effects, and exposure to chlorinated surface water. More than 200 million people consume water that has been disinfected. Because of the large population exposed, health risks associated with DBPs, even if small, need to be taken seriously.

Who Must Comply With The Rule?

The Stage 1 Disinfectants and Disinfection Byproducts Rule applies to all community and nontransient non-community water systems that treat their water with a chemical disinfectant for either primary or residual treatment.

What Does The Rule Require?

The Stage 1 Disinfectant and Disinfection Byproduct Rule updates and supersedes the 1979 regulations for total trihalomethanes. In addition, it will reduce exposure to three disinfectants and many disinfection byproducts.

The rule establishes maximum residual disinfectant level goals (MRDLGs) and maximum residual disinfectant levels (MRDLs) for three chemical disinfectants - chlorine, chloramine and chlorine dioxide (see Table 1). It also establishes maximum contaminant level goals (MCLGs) and maximum contaminant levels (MCLs) for total trihalomethanes, haloacetic acids, chlorite and bromate (see Table 1).

and Di	sinfection Byprodu	icts Rule	
DISINFECTANT RESIDUAL	MRDLG (mg/L)	MRDL (mg/L)	COMPLIANCE BASED ON
Chlorine	4 (as Cl ₂)	4.0 (as Cl ₂)	Annual Average
Chloramine	4 (as Cl ₂)	4.0 (as Cl ₂)	Annual Average
Chlorine Dioxide	0.8 (as CIO ₂)	0.8 (as CIO ₂)	Daily Samples
DISINFECTION BYPRODUCTS	MCLG (mg/L)	MCL (mg/L)	COMPLIANCE BASED ON
Total trihalomethanes (TTHM) ¹ - Chloroform - Bromodichloromethane - Dibromochloromethane - Bromoform	N/A *** 0 0.06 0	0.080	Annual Average
Haloacetic acids (five) (HAA5) ² - Dichloroacetic acid - Trichloroacetic acid	N/A 0 0.3	0.060	Annual Average
Chlorite	0.8	1.0	Monthly Average
Bromate	0	0.010	Annual Average

Table 1
MRDLGs, MRDLs, MCLGs and MCLs for Stage 1 Disinfectants
and Disinfection Byproducts Rule

N/A - Not applicable because there are individual MCLGs for TTHMs or HAAs

1-Total trihalomethanes is the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform.

2-Haloacetic acids (five) is the sum of the concentrations of mono-, di-, and trichloroacetic acids and mono- and dibromoacetic acids.

*** <u>EPA removed the zero MCLG for chloroform</u> from its National Primary Drinking Water Regulations, effective May 30, 2000, in accordance with an order of the U.S. Court of Appeals for the District of Columbia Circuit.

Water systems that use surface water or ground water under the direct influence of surface water and use conventional filtration treatment are required to remove specified percentages of organic materials, measured as total organic carbon (TOC) that may react with disinfectants to form DBPs (See Table 2). Removal will be achieved through a treatment technique (enhanced coagulation or enhanced softening) unless a system meets alternative criteria.

Table 2 Required Removal of Total Organic Carbon by Enhanced Coagulation and Enhanced Softening for Subpart H Systems Using Conventional Treatment¹

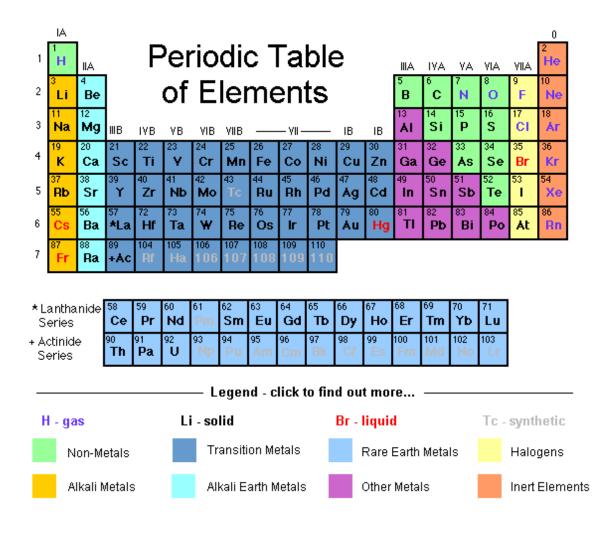
Source Water TOC (mg/L)	Source Water Alkalinity (mg/L as CaCO ₃)		
	0-60	>60-120	>1202
>2.0-4.0	35.0%	25.0%	15.0%
>4.0-8.0	45.0%	35.0%	25.0%
>8.0	50.0%	40.0%	30.0%

¹Systems meeting at least one of the alternative compliance criteria in the rule are not required to meet the removals in this table.

²Systems practicing softening must meet the TOC removal requirements in the last column to the right. What Are The Compliance Deadlines?

Large surface water systems are required to comply with the Stage 1 Disinfectants and Disinfection Byproducts Rule and Interim Enhanced Surface Water Treatment Rule by January 2002. Ground water systems and small surface water systems must comply with the Stage 1 Disinfectants and Disinfection Byproducts Rule by January 2004.

What Are The Costs And Benefits Of The Rule?


EPA estimates that implementation of the Stage 1 Disinfectants and Disinfection Byproducts Rule will result in:

- As many as 140 million people receiving increased protection from DBPs.
- 24 percent national average reduction in TTHM levels.
- Reduction in exposure to the major DBPs from use of ozone (bromate) and chlorine dioxide (chlorite).

The total annual cost of the rule is about \$700 million. EPA believes that the benefits exceed the costs of the Stage 1 Disinfectants and Disinfection Byproducts Rule. An estimated 116 million households are affected by the Stage 1 Disinfectants and Disinfection Byproducts Rule. EPA estimates that 95 percent of the households will incur additional costs of less than \$1 per month on their water bills.

An additional four percent will pay between \$1 and \$10 per month more, and one percent are expected to incur increased water bills of \$10 to \$33 per month, if they choose to install treatment. However, many of these systems may chose less costly non-treatment options, such as consolidation.

The majority of households incurring the highest costs are small systems serving less than 10,000 people that have never been regulated for DBPs.

History of the Periodic Table:

Dimitri Mendeleev created the periodic table when he first listed the elements in order of atomic mass in 1869. He found that the elements with similar properties occur in a periodic manner. Mendeleev was able to arrange the elements in a table form where similar elements are found in the same column.

How is the Periodic Table Organized?

The periodic table is organized with eight principal vertical columns called groups and seven horizontal rows called periods. (The groups are numbered I to VIII from left to right, and the periods are numbered 1 to 7 from top to bottom.)

All the metals are grouped together on the left side of the periodic table, and all the nonmetals are grouped together on the right side of the periodic table. Semimetals are found in between the metals and nonmetals.

What are the eight groups of the Periodic Table?

Group I: Alkali Metals - Li, Na, K, Rb, Cs, Fr known as alkali metals most reactive of the metals react with all nonmetals except the noble gases contain typical physical properties of metals (ex. shiny solids and good conductors of heat and electricity) softer than most familiar metals; can be cut with a knife

Group II: Alkaline Earth Metals-Be, Mg, Ca, Sr, Ba, Ra

known as alkaline earth metals react with nonmetals, but more slowly than the Group I metals solids at room temperature have typical metallic properties harder than the Group I metals higher melting points than the Group I metals

Group III: B, AI, Ga, In, TI boron is a semimetal; all the others are metals

Group IV: C, Si, Ge, Sn, Pb carbon is a nonmetal; silicon and germanium are semimetals; tin and lead are metals

Group V: N, P, As, Sb, Bi

nitrogen and phosphorus are nonmetals; arsenic and antimony are semimetals; bismuth is a metal

Group VI: O, S, Se, Te, Po oxygen, sulfur, and selenium are nonmetals; tellurium and polonium are semimetals

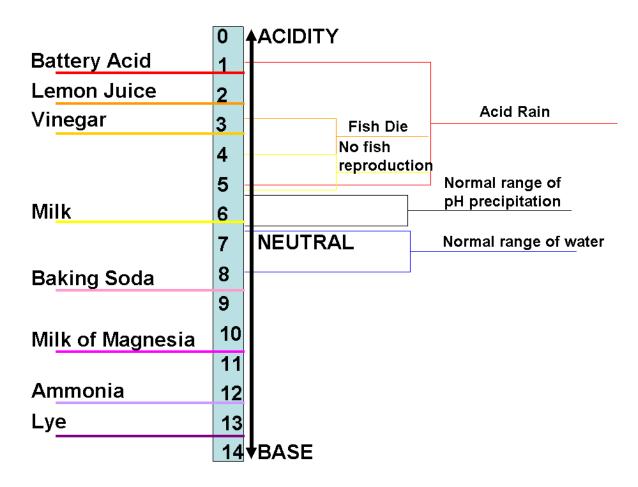
Group VII: Halogens-F, CI, Br, I, At

very reactive nonmetals

Group VIII: Noble Gases-He, Ne, Ar, Kr, Xe, Rn

very unreactive

How do the properties of metals and nonmetals differ? Properties of Metals


Solids at room temperature, Conduct heat very well Have electrical conductivities that increase with decreasing temperature Have a high flexibility and a shiny metallic luster Are malleable-can be beaten out into sheets or foils Are ductile-can be pulled into thin wires without breaking Emit electrons when they are exposed to radiation of sufficiently high energy or when They are heated (known as photoelectric effect and thermionic effect)

Properties of Nonmetals

May be gases, liquids, or solids at room temperature, poor conductors of heat Are insulators-very poor conductors of electricity Do not have a high reflectivity or a shiny metallic appearance In solid form generally brittle and fracture easily under stress Do not exhibit photoelectric or thermionic effects

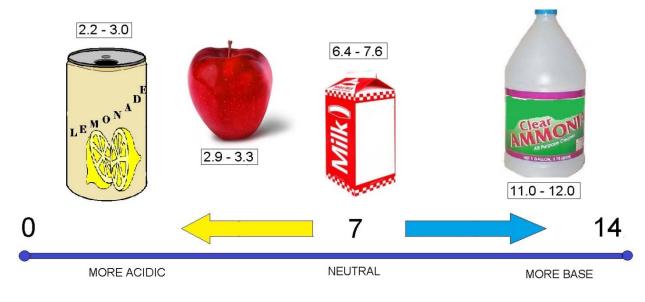
> 100 Distribution 404 1St Edition

The pH Scale

pH: A measure of the acidity of water. The pH scale runs from 0 to 14 with 7 being the mid-point or neutral. A pH of less than 7 is on the acid side of the scale with 0 as the point of greatest acid activity. A pH of more than 7 is on the basic (alkaline) side of the scale with 14 as the point of greatest basic activity.

pH = (Power of Hydroxyl Ion Activity).

The acidity of a water sample is measured on a pH scale. This scale ranges from 0 (maximum acidity) to 14 (maximum alkalinity). The middle of the scale, 7, represents the neutral point. The acidity increases from neutral toward 0.


Because the scale is logarithmic, a difference of one pH unit represents a tenfold change. For example, the acidity of a sample with a pH of **5** is ten times greater than that of a sample with a pH of **6**. A difference of 2 units, from **6** to **4**, would mean that the acidity is one hundred times greater, and so on.

Normal rain has a pH of **5.6** – slightly acidic because of the carbon dioxide picked up in the earth's atmosphere by the rain.

Distribution 404 1St Edition

	1/10,000,000	14	LIQUID DRAIN CLEANER CAUSTIC SODA		
	1/1,000,000	13	BLEACHES OVEN CLEANERS		
Superior C	1/100,000	12	SOAPY WATER		
	1/10,000	11	HOUSEHOLD AMMONIA (11.9)		
	1/1,000	10	MILK OF MAGNESIUM (10.5)		
OF HYDROGEN IONS	<mark>1/1</mark> 00	9	TOOTHPASTE (9.9)	EXAMPLES OF SOLUTIONS AND	
COMPARED TO DISTILLED H20	1/10	8	BAKING SODA (8.4) / SEA WATER EGGS	THEIR RESPECTIVE	
	0	7	"PURE" WATER (7)		
	10	6	URINE (6) / MILK (6.6)		
	100	5	ACID RAIN (5.6) BLACK COFFEE (5)		
	1000	4	TOMATO JUICE (4.1)		
	10,000	3	GRAPEFRUIT & ORANGE JUICE SOFT DRINK		
	100,000	2	LEMON JUICE (2.3) VINEGAR (2.9)		
	1,000,000	1	HYDROCHLORIC ACID SECRETED FROM STOMACH LINING (1)		
	10,000,000	0	BATTERY ACID		

pH Scale

pH SCALE

Drinking Water Analysis Chart

ANALYSIS	METHOD	HOLDING
Inorganic Compounds (IOC) Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Mercury, Nickel, Selenium, Silver, Sodium, Thallium, Zinc, Hardness, Conductivity, Turbidity, Color, Chloride, Cyanide, Fluoride, Nitrate, Nitrite, Sulfate, and Total Dissolved Solids.	(various)	48 hours
Primary Pollutants (Short IOC) Antimony, Arsenic, Barium,	(various)	48 hours
Beryllium, Cadmium, Chromium, Lead, Mercury, Selenium, Silver, Sodium, Thallium, Turbidity, Fluoride, Cyanide, Nitrate, and Nitrite.	(vanous)	40 110013
Municipal Testing		
Lead and Copper	EPA 200.9 for Pb	14 days
	EPA 200.7 for Cu	
Public or Individual Water Source Testing		
Nitrate	SM-4500 NO3 D	48 hours
Total Coliform & E. Coli	SM-9223 B	30 Hours
Metals Analysis on Drinking Water (per element)		C monthe
GFAA	EPA 200.9	6 months
(As, Pb, Sb, Se, TI)		
ICP (Ag, Al, B, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Na, Ni, Zn)	EPA 200.7	6 months
CVAA (Hg)	EPA 245.1	6 months
Primary Pollutant Metals	GFAA/ICP/CVAA	6 months
Drinking Water Analysis		• montho
РН	EPA 150.1	
Acidity	SM-2310 B (4b)	14 days
Alkalinity (Bicarbonate & Carbonate)	SM-2320 B (4a)	14 days
BOD	SM-5210 B	48 hours
Calcium	EPA 200.7	6 months
Chloride	SM-4500 CI	8 days
Chlorine, total	SM-4500 CI	5 hours
	SM-2120 B	8 hours
Color		28 days
COD	EPA 410.4 (7.3)	
COD Cyanide	EPA 335.2 (8.7)	28 days
COD		
COD Cyanide	EPA 335.2 (8.7)	28 days

Magnesium	EPA 200.7	6 months
Nitrogen, ammonia	SM-4500 NH3 E	28 days
	SM-4500 NH3 H	
Nitrogen, nitrate	SM-4500 NO3 D	48 hours
Nitrogen, nitrite	SM-4500 NO2	48 hours
Nitrate + Nitrite	SM-4500 NO3 E	48 hours
Nitrogen, TKN	EPA 351.4	28 days
Odor	SM-2150	6 days
Phosphorous, ortho	EPA 200.7	48 hours
Phosphorous, total	SM-4500 P	28 days
Solids, settle able	SM-2540	7 days
Solids, suspended	SM-2540 D	7 days
Drinking Water Analysis		
Drinking Water Analysis		
Drinking Water Analysis Solids, total	SM-2540 B	7 days
Solids, total	SM-2540 B SM-2540 E	7 days 7 days
Solids, total Solids, volatile		
Solids, total Solids, volatile Specific Conductance	SM-2540 E	7 days 28 days
Solids, total Solids, volatile Specific Conductance Sulfate	SM-2540 E SM-2510 B	7 days 28 days 28 days
Solids, total Solids, volatile Specific Conductance Sulfate Sulfide	SM-2540 E SM-2510 B SM-4500 SO-4 E	7 days 28 days 28 days 28 days
Solids, total Solids, volatile Specific Conductance Sulfate Sulfide Sulfite	SM-2540 E SM-2510 B SM-4500 SO-4 E SM-4500 S-2 D	7 days 28 days 28 days 28 days 28 days 28 days
	SM-2540 E SM-2510 B SM-4500 SO-4 E SM-4500 S-2 D EPA 377.1	7 days

Semi-volatile Organics in Water (SOC)*	(various)	7 days
Volatile Organics	(various)	7 days
in Water*	(vanous)	/ duy5
Trihalomethanes*	EPA 501.1	7 days
Gross Alpha & Bata (Radionuclides)*	(various)	7 days
BOD	SM-5210 B	48 hours
600	3WI-52TU B	40 110015
COD	EPA 410.4(7.3)	28 days
Oil and Grease	EPA 413.1(1.2)	28 days
Hardness W/digestion	SM-2340 B	6 months
Nitrogen, TKN	EPA 351.4	28 days
Nitrogen, ammonia	SM-4500 NH3 F	28 days
Nitrogen, Total Organic	SM-4500 NorgNH3	28 days
Nitrogen, nitrate	SM-4500 NO3 D	48 hours
Nitrogen, nitrite	SM-4500 NO2 B	48 hours
Phosphorous, ortho	SM-4500 P E	48 hours
Sulfate	SM-4500 SO4 E	28 days
Solids, dissolved	SM-2540	7 days
Solids, settle able	SM-2540 F	7 days
Solids, suspended	SM-2540 D	7 days
Solids, total	SM-2540 B	7 days
Solids, volatile	SM-2540 E	7 days
Total Organic Carbon	EPA 415.1	28 days
PH	EPA 150.1	
Metals (per element)		

ICP (Ag, Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Sb, V, Zn)	EPA 200.7	6 months
GFAA	EPA 200.9	6 months
(As, Pb, Ba, Se, Tl)		
CVAA (Hg)	EPA 245.1	6 months

Definitions:

Action level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - the "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - the "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) or Milligrams per liter (mg/L) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/L) - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

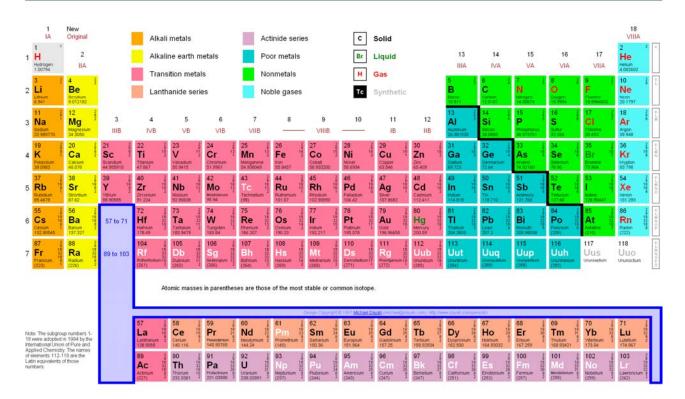
Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

This course contains EPA's federal rule requirements. Please be aware that each state implements drinking water regulations that may be more stringent than EPA's regulations. Check with your state environmental agency for more information.

SAMPLE CONTAINERS and PRESERVATION

Methods used by the laboratory usually specify what type of container and how much sample is required to run an analysis. The following table provides a summary of the sample handling and preservation requirements for some of the most common tests.

Parameter	Bottle	Minimum Sample	Maximum	Storage &
	Туре	Size	Holding Time	Preservation
Acidity	P or G ^B	100ml	24 hrs/14 days	refrigerate
Alkalinity	P or G	200ml	24 hrs/14 days	refrigerate
BOD (5 day)	P or G	1L	6 hrs/48 hrs	refrigerate
Boron	Р	100ml	28 days/6 months	
Chloride	P or G	250ml	28 days	
Chlorine, residual	P or G	500ml	0.5 hr/stat	analyze on site ASAP
COD	P or G	500ml	28 days/28 days	analyze on site ASAP
Color	P or G	500ml	48 hrs/48 hrs	refrigerate
Coliform, Total	P or G	125ml	30 hrs	refrigerate
Conductivity	P or G	500ml	48 hrs/48 hrs	refrigerate
Cyanide, Total	P or G	500ml	28 days/28	add NaOH to
- j			days	pH>12
				refrigerate in dark
Fluoride	Р	300ml	28days/ 28 days	
Hardness	P or G	100ml	6 months/6 months	add HNO₃ to pH<2
Metals, general	P ^A or G ^A	250ml	6 months/6 months	add HNO₃ to pH<2
Furnace	P ^A or G ^A	250ml	6 months/6 months	
Flame	P ^A or G ^A	250ml	6 months/6 months	
Mercury	P ^A or G ^A	500ml	28 days/28 days	add HNO₃ to pH<2
Nitrogen	P or G	500ml	7 days/ 28 days	ASAP or add H ₂ SO ₄ to pH<2 &
Ammonia				refrigerate
Nitrate	P or G	100ml	48 hrs/48 hrs	ASAP & refrigerate
Nitrate + Nitrite	P or G	200ml	48 hrs/28 days	ASAP & refrigerate
Nitrite	P or G	100ml	none/48 hrs	ASAP & refrigerate


	-			
TKN	P or G	500ml	7 days/28	add H ₂ SO ₄ to
			days	pH<2
Oxygen, dissolved	G (BOD)	300ml		
Electrode			0.5 hrs/stat	ASAP on site
Winkler			8hrs/8 hrs	ASAP on site
рН	P or G	50ml	2 hrs/stat	ASAP on site
Phosphate,	G ^A			
Ortho		100ml	48hrs	filter ASAP
				refrigerate
Total		100ml	28 days/28	refrigerate
			days	
Solids,	P or G			
Dissolved		250ml	7 days	refrigerate
Settleable		1L	48 hrs	refrigerate
Suspended		250ml	7 days	refrigerate
Total		250ml	7 days	refrigerate
Volatile		250ml	7 days	refrigerate
Silica	Р	200ml	28 days/28	refrigerate
			days	
Sulfate	P or G	100ml	28 days/28	refrigerate
			days	-
Turbidity	P or G	100ml	24 hrs/48 hrs	ASAP/refrigerate,
				store in dark up to
				24 hrs

Refrigerate = storage at 4 degrees C, in the dark. P = plastic (polyethylene or equivalent); G = glass, G^A or P^A = rinsed with 1:1 HNO₃; G^B = glass, borosilicate, G^S = glass rinsed with organic solvents; NS = not stated in cited reference; stat = no storage allowed; analyze immediately.

IOC Section

Periodic Table of the Elements

Left, Tellurium, right Astatine with Fluorine

IOC Sample Collection – Things to Remember

Sample instructions should be supplied with the sample containers from the laboratory. If the laboratory fails to include sample instructions, contact the laboratory and request sample instructions.

Some general practices to remember:

• Samples should be collected at the entry point to the distribution system after all treatment (finished water)

• Select a sampling faucet that does NOT have an aerator (sampling must be done with minimum aeration

- Run the water until the temperature is as cold as it gets
- Just before sample collection, adjust to a very low flow. Do not change the flow while collecting the sample

• Routine nitrate and nitrite samples should be collected on a Monday or a Tuesday

• When filling sample bottle, tip bottle slightly so that water flows down the side wall of the container. Bring bottle to an upright position as it fills

• Call the laboratory if bottles are received broken (or break while collecting samples)

• The owner or operator of a water supply must maintain chemical analysis reports (results) or a summary of those reports for at least 10 years

Inorganic Chemicals

Contaminant	MCLG ¹ (mg/L) ²	MCL or TT ¹ (mg/L) ²	Potential Health Effects from Long- Term Exposure Above the MCL (unless specified as short-term)	Sources of Contaminant in Drinking Water
Antimony	0.006	0.006	Increase in blood cholesterol; decrease in blood sugar	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic	0 ^Z	0.010 as of 01/23/06	Skin damage or problems with circulatory systems, and may have increased risk of getting cancer	Erosion of natural deposits; runoff from orchards, runoff from glass & electronics production wastes
Asbestos (fiber >10 micrometers)	7 million fibers per liter	7 MFL	Increased risk of developing benign intestinal polyps	Decay of asbestos cement in water mains; erosion of natural deposits
Barium	2	2	Increase in blood pressure	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium	0.004	0.004	Intestinal lesions	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries
Cadmium	0.005	0.005	Kidney damage	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium (total)	0.1	0.1	Allergic dermatitis	Discharge from steel and pulp mills; erosion of natural deposits
			Short term exposure: Gastrointestinal distress	
Copper	1.3	TT ^z ; Action Level=1.3	Long term exposure: Liver or kidney damage	Corrosion of household plumbing systems; erosion of natural deposits
			People with Wilson's Disease should consult their personal doctor if the amount of copper in their water exceeds the action level	

Inorganic Chemicals

Contaminant	MCLG ¹ (mg/L) ²	MCL or TT ¹ (mg/L) ²	Potential Health Effects from Long- Term Exposure Above the MCL (unless specified as short-term)	Sources of Contaminant in Drinking Water
Cyanide (as free cyanide)	0.2	0.2	Nerve damage or thyroid problems	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride	4.0	4.0	Bone disease (pain and tenderness of the bones); Children may get mottled teeth	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories
Lead	zero	TT ^ℤ ; Action Level=0.015	Infants and children: Delays in physical or mental development; children could show slight deficits in attention span and learning abilities	Corrosion of household plumbing systems; erosion of natural deposits
			Adults: Kidney problems; high blood pressure	
Mercury (inorganic)	0.002	0.002	Kidney damage	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands
Nitrate (measured as Nitrogen)	10	10	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaking from septic tanks, sewage; erosion of natural deposits
Nitrite (measured as Nitrogen)	1	1	Infants below the age of six months who drink water containing nitrite in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaking from septic tanks, sewage; erosion of natural deposits
Selenium	0.05	0.05	Hair or fingernail loss; numbness in fingers or toes; circulatory problems	Discharge from petroleum refineries; erosion of natural deposits; discharge from mines

Inorganic Chemicals

Contaminant	MCLG <u>1</u> (mg/L) ²	MCL or TT ¹ (mg/L) ²	Potential Health Effects from Long- Term Exposure Above the MCL (unless specified as short-term)	Sources of Contaminant in Drinking Water
Thallium	0.0005	0.002	Hair loss; changes in blood; kidney, intestine, or liver problems	Leaching from ore- processing sites; discharge from electronics, glass, and drug factories

Antimony - Inorganic Contaminant 0.006 mg/L MCL Metalloid

Antimony is a toxic chemical element with symbol **Sb** and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb_2S_3) . Antimony compounds have been known since ancient times and were used for cosmetics; metallic antimony was also known, but it was erroneously identified as lead. It was established to be an element around the 17th century.

For some time, China has been the largest producer of antimony and its compounds, with most production coming from the Xikuangshan Mine in Hunan. The industrial methods to produce antimony are roasting and subsequent carbothermal reduction or direct reduction of stibnite with iron.

What are EPA's drinking water regulations for antimony?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of

safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for antimony is 0.006 mg/L or 6 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for antimony, called a maximum contaminant level (MCL), at 0.006 mg/L or 6 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase V Rule, the regulation for antimony, became effective in 1994. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed antimony as part of the Six Year Review and determined that the 0.006 mg/L or 6 ppb MCLG and 0.006 mg/L or 6 ppb MCL for antimony are still protective of human health.

Applications

The largest applications for metallic antimony are as alloying material for lead and tin and for lead antimony plates in lead-acid batteries. Alloying lead and tin with antimony improves the properties of the alloys which are used in solders, bullets and plain bearings. Antimony compounds are prominent additives for chlorine- and bromine-containing fire retardants found in many commercial and domestic products. An emerging application is the use of antimony in microelectronics.

Antimony is in the nitrogen group (group 15) and has an electronegativity of 2.05. As expected by periodic trends, it is more electronegative than tin or bismuth, and less electronegative than

tellurium or arsenic. Antimony is stable in air at room temperature, but reacts with oxygen if heated to form antimony trioxide, Sb_2O_3 . Antimony is a silvery, lustrous gray metal that has a Mohs scale hardness of 3. Therefore, pure antimony is not used to make hard objects: coins made of antimony were issued in China's Guizhou province in 1931, but because of their rapid wear, their minting was discontinued. Antimony is resistant to attack by acids.

Four allotropes of antimony are known, a stable metallic form and three metastable forms, explosive, black and yellow. Metallic antimony is a brittle, silver-white shiny metal. When molten antimony is slowly cooled, metallic antimony crystallizes in a trigonal cell, isomorphic with that of the gray allotrope of arsenic. A rare explosive form of antimony can be formed from the electrolysis of antimony (III) trichloride. When scratched with a sharp implement, an exothermic reaction occurs and white fumes are given off as metallic antimony is formed; when rubbed with a pestle in a mortar, a strong detonation occurs.

Black antimony is formed upon rapid cooling of vapor derived from metallic antimony. It has the same crystal structure as red phosphorus and black arsenic; it oxidizes in air and may ignite spontaneously. At 100 °C, it gradually transforms into the stable form. The yellow allotrope of antimony is the most unstable. It has only been generated by oxidation of stibine (SbH₃) at -90 °C. Above this temperature and in ambient light, this metastable allotrope transforms into the more stable black allotrope.

Metallic antimony adopts a layered structure (space group R3m No. 166) in which layers consist of fused ruffled six-membered rings. The nearest and next-nearest neighbors form a distorted octahedral complex, with the three atoms in the same double-layer being slightly closer than the three atoms in the next. This relatively close packing leads to a high density of 6.697 g/cm³, but the weak bonding between the layers leads to the low hardness and brittleness of antimony.

Isotopes

Antimony exists as two stable isotopes, ¹²¹Sb with a natural abundance of 57.36% and ¹²³Sb with a natural abundance of 42.64%. It also has 35 radioisotopes, of which the longest-lived is ¹²⁵Sb with a half-life of 2.75 years. In addition, 29 metastable states have been characterized. The most stable of these is ¹²⁴Sb with a half-life of 60.20 days, which has an application in some neutron sources. Isotopes that are lighter than the stable ¹²³Sb tend to decay by β^+ decay, and those that are heavier tend to decay by β^- decay, with some exceptions.

Occurrence

The abundance of antimony in the Earth's crust is estimated at 0.2 to 0.5 parts per million, comparable to thallium at 0.5 parts per million and silver at 0.07 ppm. Even though this element is not abundant, it is found in over 100 mineral species. Antimony is sometimes found natively, but more frequently it is found in the sulfide stibnite (Sb_2S_3) which is the predominant ore mineral.

Antimony compounds are often classified into those of Sb(III) and Sb(V). Relative to its congener arsenic, the +5 oxidation state is more stable.

Oxides and hydroxides

Antimony trioxide (Sb_4O_6) is formed when antimony is burnt in air. In the gas phase, this compound exists as Sb_4O_6 , but it polymerizes upon condensing. Antimony pentoxide (Sb_4O_{10}) can only be formed by oxidation by concentrated nitric acid. Antimony also forms a mixed-valence oxide, antimony tetroxide (Sb_2O_4) , which features both Sb(III) and Sb(V). Unlike phosphorus and arsenic, these various oxides are amphoteric, do not form well-defined oxoacids and react with acids to form antimony salts.

Antimonous acid Sb(OH)₃ is unknown, but the conjugate base sodium antimonite ([Na₃SbO₃]₄) forms upon fusing sodium oxide and Sb₄O₆. Transition metal antimonites are also known. Antimonic acid exists only as the hydrate HSb(OH)₆, forming salts containing the antimonate anion Sb(OH)–6. Dehydrating metal salts containing this anion yields mixed oxides. Many antimony ores are sulfides, including stibnite (Sb₂S₃), pyrargyrite (Ag₃SbS₃), zinkenite, jamesonite, and boulangerite. Antimony pentasulfide is non-stoichiometric and features antimony in the +3 oxidation state and S-S bonds. Several thioantimonides are known, such as [Sb₆S₁₀]^{2–} and [Sb₈S₁₃]^{2–}.

Halides

Antimony forms two series of halides, SbX_3 and SbX_5 . The trihalides SbF_3 , $SbCl_3$, $SbBr_3$, and Sbl_3 are all molecular compounds having trigonal pyramidal molecular geometry. The trifluoride SbF_3 is prepared by the reaction of Sb_2O_3 with HF:

 $Sb_2O_3 + 6 \text{ HF} \rightarrow 2 \text{ SbF}_3 + 3 \text{ H}_2O$

It is Lewis acidic and readily accepts fluoride ions to form the complex anions SbF-4 and SbF2-5. Molten SbF₃ is a weak electrical conductor. The trichloride SbCl₃ is prepared by dissolving Sb₂S₃ in hydrochloric acid:

 $Sb_2S_3 + 6 \; HCI \rightarrow 2 \; SbCl_3 + 3 \; H_2S$

The pentahalides SbF_5 and $SbCl_5$ have trigonal bipyramidal molecular geometry in the gas phase, but in the liquid phase, SbF_5 is polymeric, whereas $SbCl_5$ is monomeric. SbF_5 is a powerful Lewis acid used to make the super acid fluoroantimonic acid ("HSbF₆").

Oxyhalides are more common for antimony than arsenic and phosphorus. Antimony trioxide dissolves in concentrated acid to form oxoantimonyl compounds such as SbOCI and (SbO)₂SO₄.

Antimonides, hydrides, and organoantimony compounds

Compounds in this class generally are described as derivatives of Sb³⁻. Antimony forms antimonides with metals, such as indium antimonide (InSb) and silver antimonide (Ag₃Sb). The alkali metal and zinc antimonides, such as Na₃Sb and Zn₃Sb₂, are more reactive. Treating these antimonides with acid produces the unstable gas stibine, SbH₃:

 $Sb^{3-} + 3 H^+ \rightarrow SbH_3$

Stibine can also be produced by treating Sb³⁺ salts with hydride reagents such as sodium borohydride. Stibine decomposes spontaneously at room temperature. Because stibine has a positive heat of formation, it is thermodynamically unstable and thus antimony does not react with hydrogen directly.

Organoantimony compounds are typically prepared by alkylation of antimony halides with Grignard reagents. A large variety of compounds are known with both Sb(III) and Sb(V) centers, including mixed chloro-organic derivatives, anions, and cations. Examples include Sb(C₆H₅)₃ (triphenylstibine), Sb₂(C₆H₅)₄ (with an Sb-Sb bond), and cyclic [Sb(C₆H₅)₁, Pentacoordinated organoantimony compounds are common, examples being Sb(C₆H₅)₅ and several related halides.

History

Antimony(III) sulfide, Sb_2S_3 , was recognized in predynastic Egypt as an eye cosmetic (kohl) as early as about 3100 BC, when the cosmetic palette was invented.

An artifact, said to be part of a vase, made of antimony dating to about 3000 BC was found at Telloh, Chaldea (part of present-day Iraq), and a copper object plated with antimony dating between 2500 BC and 2200 BC has been found in Egypt. Austen, at a lecture by Herbert Gladstone in 1892 commented that "we only know of antimony at the present day as a highly brittle and crystalline metal, which could hardly be fashioned into a useful vase, and therefore this remarkable 'find' (artifact mentioned above) must represent the lost art of rendering antimony malleable."

Moorey was unconvinced the artifact was indeed a vase, mentioning that Selimkhanov, after his analysis of the Tello object (published in 1975), "attempted to relate the metal to Transcaucasian natural antimony" (i.e. native metal) and that "the antimony objects from Transcaucasia are all small personal ornaments." This weakens the evidence for a lost art "of rendering antimony malleable."

The first European description of a procedure for isolating antimony is in the book *De la pirotechnia* of 1540 by Vannoccio Biringuccio; this predates the more famous 1556 book by Agricola, *De re metallica*. In this context Agricola has been often incorrectly credited with the discovery of metallic antimony. The book *Currus Triumphalis Antimonii* (The Triumphal Chariot of Antimony), describing the preparation of metallic antimony, was published in Germany in 1604. It was purported to have been written by a Benedictine monk, writing under the name Basilius Valentinus, in the 15th century; if it were authentic, which it is not, it would predate Biringuccio.

The first natural occurrence of pure antimony in the Earth's crust was described by the Swedish scientist and local mine district engineer Anton von Swab in 1783; the type-sample was collected from the Sala Silver Mine in the Bergslagen mining district of Sala, Västmanland, Sweden.

This course contains EPA's federal rule requirements. Please be aware that each state implements drinking water regulations that may be more stringent than EPA's regulations. Check with your state environmental agency for more information.

Arsenic- Inorganic Contaminant 0.010 mg/L MCL Metalloid

Arsenic is a chemical element with symbol **As** and the atomic number is 33. Arsenic occurs in many minerals, usually in conjunction with sulfur and metals, and also as a pure elemental crystal. It was first documented by Albertus Magnus in 1250. Arsenic is a metalloid. It can exist in various

allotropes, although only the gray form has important use in industry.

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for arsenic is zero. EPA has set this level of protection based on the best available science to prevent potential health problems. Based on the MCLG, EPA has set an enforceable regulation for arsenic, called a maximum contaminant level (MCL), at 0.010 mg/L or 10 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies.

The Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring Final Rule, the regulation for arsenic, became effective in 2002. The Safe Drinking Water Act requires EPA to periodically review and revise contaminants, if appropriate, based on new scientific data. The regulation for arsenic will be included in a future review cycle.

The main uses of metallic arsenic is for strengthening alloys of copper and especially lead (for example, in car batteries). Arsenic is a common n-type dopant in semiconductor electronic devices, and the optoelectronic compound gallium arsenide is the most common semiconductor in use after doped silicon. Arsenic and its compounds, especially the trioxide, are used in the production of pesticides (treated wood products), herbicides, and insecticides. These applications are declining, however.

Arsenic is notoriously poisonous to multicellular life, although a few species of bacteria are able to use arsenic compounds as respiratory metabolites. Arsenic contamination of groundwater is a problem that affects millions of people across the world.

Arsenic, a naturally occurring element, is found throughout the environment; for most people, food is the major source of exposure. Acute (short-term) high-level inhalation exposure to arsenic dust or fumes has resulted in gastrointestinal effects (nausea, diarrhea, abdominal pain); central and peripheral nervous system disorders have occurred in workers acutely exposed to inorganic arsenic. Chronic (long-term) inhalation exposure to inorganic arsenic in humans is associated with irritation of the skin and mucous membranes. Chronic oral exposure has resulted in gastrointestinal effects, anemia, peripheral neuropathy, skin lesions, hyperpigmentation, and liver or kidney damage in humans. Inorganic arsenic exposure in humans, by the inhalation route, has been shown to be strongly associated with lung cancer, while ingestion of inorganic arsenic in humans has been linked to a form of skin cancer and also to bladder, liver, and lung cancer. EPA has classified inorganic arsenic as a Group A, human carcinogen.

Contamination of Groundwater

Arsenic contamination of groundwater is often due to naturally occurring high concentrations of arsenic in deeper levels of groundwater. It is a high-profile problem due to the use of deep tubewells for water supply in the Ganges Delta, causing serious arsenic poisoning to large numbers of people. In addition, mining techniques such as hydraulic fracturing mobilize arsenic in groundwater and aquifers due to enhanced methane 28 transport and resulting changes in redox conditions, and inject fluid containing additional arsenic.

A 2007 study found that over 137 million people in more than 70 countries are probably affected by arsenic poisoning of drinking water. Arsenic contamination of ground water is found in many countries throughout the world, including the USA.

Approximately 20 incidents of groundwater arsenic contamination have been reported from all over the world. Of these, four major incidents were in Asia, including locations in Thailand, Taiwan, and Mainland China. In South America, Argentina and Chile are affected. There are also many locations in the United States where the groundwater contains arsenic concentrations in excess of the Environmental Protection Agency standard of 10 parts per billion adopted in 2001. Millions of private wells have unknown arsenic levels, and in some areas of the US, over 20% of wells may contain levels that are not safe.

Arsine

Arsine is a gas consisting of arsenic and hydrogen. It is extremely toxic to humans, with headaches, vomiting, and abdominal pains occurring within a few hours of exposure. EPA has not classified arsine for carcinogenicity.

Drinking water regulations require public water systems to monitor for arsenic at the entry point to the distribution system. There is no federal requirement for systems to monitor for arsenic within the distribution system. You may, however, want to test your distribution system water for arsenic to be sure that the water being delivered has arsenic levels below the MCL. If you decide to monitor your distribution system, consider testing for arsenic at locations where the settling and accumulation of iron solids or pipe scales are likely (i.e., areas with cast iron pipe, ductile iron pipe, or galvanized iron pipe).

If your water system has installed some form of arsenic treatment, keep in mind that the treatment you installed may change the water quality in other ways. It might cause the water to react differently in the distribution system. Depending on the kind of treatment you've installed, consider what distribution system problems might result.

A change in the taste, odor or appearance of the water at customers' taps may be the first indication of a problem. Some water quality parameters to consider monitoring, depending on your arsenic treatment technology, include iron, pH, manganese, alkalinity, and aluminum.

The current drinking water standard or Maximum Contaminant Level (MCL) set by the U.S. Environmental Protection Agency (EPA) is 0.010 mg/L or parts per million (ppm). This is equivalent to 10 ug/L (micrograms per liter) or 10 ppb. In 2001, the U.S. Environmental Protection Agency (EPA) reduced the regulatory MCL from 50 ppb to 10 ppb on the basis on bladder and lung cancer risks. The MCL is based on the average individual consuming 2 liters of water a day for a lifetime. Long term exposure to drinking water containing arsenic at levels higher than 10 ppb increases the chances of getting cancer, while for lower arsenic water levels the chances are less.

If your water has arsenic levels above 10 ppb, you should obtain drinking water from another source or install a home treatment device. Concentrations above 10 ppb will increase the risk of long-term or chronic health problems, the higher the level and length of exposure, the greater the risk. It is especially important to reduce arsenic water concentrations if you have children or are pregnant. Children are at greater risk (to any agent in water) because of their greater water consumption on a per unit body weight basis.

Pregnant women may wish to reduce their arsenic exposures because arsenic has been found at low levels in mother's milk and will cross the placenta, increasing exposures and risks for the fetus. If your water has arsenic levels above 200 ppb, you should immediately stop drinking the water until you can either obtain water from another source or install and maintain treatment.

Physical Characteristics

The three most common arsenic allotropes are *metallic gray*, *yellow* and *black arsenic*, with gray being the most common. *Gray arsenic* (α -As, space group R3m No. 166) adopts a double-layered structure consisting of many interlocked ruffled six-membered rings. Because of weak bonding between the layers, gray arsenic is brittle and has a relatively low Mohs hardness of 3.5. Nearest and next-nearest neighbors form a distorted octahedral complex, with the three atoms in the same double-layer being slightly closer than the three atoms in the next. This relatively close packing leads to a high density of 5.73 g/cm³. Gray arsenic is a semimetal, but becomes a semiconductor with a bandgap of 1.2–1.4 eV if amorphized. *Yellow arsenic* is soft and waxy, and somewhat similar to tetraphosphorus (P₄). Both have four atoms arranged in a tetrahedral structure in which each atom is bound to each of the other three atoms by a single bond. This unstable allotrope, being molecular, is the most volatile, least dense and most toxic. Solid yellow arsenic is produced by rapid cooling of arsenic vapor, As₄. It is rapidly transformed into the gray arsenic by light. The yellow form has a density of 1.97 g/cm³. *Black arsenic* is similar in structure to red phosphorus.

Isotopes

Naturally occurring arsenic is composed of one stable isotope, ⁷⁵As. As of 2003, at least 33 radioisotopes have also been synthesized, ranging in atomic mass from 60 to 92. The most stable of these is ⁷³As with a half-life of 80.3 days. Isotopes that are lighter than the stable ⁷⁵As tend to decay by β^+ decay, and those that are heavier tend to decay by β^- decay, with some exceptions.

At least 10 nuclear isomers have been described, ranging in atomic mass from 66 to 84. The most stable of arsenic's isomers is ^{68m}As with a half-life of 111 seconds.

Chemistry

When heated in air, arsenic oxidizes to arsenic trioxide; the fumes from this reaction have an odor resembling garlic. This odor can be detected on striking arsenide minerals such as arsenopyrite with a hammer. Arsenic (and some arsenic compounds) sublimes upon heating at atmospheric pressure, converting directly to a gaseous form without an intervening liquid state at 887 K (614 °C). The triple point is 3.63 MPa and 1,090 K (820 °C). Arsenic makes arsenic acid with concentrated nitric acid, arsenious acid with dilute nitric acid, and arsenic trioxide with concentrated sulfuric acid.

Compounds

Arsenic compounds resemble in some respects those of phosphorus, which occupies the same group (column) of the periodic table. Arsenic is less commonly observed in the pentavalent state, however. The most common oxidation states for arsenic are: -3 in the arsenides, such as alloy-like intermetallic compounds; and +3 in the arsenites, arsenates (III), and most organoarsenic compounds. Arsenic also bonds readily to itself as seen in the square As3-4 ions in the mineral skutterudite. In the +3 oxidation state, arsenic is typically pyramidal, owing to the influence of the lone pair of electrons.

Inorganic

Arsenic forms colorless, odorless, crystalline oxides As_2O_3 ("white arsenic") and As_2O_5 , which are hygroscopic and readily soluble in water to form acidic solutions. Arsenic (V) acid is a weak acid. Its salts are called arsenates, which is the basis of arsenic contamination of groundwater, a problem that affects many people. Synthetic arsenates include Paris Green (copper(II) acetoarsenite), calcium arsenate, and lead hydrogen arsenate. The latter three have been used as agricultural insecticides and poisons.

The protonation steps between the arsenate and arsenic acid are similar to those between phosphate and phosphoric acid. Unlike phosphorus acid, arsenous acid is genuinely tribasic, with the formula As(OH)₃.

A broad variety of sulfur compounds of arsenic are known. Orpiment (As_2S_3) and realgar (As_4S_4) are somewhat abundant and were formerly used as painting pigments. In As_4S_{10} , arsenic has a formal oxidation state of +2 in As_4S_4 , which features As-As bonds so that the total covalency of As is still three.

The trifluoride, trichloride, tribromide, and triiodide of arsenic (III) are well known, whereas only Arsenic pentafluoride (AsF₅) is the only important pentahalide. Again reflecting the lower stability of the 5+ oxidation state, the pentachloride is stable only below -50 °C.

Organoarsenic Compounds

A large variety of organoarsenic compounds are known. Several were developed as chemical warfare agents during World War I, including vesicants such as lewisite and vomiting agents such as adamsite. Cacodylic acid, which is of historic and practical interest, arises from the methylation of arsenic trioxide, a reaction that has no analogy in phosphorus chemistry.

Alloys

Arsenic is used as the group 5 element in the III-V semiconductors gallium arsenide, indium arsenide, and aluminum arsenide. The valence electron count of GaAs is the same as a pair of Si atoms, but the band structure is completely different, which results distinct bulk properties. Other arsenic alloys include the II-IV semiconductor cadmium arsenide.

Occurrence and Production

Minerals with the formula MAsS and MAs₂ (M = Fe, Ni, Co) are the dominant commercial sources of arsenic, together with realgar (an arsenic sulfide mineral) and native arsenic. An illustrative mineral is arsenopyrite (FeAsS), which is structurally related to iron pyrite. Many minor Ascontaining minerals are known. Arsenic also occurs in various organic forms in the environment. Inorganic arsenic and its compounds, upon entering the food chain, are progressively metabolized to a less toxic form of arsenic through a process of methylation.

Other naturally occurring pathways of exposure include volcanic ash, weathering of arseniccontaining minerals and ores, and dissolved in groundwater. It is also found in food, water, soil, and air. Arsenic is absorbed by all plants, but is more concentrated in leafy vegetables, rice, apple and grape juice, and seafood. An additional route of exposure is through inhalation.

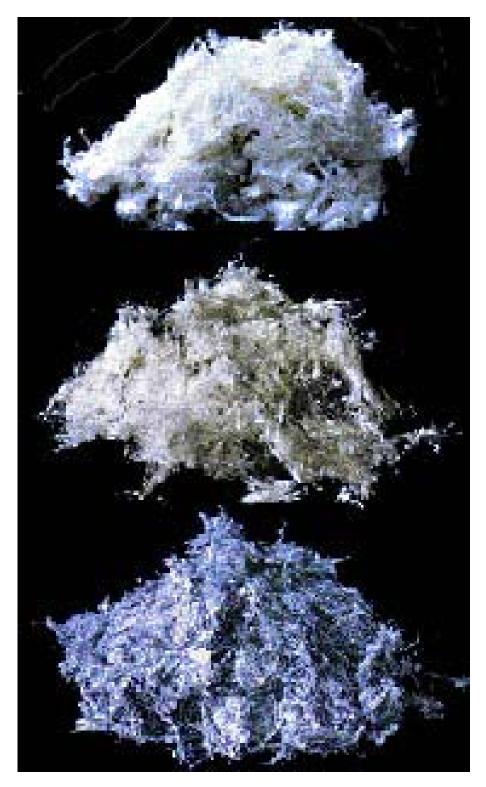
In 2005, China was the top producer of white arsenic with almost 50% world share, followed by Chile, Peru, and Morocco, according to the British Geological Survey and the United States Geological Survey. Most operations in the US and Europe have closed for environmental reasons. The arsenic is recovered mainly as a side product from the purification of copper. Arsenic is part of the smelter dust from copper, gold, and lead smelters.

On roasting in air of arsenopyrite, arsenic sublimes as arsenic (III) oxide leaving iron oxides, while roasting without air results in the production of metallic arsenic. Further purification from sulfur and other chalcogens is achieved by sublimation in vacuum or in a hydrogen atmosphere or by distillation from molten lead-arsenic mixture.

Health Hazard Information Arsenic

Arsenic is known to cause cancer, as well as many other serious health problems. Here we review the hazards of arsenic exposure and ways people can protect themselves from these hazards.

Arsenic is an element in the environment that can be found naturally in rocks and soil, water, air, and in plants and animals. It can also be released into the environment from some agricultural and industrial sources.


Arsenic has no taste or smell. Although sometimes found in its pure form as a steel grey metal, arsenic is usually part of chemical compounds. These compounds are divided into 2 groups: Inorganic compounds (combined with oxygen, iron, chlorine, and sulfur)

Organic compounds (combined with carbon and other atoms)

Inorganic arsenic compounds are found in industry, in building products (in some "pressuretreated" woods), and in arsenic-contaminated water. This is the form of arsenic that tends to be more toxic and has been linked to cancer.

Organic arsenic compounds are much less toxic than the inorganic arsenic compounds and are not thought to be linked to cancer. These compounds are found in some foods, such as fish and shellfish.

While arsenic levels may fluctuate over time, what is most significant from the standpoint of cancer risk is long-term exposure.

Asbestos minerals which have been used commercially from the top: chrysotile, amosite and crocidolite.

Asbestos - Inorganic Contaminant 7 MFL

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for asbestos is 7 MFL. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for asbestos, called a maximum contaminant level (MCL), at 7 MFL.

MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule, the regulation for asbestos, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed asbestos as part of the Six Year Review and determined that the 7 MFL MCLG and 7 MFL MCL for asbestos are still protective of human health.

How does Asbestos get into my Drinking Water?

The major sources of asbestos in drinking water are decay of asbestos cement water mains; and erosion of natural deposits.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Asbestos is in my Drinking Water?

When routine monitoring indicates that asbestos levels are above the MCL, your water supplier must take steps to reduce the amount of asbestos so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

How will Asbestos be removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing asbestos to below 7 MFL: coagulation/filtration, direct and diatomite filtration, and corrosion control.

Asbestos Cement Pipe (ACP)

Common water distribution pipe, notice that both pipes have been cut with a power saw. You are not allowed to cut this type of pipe with a power saw, because it will spread the Asbestos. Wetting agents may be applied with garden sprayers or hoses. Garden sprayers are hand-held, portable, and have a one- to five-gallon capacity. Water hoses are usually attached to a faucet tap, fire hydrant or water tank. Generally, the hose has a nozzle attached which spreads the water stream so that a fine mist is created.

Asbestos-Cement Products

Asbestos-cement products (such as transite) are commonly used for duct insulation, pipes, and siding. Being a Category II nonfriable ACM, asbestos-cement products need to be removed prior to demolition if they have a high probability of becoming crumbled, pulverized, or reduced to powder during demolition activities. EPA believes that most demolition activities will subject such Category II nonfriable ACM to the regulation.

Asbestos is an Excellent ...

Heat Stability

Asbestos will maintain its structural integrity at temperatures well above 800 F. The melting point is at about 2800 F

Thermal Insulation

The fibers have a relatively large surface area, along with numerous pores, and cracks. This allows for a low heat transfer. This makes it useful as an insulator in homes and machinery. The large surface area also absorbs water making it practical as pipe insulator to prevent sweating.

Chemical Resistance

The amphiboles are resistant to aqueous media and chemical attack. They also show high resistance to acids. This makes this class of asbestos useful for battery packing. Chrysotile is significantly less resistant to chemical destruction.

Serpent

Asbestos

OSHA requires that employees who may be exposed to dangerous levels of asbestos must be made aware of the hazards and how to protect themselves. Employees must be told where in their workplace they can find copies of all applicable asbestos standards. Employers must provide any employee with the opportunity to review the regulations if they so desire. It is an employee's right to have access to the regulations.

What Is Asbestos?

Asbestos is the name given to a number of naturally occurring fibrous silicate minerals that have been mined for their useful properties such as thermal insulation, chemical and thermal stability, and high tensile strength. The three most common types of asbestos are: a) chrysotile, b) amosite and c) crocidolite. Chrysotile, also known as white asbestos and a member of the Serpentine mineral group is the commonest. Asbestos can only be identified under a microscope.

Asbestos differs from other minerals in its crystal development. The crystal formation of asbestos is in the form of long thin fibers. Asbestos is divided into two mineral groups **Serpentine** and **Amphibole**. The division between the two types of asbestos is based upon the crystalline structure.

Serpentines have a sheet or layered structure where amphiboles have a chain-like structure. As the only member of the serpentine group, Chrysotile (A, B) is the most common type of asbestos found in buildings. Chrysotile makes up approximately 90%-95% of all asbestos contained in buildings in the United States.

Unlike most minerals, which turn into dust particles when crushed, asbestos breaks up into fine fibers that are too small to be seen by the human eye. Often, individual fibers are mixed with a material that binds them together, producing asbestos-containing material (**ACM**).

Health Effects of Asbestos Exposure

Asbestos is the largest single cause of fatal disease and ill-health caused by work in Great Britain. Although almost all the deaths and ill health related to asbestos today are due to exposures that happened several decades ago, if you work with asbestos, or come into contact with it as a result of repair and maintenance work, you need to be particularly careful. Asbestos can be found in most buildings built between 1950 and 1980, as insulation and lagging. It is still used in some brake pads and clutch linings and can be met in vehicle servicing and repair.

Asbestos-Related Health Problems

Some people exposed to asbestos develop asbestos-related health problems; some do not. Once inhaled, asbestos fibers can easily penetrate body tissues. They may be deposited and retained in the airways and lung tissue. Because asbestos fibers remain in the body, each exposure increases the likelihood of developing an asbestos-related disease. Asbestos-related diseases may not appear until years after exposure. A medical examination that includes a medical history, breathing capacity test, and chest X ray may detect problems early.

Many substances have a **"safe dose"** or an exposure that is unlikely to cause any harm. Above the safe dose, a health effect is expected. This concept is known as a dose response. As the dose increases, so does the expected severity of the health effect.

However, in the case of asbestos, scientists have not determined a "**safe dose**" or threshold level for exposure to airborne asbestos. Still, the less exposure a person receives over a lifetime, the less likely it is that that person will develop an asbestos-related health problem.

In addition to breathing it, ingesting asbestos may also be harmful to you, but the consequences of this type of exposure have not been clearly documented. People who touch asbestos may get a rash similar to the rash caused by fiberglass. While the effects of skin exposure to asbestos have not been scientifically documented, it is best to minimize all contact with asbestos.

Asbestos was used in approximately 3,000 products. Two-thirds of this total (2,000) was used in construction products. Appendix A includes a short list of products where asbestos may be found.

Barium - Inorganic Contaminant 2 mg/L MCL

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for barium is 2 mg/L or 2 ppm. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for barium, called a maximum contaminant level (MCL), at 2 mg/L or 2 ppm. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase IIB Rule, the regulation for barium, became effective in 1993. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed barium as part of the Six Year Review and determined that the 2 mg/L or 2 ppm MCLG and 2 mg/L or 2 ppm MCL for barium are still protective of human health.

The major sources of barium in drinking water are discharge of drilling wastes; discharge from metal refineries; and erosion of natural deposits. A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

When routine monitoring indicates that barium levels are above the MCL, your water supplier must take steps to reduce the amount of barium so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

How will barium be removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing barium to below 2 mg/L or 2 ppm: ion exchange, reverse osmosis, lime softening, and electrodialysis.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Barium Explained

Barium is a chemical element with symbol **Ba** and atomic number 56. It is the fifth element in Group 2, a soft silvery metallic alkaline earth metal. Because of its high chemical reactivity barium is never found in nature as a free element. Its hydroxide was known in pre-modern history as baryta; this substance does not occur as a mineral, but can be prepared by heating barium carbonate.

The most common naturally occurring minerals of barium are barite (barium sulfate, BaSO₄) and witherite (barium carbonate, BaCO₃), both being insoluble in water. Barium's name originates from the alchemical derivative "baryta", which itself comes from Greek $\beta\alpha\rho\dot{\nu}\varsigma$ (*barys*), meaning "heavy." Barium was identified as a new element in 1774, but not reduced to a metal until 1808, shortly after electrolytic isolation techniques became available.

Barium has only a few industrial applications. The metal has been historically used to scavenge air in vacuum tubes. It is a component of YBCO (high-temperature superconductors) and electroceramics, and is added to steel and cast iron to reduce the size of carbon grains within the microstructure of the metal. Barium compounds are added to fireworks to impart a green color. For instance, barium sulfate is used as an insoluble heavy additive to oil well drilling fluid, and in purer form, as X-ray radiocontrast agents for imaging the human gastrointestinal tract. Soluble barium compounds are poisonous due to release of the soluble barium ion, and therefore have been used as rodenticides.

Physical Properties

Barium is a soft, silvery-white metal, with a slight golden shade when ultrapure. The silvery-white color of barium metal rapidly vanishes upon oxidation in air yielding a dark gray oxide layer. Barium has a medium specific weight and good electrical conductivity. Ultrapure barium is very hard to prepare, and therefore many properties of barium have not been accurately measured yet.

At room temperature and pressure, barium has a body-centered cubic structure, with a barium– barium distance of 503 picometers, expanding with heating at a rate of approximately $1.8 \times 10^{-5/\circ}$ C. It is a very soft metal with a Mohs hardness of 1.25. Its melting temperature of 1000 K (727 °C, 1341 °F) is intermediate between those of the lighter strontium (1050 K) and heavier radium (973 K); however, its boiling point of 2170 K (1897 °C, 3447 °F) exceeds that of strontium (1655 K). The density (3.62 g·cm⁻³) is again intermediate between those of strontium (2.36 g·cm⁻³) and radium (~5 g·cm⁻³).

Chemical Reactivity

Barium is chemically similar to magnesium, calcium, and strontium, being even more reactive. It always exhibits the oxidation state of +2. Reactions with chalcogens are highly exothermic (release energy); the reaction with oxygen or air occurs at room temperature, and therefore barium is stored under oil or inert gas atmosphere. Reactions with other nonmetals, such as carbon, nitrogen, phosphorus, silicon, and hydrogen, are generally exothermic and proceed upon heating. Reactions with water and alcohols are also very exothermic and release hydrogen gas:

Ba + 2 ROH \rightarrow Ba(OR)₂ + H₂↑ (R is an alkyl or a hydrogen atom)

Additionally, barium reacts with ammonia to form complexes such as $Ba(NH_3)_6$.

The metal is readily attacked by most acids. Sulfuric acid is a notable exception, as passivation stops the reaction by forming the insoluble barium sulfate. Barium combines with several metals, including aluminum, zinc, lead, and tin, forming intermetallic phases and alloys.

Distribution 404 1St Edition

Compounds

Selected alkaline earth and zinc salts densities, $g\!\cdot\!cm^{-3}$

Barium salts are typically white when solid and colorless when dissolved, as barium ions provide no specific coloring. They are also denser than their strontium or calcium analogs, except for the halides.

Barium hydroxide ("baryta") was known to alchemists who produced it by heating barium carbonate. Unlike calcium hydroxide, it absorbs very little CO₂ in aqueous solutions and is therefore insensitive to atmospheric fluctuations. This property is used in calibrating pH equipment.

Volatile barium compounds burn with a green to pale green flame, which is an efficient test to detect a barium compound. The color results from spectral lines at 455.4, 493.4, 553.6, and 611.1 nm.

Organobarium compounds are a growing class of compounds: for example, dialkylbariums are known, as are alkylhalobariums.

Isotopes of Barium

Barium occurs naturally on Earth as a mixture of seven primordial nuclides, barium-130, 132, and 134 through 138. The first two are thought to be radioactive: barium-130 should decay to xenon-130 via double beta plus decay, and barium-132 should similarly decay to xenon-132. The corresponding half-lives should exceed the age of the Universe by at least thousand times. Their abundances are ~0.1% relative to that of natural barium. Their radioactivity is so weak that they pose no danger to life.

Out of the stable isotopes, barium-138 makes up 71.7% of all barium, and the lighter the isotope, the less it is abundant. In total, barium has about 50 known isotopes, ranging in mass between 114 and 153. The most stable metastable isotope is barium-133, which has a half-life of approximately 10.51 years, and five more isotopes have their half-lives longer than a day. Barium also has 10 meta states, out of which barium-133m1 is the most stable, having a half-live of about 39 hours.

Biological Dangers and Precautions

Because of the high reactivity of the metal toxicological data are available only for compounds. Water-soluble barium compounds are poisonous. At low doses, barium ions act as a muscle stimulant, whereas higher doses affect the nervous system, causing cardiac irregularities, tremors, weakness, anxiety, dyspnea and paralysis. This may be due to the ability of Ba²⁺ to block potassium ion channels, which are critical to the proper function of the nervous system. Other target organs for water-soluble barium compounds (i.e., barium ions) are eyes, immune system, heart, respiratory system, and skin. They affect the body strongly, causing, for example, blindness and sensitization.

Barium is not carcinogenic, and it does not bioaccumulate. However, inhaled dust containing insoluble barium compounds can accumulate in the lungs, causing a benign condition called baritosis. For comparison to the soluble poisons, the insoluble sulfate is nontoxic and is thus not classified as a dangerous good.

To avoid a potentially vigorous chemical reaction, barium metal is kept under argon or mineral oils. Contact with air is dangerous, as it may cause ignition. Moisture, friction, heat, sparks, flames, shocks, static electricity, reactions with oxidizers and acids should be avoided. Everything that may make contact with barium should be grounded.

Those who work with the metal should wear pre-cleaned non-sparking shoes, flame-resistant rubber clothes, rubber gloves, apron, goggles, and a gas mask; they are not allowed to smoke in the working area and must wash themselves after handling barium.

Beryllium - Inorganic Contaminant 0.004 mg/L MCL

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for beryllium is 0.004 mg/L or 4 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for beryllium, called a maximum contaminant level (MCL), at 0.004 mg/L or 4 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or

treatment technology do not pose any limitation.

The Phase V Rule, the regulation for beryllium, became effective in 1994. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed beryllium as part of the Six Year Review and determined that the 0.004 mg/L or 4 ppb MCLG and 0.004 mg/L or 4 ppb MCL for beryllium are still protective of human health.

How does Beryllium get into my Drinking Water?

Beryllium naturally enters surface water and ground water through the weathering of rocks and soils or from industrial wastewater discharges. The major source of environmental releases from human activities are coal and fuel oil combustion.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Beryllium is in my Drinking Water?

When routine monitoring indicates that beryllium levels are above the MCL, your water supplier must take steps to reduce the amount of beryllium so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

Beryllium Explained

Beryllium is the chemical element with the symbol **Be** and atomic number 4. Because any beryllium synthesized in stars is short-lived, it is a relatively rare element in both the universe and in the crust of the Earth. It is a divalent element which occurs naturally only in combination with other elements in minerals. Notable gemstones which contain beryllium include beryl (aquamarine, emerald) and chrysoberyl. As a free element it is a steel-gray, strong, lightweight and brittle alkaline earth metal.

Beryllium increases hardness and resistance to corrosion when alloyed to aluminum, cobalt, copper (notably beryllium copper), iron and nickel. In structural applications, high flexural rigidity, thermal stability, thermal conductivity and low density (1.85 times that of water) make beryllium a quality aerospace material for high-speed aircraft, missiles, space vehicles and communication satellites. Because of its low density and atomic mass, beryllium is relatively transparent to X-rays and other forms of ionizing radiation; therefore, it is the most common window material for X-ray equipment and in particle physics experiments. The high thermal conductivities of beryllium and beryllium oxide have led to their use in heat transport and heat sinking applications.

The commercial use of beryllium metal presents technical challenges due to the toxicity (especially by inhalation) of beryllium-containing dusts. Beryllium is corrosive to tissue, and can cause a chronic life-threatening allergic disease called berylliosis in some people. The element is not known to be necessary or useful for either plant or animal life

Characteristics

Physical Properties

Beryllium is a steel gray and hard metal that is brittle at room temperature and has a close-packed hexagonal crystal structure. It has exceptional flexural rigidity (Young's modulus 287 GPa) and a reasonably high melting point. The modulus of elasticity of beryllium is approximately 50% greater than that of steel. The combination of this modulus and a relatively low density results in an unusually fast sound conduction speed in beryllium – about 12.9 km/s at ambient conditions. Other significant properties are high specific heat (1925 $J \cdot kg^{-1} \cdot K^{-1}$) and thermal conductivity (216 $W \cdot m^{-1} \cdot K^{-1}$), which make beryllium the metal with the best heat dissipation characteristics per unit weight. In combination with the relatively low coefficient of linear thermal expansion (11.4×10⁻⁶ K⁻¹), these characteristics result in a unique stability under conditions of thermal loading.

Nuclear Properties

Natural beryllium, save for slight contamination by cosmogenic radioisotopes, is essentially beryllium-9, which has a nuclear spin of 3/2-. Beryllium has a large scattering cross section for high-energy neutrons, about 6 barns for energies above ~0.01 MeV. Therefore, it works as a neutron reflector and neutron moderator, effectively slowing the neutrons to the thermal energy range of below 0.03 eV, where the total cross section is at least an order of magnitude lower – exact value strongly depends on the purity and size of the crystallites in the material.

The single primordial beryllium isotope ⁹Be also undergoes a (n,2n) neutron reaction with neutron energies over about 1.9 MeV, to produce ⁸Be, which almost immediately breaks into two alpha particles. Thus, for high-energy neutrons beryllium is a neutron multiplier, releasing more neutrons than it absorbs.

This nuclear reaction is:

9 4Be + n \rightarrow 2(4 2He) + 2n Neutrons are liberated when beryllium nuclei are struck by energetic alpha particles producing the nuclear reaction

9 4Be + 4 2He \rightarrow 12 6C + n , where 4 2He is an alpha particle and 12 6C is a carbon-12 nucleus.

Beryllium also releases neutrons under bombardment by gamma rays. Thus, natural beryllium bombarded either by alphas or gammas from a suitable radioisotope is a key component of most radioisotope-powered nuclear reaction neutron sources for the laboratory production of free neutrons.

As a metal, beryllium is transparent to most wavelengths of X-rays and gamma rays, making it useful for the output windows of X-ray tubes and other such apparatus.

Isotopes and Nucleosynthesis

Both stable and unstable isotopes of beryllium are created in stars, but these do not last long. It is believed that most of the stable beryllium in the universe was originally created in the interstellar medium when cosmic rays induced fission in heavier elements found in interstellar gas and dust. Primordial beryllium contains only one stable isotope, ⁹Be, and therefore beryllium is a monoisotopic element.

Plot showing variations in solar activity, including variation in ¹⁰Be concentration. Note that the beryllium scale is inverted, so increases on this scale indicate lower ¹⁰Be levels

Radioactive cosmogenic ¹⁰Be is produced in the atmosphere of the Earth by the cosmic ray spallation of oxygen. ¹⁰Be accumulates at the soil surface, where its relatively long half-life (1.36 million years) permits a long residence time before decaying to boron-10. Thus, ¹⁰Be and its daughter products are used to examine natural soil erosion, soil formation and the development of lateritic soils, and as a proxy for measurement of the variations in solar activity and the age of ice cores. The production of ¹⁰Be is inversely proportional to solar activity, because increased solar wind during periods of high solar activity decreases the flux of galactic cosmic rays that reach the Earth. Nuclear explosions also form ¹⁰Be by the reaction of fast neutrons with ¹³C in the carbon dioxide in air. This is one of the indicators of past activity at nuclear weapon test sites. The isotope ⁷Be (half-life 53 days) is also cosmogenic, and shows an atmospheric abundance linked to sunspots, much like ¹⁰Be.

⁸Be has a very short half-life of about 7×10^{-17} s that contributes to its significant cosmological role, as elements heavier than beryllium could not have been produced by nuclear fusion in the Big Bang. This is due to the lack of sufficient time during the Big Bang's nucleosynthesis phase to produce carbon by the fusion of ⁴He nuclei and the very low concentrations of available beryllium-8.

The British astronomer Sir Fred Hoyle first showed that the energy levels of ⁸Be and ¹²C allow carbon production by the so-called triple-alpha process in helium-fueled stars where more nucleosynthesis time is available. This process allows carbon to be produced in stars, but not in the Big Bang. Star-created carbon (the basis of carbon-based life) is thus a component in the elements in the gas and dust ejected by AGB stars and supernovae (see also Big Bang nucleosynthesis), as well as the creation of all other elements with atomic numbers larger than that of carbon.

The innermost electrons of beryllium may contribute to chemical bonding. Therefore, when ⁷Be decays by electron capture, it does so by taking electrons from atomic orbitals that may participate in bonding. This makes its decay rate dependent to a measurable degree upon its electron configuration – a rare occurrence in nuclear decay.

The shortest-lived known isotope of beryllium is ¹³Be which decays through neutron emission. It has a half-life of 2.7×10^{-21} s. ⁶Be is also very short-lived with a half-life of 5.0×10^{-21} s. The exotic isotopes ¹¹Be and ¹⁴Be are known to exhibit a nuclear halo. This phenomenon can be understood as the nuclei of ¹¹Be and ¹⁴Be have, respectively, 1 and 4 neutrons orbiting substantially outside the classical Fermi 'water drop' model of the nucleus.

Occurrence

Beryllium has a concentration of 2 to 6 parts per million (ppm) in the Earth's crust. The Sun has a concentration of 0.1 parts per billion (ppb) of beryllium, similar to that of rhenium. It is most concentrated in the soils, 6 ppm, and is found in 0.2 parts per trillion (ppt) of sea water. Trace amounts of ⁹Be are found in the Earth's atmosphere. In sea water, beryllium is exceedingly rare, more so than even scandium, comprising only 0.0006 ppb by weight. In stream water, however, beryllium is more abundant with 0.1 ppb by weight.

Beryllium is found in over 100 minerals, but most are uncommon to rare. The more common beryllium containing minerals include: bertrandite $(Be_4Si_2O_7(OH)_2)$, beryl $(Al_2Be_3Si_6O_{18})$, chrysoberyl (Al_2BeO_4) and phenakite (Be_2SiO_4) . Precious forms of beryl are aquamarine, bixbite and emerald. The green color in gem-quality forms of beryl comes from varying amounts of chromium (about 2% for emerald).

The two main ores of beryllium, beryl and bertrandite, are found in Argentina, Brazil, India, Madagascar, Russia and the United States. Total world reserves of beryllium ore are greater than 400,000 tons.

Production

The extraction of beryllium from its compounds is a difficult process due to its high affinity for oxygen at elevated temperatures, and its ability to reduce water when its oxide film is removed. The United States, China and Kazakhstan are the only three countries involved in the industrial scale extraction of beryllium.

Beryllium is most-commonly extracted from beryl, which is either sintered using an extraction agent or melted into a soluble mixture. The sintering process involves mixing beryl with sodium fluorosilicate and soda at 770°C to form sodium fluoroberyllate, aluminum oxide and silicon dioxide. Beryllium hydroxide is precipitated from a solution of sodium fluoroberyllate and sodium hydroxide in water. Extraction of beryllium using the melt method involves grinding beryl into a powder and heating it to 1650°C. The melt is quickly cooled with water and then reheated 250 to 300°C in concentrated sulfuric acid, mostly yielding beryllium sulfate and aluminum sulfate.

Aqueous ammonia is then used to remove the aluminum and sulfur, leaving beryllium hydroxide.

Distribution 404 1St Edition

Cadmium - Inorganic Contaminant 0.005 mg/L MCL

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for cadmium is 0.005 mg/L or 5 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for cadmium, called a maximum contaminant level (MCL), at 0.005 mg/L or 5 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule, the regulation for cadmium, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed cadmium as part of the Six Year Review and determined that the 0.005 mg/L or 5 ppb MCLG and 0.005 mg/L or 5 ppb MCL for cadmium are still protective of human health.

How does cadmium get into my drinking water?

The major sources of cadmium in drinking water are corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints. A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if cadmium is in my drinking water?

When routine monitoring indicates that cadmium levels are above the MCL, your water supplier must take steps to reduce the amount of cadmium so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will cadmium be removed from my drinking water?

The following treatment method(s) have proven to be effective for removing cadmium to below 0.005 mg/L or 5 ppb: coagulation/filtration, ion exchange, lime softening, and reverse osmosis.

Cadmium Explained

Cadmium is a chemical element with the symbol **Cd** and atomic number 48. This soft, bluish-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it prefers oxidation state +2 in most of its compounds and like mercury it shows a low melting point compared to transition metals. Cadmium and its congeners are not always considered transition metals, in that they do not have partly filled d or f electron shells in the elemental or common oxidation states. The average concentration of cadmium in the Earth's crust is between 0.1 and 0.5 parts per million (ppm). It was discovered in 1817 simultaneously by Stromeyer and Hermann, both in Germany, as an impurity in zinc carbonate.

Cadmium occurs as a minor component in most zinc ores and therefore is a byproduct of zinc production. It was used for a long time as a pigment and for corrosion resistant plating on steel while cadmium compounds were used to stabilize plastic. With the exception of its use in nickel–cadmium batteries and cadmium telluride solar panels, the use of cadmium is generally decreasing. These declines have been due to competing technologies, cadmium's toxicity in certain forms and concentration and resulting regulations. Although cadmium has no known biological function in higher organisms, a cadmium-dependent carbonic anhydrase has been found in marine diatoms.

Characteristics

Physical Properties

Cadmium is a soft, malleable, ductile, bluish-white divalent metal. It is similar in many respects to zinc but forms complex compounds. Unlike other metals, cadmium is resistant to corrosion and as a result it is used as a protective layer when deposited on other metals. As a bulk metal, cadmium is insoluble in water and is not flammable; however, in its powdered form it may burn and release toxic fumes.

Chemical Properties

Although cadmium usually has an oxidation state of +2, it also exists in the +1 state. Cadmium and its congeners are not always considered transition metals, in that they do not have partly filled d or f electron shells in the elemental or common oxidation states. Cadmium burns in air to form brown amorphous cadmium oxide (CdO); the crystalline form of this compound is a dark red which changes color when heated, similar to zinc oxide. Hydrochloric acid, sulfuric acid and nitric acid dissolve cadmium by forming cadmium chloride (CdCl₂), cadmium sulfate (CdSO₄), or cadmium nitrate (Cd(NO₃)₂). The oxidation state +1 can be reached by dissolving cadmium in a mixture of cadmium chloride and aluminum chloride, forming the $Cd_2^{2^+}$ cation, which is similar to the Hg₂²⁺ cation in mercury(I) chloride.

 $Cd + CdCl_2 + 2 AlCl_3 \rightarrow Cd_2(AlCl_4)_2$

Chromium- Inorganic Contaminant 0.1 mg/L MCL

The Safe Drinking Water Act requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based on possible health risks from exposure over a lifetime, are called maximum contaminant level goals (MCLG).

EPA sets enforceable standards for drinking water contaminants based on the best available science to prevent potential health problems. In most cases, the enforceable standard is known as a maximum contaminant level (MCL), the maximum permissible level of a contaminant in water which is delivered to any user of a public water system. MCLs are set as close to the health goals as possible after considering costs, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies.

The national primary drinking water regulation that established the MCL for total chromium was promulgated in 1991. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation

for each contaminant and revise the regulation, if appropriate. EPA reviewed total chromium as part of the second six-year review that was announced in March 2010. The Agency noted in March 2010 that it had initiated a reassessment of the health risks associated with chromium exposure and that the Agency did not believe it was appropriate to revise the national primary drinking water regulation while that effort was in process. In 2008, EPA began a rigorous and comprehensive review of chromium-6 health effects based on new science. When this human health assessment is finalized EPA will carefully review the conclusions and consider all relevant information to determine if the current chromium standard should be revised

Ensuring safe drinking water for all Americans is a top priority for EPA. EPA has an enforceable drinking water standard of 0.1 milligrams per liter (mg/L) for total chromium, which includes chromium-6 and chromium-3. This standard was established in 1991 and was based on the best available science at the time which indicated that some people who use water containing chromium in excess of the drinking water standard over many years could experience allergic dermatitis (skin reactions).

EPA regularly re-evaluates drinking water standards and, based on new science on chromium-6, had begun a rigorous and comprehensive review of its health effects in 2008. In September 2010, EPA released a draft of that scientific assessment for public comment. When this human health assessment is finalized, EPA will carefully review the conclusions and consider all relevant information to determine if a new drinking water standard for chromium-6 or a revision to the current total chromium standard is warranted.

Chromium is an odorless and tasteless metallic element. Chromium is found naturally in rocks, plants, soil and volcanic dust, humans and animals.

Distribution 404 1St Edition

The most common forms of chromium that occur in natural waters in the environment are trivalent chromium (chromium-3), and hexavalent chromium (chromium-6).

Chromium-3 is an essential human dietary element and occurs naturally in many vegetables, fruits, meats, grains and yeast. Chromium-6 occurs naturally in the environment from the erosion of natural chromium deposits but it can also be produced by industrial processes. There are demonstrated instances of chromium being released to the environment by leakage, poor storage, or inadequate industrial waste disposal practices.

What are some uses for Chromium?

Metallic chromium is used mainly for making steel and other alloys. Chromium compounds in either the chromium-3 or chromium-6 forms are used for chrome plating, dyes and pigments, leather and wood preservation.

What are Chromium's Health Effects?

Chromium-3 is a nutritionally essential element in humans and is often added to vitamins as a dietary supplement. Chromium-3 has relatively low toxicity and would be a concern in drinking water only at very high levels of contamination; Chromium-6 is more toxic and poses potential health risks. People who use water containing total chromium in excess of the maximum contaminant level (MCL) over many years could experience allergic dermatitis.

EPA proposed to classify chromium-6 as likely to be carcinogenic to humans when ingested. The Agency continues to work towards completing the human health assessment and making a final determination about the carcinogenicity of chromium-6. When the assessment is completed, EPA will determine whether the drinking water standard for total chromium needs to be revised.

What are EPA's drinking water regulations for Chromium?

The Safe Drinking Water Act requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based on possible health risks from exposure over a lifetime are called maximum contaminant level goals (MCLG).

The MCLG for total chromium is 0.1 mg/L or 100 parts per billion (ppb). EPA has set this level of protection based on the best available science at the time the rule was promulgated. EPA has set an enforceable regulation for total chromium, called a maximum contaminant level (MCL), at 0.1 mg/L or 100 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

States may set more stringent drinking water MCLGs and MCLs for total chromium than EPA.

Why are Chromium-6 and Chromium-3 covered in the same Standard?

Chromium-6 and chromium-3 are covered under the total chromium drinking water standard because these forms of chromium can convert back and forth in water and in the human body, depending on environmental conditions. Measuring just one form may not capture all of the chromium that is present. In order to ensure that the greatest potential risk is addressed, EPA's regulation assumes that a measurement of total chromium is 100 percent chromium-6, the more toxic form.

Copper - Inorganic Contaminant 1.3 mg/L MCLG

What are Copper's Health Effects?

Some people who drink water containing copper in excess of the action level may, with short term

exposure, experience gastrointestinal distress, and with long-term exposure may experience liver or kidney damage. People with Wilson's Disease should consult their personal doctor if the amount of copper in their water exceeds the action level.

This health effects language is not intended to catalog all possible health effects for copper. Rather, it is intended to inform consumers of some of the possible health effects associated with copper in drinking water when the rule was finalized.

What are EPA's Drinking Water Regulations for Copper?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for copper is 1.3 mg/L or 1.3 ppm. EPA has set this level of protection based on the best available science to prevent potential health problems.

For most contaminants, EPA sets an enforceable regulation called a maximum contaminant level (MCL) based on the MCLG. MCLs are set as close to the MCLGs as feasible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. However, because copper contamination of drinking water often results from corrosion of the plumbing materials belonging to water system customers, EPA established a treatment technique rather than an MCL for copper.

A treatment technique is an enforceable procedure or level of technological performance which water systems must follow to ensure control of a contaminant. The treatment technique regulation for copper (referred to as the Lead and Copper rule) requires water systems to control the corrosivity of the water. The regulation also requires systems to collect tap samples from sites served by the system that are more likely to have plumbing materials containing lead.

If more than 10 percent of tap water samples exceed the copper action level of 1.3 milligrams per Liter (mg/L), water systems must take additional steps to reduce corrosiveness.

EPA promulgated the Lead and Copper Rule in 1991, and revised the regulation in 2000 and in 2007. States may set a more stringent regulation for copper in drinking water than EPA.

How does Copper get into my Drinking Water?

The major sources of copper in drinking water are corrosion of household plumbing systems; and erosion of natural deposits. Copper enters the water ("leaches") through contact with the plumbing. Copper leaches into water through corrosion – a dissolving or wearing away of metal caused by a chemical reaction between water and your plumbing. Copper can leach into water primarily from pipes, but fixtures and faucets (brass), and fittings can also be a source. The amount of copper in your water also depends on the types and amounts of minerals in the water, how long the water stays in the pipes, the amount of wear in the pipes, the water's acidity and its temperature.

How will I know if Copper is in my Drinking Water?

If you are concerned about copper in your drinking water, have the water tested for copper by a certified laboratory. (Lists are available from your state or local drinking water authority.) Since you cannot see, taste, or smell copper dissolved in water, testing is the only sure way of telling whether there are harmful quantities of lead in your drinking water. You should be particularly suspicious if your home has copper pipes. If you see signs of corrosion (frequent leaks, rust-colored water, stained dishes or laundry, or if your non-plastic plumbing is less than five years old. Your water supplier may have useful information, including whether the service connector used in your home or area is made of copper. Testing is especially important in high-rise buildings where flushing might not work.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will Copper be removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing copper to below the action level of 1.3 mg/L or 1.3 ppm: corrosion control.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Copper Explained

Copper is a chemical element with the symbol **Cu** (from Latin: *cuprum*) and atomic number 29. It is a ductile metal with very high thermal and electrical conductivity. Pure copper is soft and malleable; a freshly exposed surface has a reddish-orange color. It is used as a conductor of heat and electricity, a building material, and a constituent of various metal alloys.

The metal and its alloys have been used for thousands of years. In the Roman era, copper was principally mined on Cyprus, hence the origin of the name of the metal as *cyprium* (metal of Cyprus), later shortened to *cuprum*.

Its compounds are commonly encountered as copper(II) salts, which often impart blue or green colors to minerals such as turquoise and have been widely used historically as pigments.

Architectural structures built with copper corrode to give green verdigris (or patina). Decorative art prominently features copper, both by itself and as part of pigments.

Copper(II) ions are water-soluble, where they function at low concentration as bacteriostatic substances, fungicides, and wood preservatives. In sufficient amounts, they are poisonous to higher organisms; at lower concentrations it is an essential trace nutrient to all higher plant and animal life. The main areas where copper is found in animals are liver, muscle and bone.

Characteristics

Physical

Copper, silver and gold are in group 11 of the periodic table, and they share certain attributes: they have one s-orbital electron on top of a filled d-electron shell and are characterized by high ductility and electrical conductivity. The filled d-shells in these elements do not contribute much to the interatomic interactions, which are dominated by the s-electrons through metallic bonds. Contrary to metals with incomplete d-shells, metallic bonds in copper are lacking a covalent character and are relatively weak. This explains the low hardness and high ductility of single crystals of copper. At the macroscopic scale, introduction of extended defects to the crystal lattice, such as grain boundaries, hinders flow of the material under applied stress thereby increasing its hardness. For this reason, copper is usually supplied in a fine-grained polycrystalline form, which has greater strength than monocrystalline forms.

The low hardness of copper partly explains its high electrical $(59.6 \times 10^6 \text{ S/m})$ and thus also high thermal conductivity, which are the second highest among pure metals at room temperature. This is because the resistivity to electron transport in metals at room temperature mostly originates from scattering of electrons on thermal vibrations of the lattice, which are relatively weak for a soft metal. The maximum permissible current density of copper in open air is approximately $3.1 \times 10^6 \text{ A/m}^2$ of cross-sectional area, above which it begins to heat excessively. As with other metals, if copper is placed against another metal, galvanic corrosion will occur.

Together with caesium and gold (both yellow), copper is one of only three elemental metals with a natural color other than gray or silver. Pure copper is orange-red and acquires a reddish tarnish when exposed to air. The characteristic color of copper results from the electronic transitions between the filled 3d and half-empty 4s atomic shells – the energy difference between these shells is such that it corresponds to orange light. The same mechanism accounts for the yellow color of gold and caesium.

Chemical

Copper forms a rich variety of compounds with oxidation states +1 and +2, which are often called *cuprous* and *cupric*, respectively. It does not react with water, but it slowly reacts with atmospheric oxygen forming a layer of brown-black copper oxide. In contrast to the oxidation of iron by wet air, this oxide layer stops the further, bulk corrosion. A green layer of verdigris (copper carbonate) can often be seen on old copper constructions, such as the Statue of Liberty, the largest copper statue in the world built using repoussé and chasing. Hydrogen sulfides and sulfides react with copper to form various copper sulfides on the surface. In the latter case, the copper corrodes, as is seen when copper is exposed to air containing sulfur compounds.

Oxygen-containing ammonia solutions give water-soluble complexes with copper, as do oxygen and hydrochloric acid to form copper chlorides and acidified hydrogen peroxide to form copper(II) salts. Copper(II) chloride and copper comproportionate to form copper(I) chloride.

Isotopes

There are 29 isotopes of copper. ⁶³Cu and ⁶⁵Cu are stable, with ⁶³Cu comprising approximately 69% of naturally occurring copper; they both have a spin of 3/2. The other isotopes are radioactive, with the most stable being ⁶⁷Cu with a half-life of 61.83 hours. Seven metastable isotopes have been characterized, with ^{68m}Cu the longest-lived with a half-life of 3.8 minutes. Isotopes with a mass number above 64 decay by β^- , whereas those with a mass number below 64 decay by β^+ . ⁶⁴Cu, which has a half-life of 12.7 hours, decays both ways.

⁶²Cu and ⁶⁴Cu have significant applications. ⁶⁴Cu is a radiocontrast for X-ray imaging, and complexed with a chelate can be used for treating cancer. ⁶²Cu is used in ⁶²Cu-PTSM that is a radioactive tracer for positron emission tomography.

Occurrence

Copper can be found as either native copper or as part of minerals. Native copper is a polycrystal, with the largest described single crystal measuring 4.4×3.2×3.2 cm. The largest mass of elemental copper weighed 420 tons and was found in 1857 on the Keweenaw Peninsula in Michigan, US. There are many examples of copper-containing minerals: chalcopyrite and chalcocite are copper sulfides, azurite and malachite are copper carbonates and cuprite is a copper oxide. Copper is present in the Earth's crust at a concentration of about 50 parts per million (ppm), and is also synthesized in massive stars.

Compounds

Binary Compounds

As for other elements, the simplest compounds of copper are binary compounds, i.e. those containing only two elements. The principal ones are the oxides, sulfides and halides. Both cuprous and cupric oxides are known. Among the numerous copper sulfides, important examples include copper(I) sulfide and copper(II) sulfide.

The cuprous halides with chlorine, bromine, and iodine are known, as are the cupric halides with fluorine, chlorine, and bromine. Attempts to prepare copper(II) iodide give cuprous iodide and iodine.

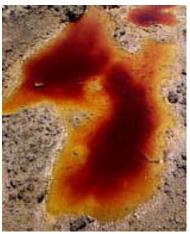
 $2 \text{ Cu}^{2+} + 4 \text{ I}^{-} \rightarrow 2 \text{ CuI} + \text{I}_2$

Coordination Chemistry

Copper, like all metals, forms coordination complexes with ligands. In aqueous solution, copper(II) exists as $[Cu(H_2O)_6]^{2+}$. This complex exhibits the fastest water exchange rate (speed of water ligands attaching and detaching) for any transition metal aquo complex. Adding aqueous sodium hydroxide causes the precipitation of light blue solid copper(II) hydroxide. A simplified equation is:

$$Cu^{2+} + 2 OH^{-} \rightarrow Cu(OH)_{2}$$

Cyanide - Inorganic Contaminant 0.2 mg/L MCL


Cyanide is a carbon-nitrogen chemical unit which combines with many organic and inorganic compounds.

Uses for Cyanide.

The most commonly used form, hydrogen cyanide, is mainly used to make compounds and other synthetic fibers and resins.

What are Cyanide's Health Effects?

Some people who drink water containing cyanide well in excess of the maximum contaminant level (MCL) for many years could experience nerve damage or problems with their thyroid. This health effects language is not intended to catalog all possible health effects for cyanide. Rather, it is intended to inform consumers of some of the possible health effects associated with cyanide in drinking water when the rule was finalized.

What are EPA's Drinking Water Regulations for Cyanide?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for cyanide is 0.2 mg/L or 200 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for cyanide, called a maximum contaminant level (MCL), at 0.2 mg/L or 200 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase V Rule, the regulation for cyanide, became effective in 1994. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed cyanide as part of the Six Year Review and determined that the 0.2 mg/L or 200 ppb MCLG and 0.2 mg/L or 200 ppb MCL for cyanide are still protective of human health.

States may set more stringent drinking water MCLGs and MCLs for cyanide than EPA.

How does Cyanide get into my Drinking Water?

The major source of cyanide in drinking water is discharge from industrial chemical factories. A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Cyanide is in my Drinking Water?

When routine monitoring indicates that cyanide levels are above the MCL, your water supplier must take steps to reduce the amount of cyanide so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will Cyanide be Removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing cyanide to below 0.2 mg/L or 200 ppb: granular activated carbon in combination with packed tower aeration.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Cyanide Explained

A **cyanide** is a chemical compound that contains the **cyano group**, $-C\equiv N$, which consists of a carbon atom triple-bonded to a nitrogen atom. Cyanides most commonly refer to salts of the anion CN^- , which is isoelectronic with carbon monoxide and with molecular nitrogen. Most cyanides are highly toxic.

Nomenclature and Etymology

In IUPAC nomenclature, organic compounds that have a $-C\equiv N$ functional group are called nitriles. Thus, nitriles are organic compounds. An example of a nitrile is CH₃CN, acetonitrile, also known as methyl cyanide. Nitriles usually do not release cyanide ions. A functional group with a hydroxyl and cyanide bonded to the same carbon is called cyanohydrin. Unlike nitriles, cyanohydridins do release hydrogen cyanide. In inorganic chemistry, salts containing the C=N⁻ ion are referred to as **cyanides**.

Occurrence and Reactions

Cyanides are produced by certain bacteria, fungi, and algae and are found in a number of plants. Cyanides are found, although in small amounts, in certain seeds and fruit stones, e.g., those of apple, mango, peach, and bitter almonds. In plants, cyanides are usually bound to sugar molecules in the form of cyanogenic glycosides and defend the plant against herbivores. Cassava roots (also called manioc), an important potato-like food grown in tropical countries (and the base from which tapioca is made), also contain cyanogenic glycosides.

A solution of *para*-benzoquinone in DMSO reacts with inorganic cyanide to form a cyanophenol, which is fluorescent. Illumination with a UV light gives a green/blue glow if the test is positive.

Fluoride - Inorganic Contaminant 4.0 mg/L MCL

Fluoride compounds are salts that form when the element, fluorine, combines with minerals in soil or rocks.

Uses for Fluoride.

Many communities add fluoride to their drinking water to promote dental health.

What are Fluoride's Health Effects?

Exposure to excessive consumption of fluoride over a lifetime may lead to increased likelihood of bone fractures in adults, and may result in effects on bone leading to pain and tenderness. Children aged 8 years and younger exposed to excessive amounts of fluoride have an increased chance of developing pits

in the tooth enamel, along with a range of cosmetic effects to teeth.

This health effects language is not intended to catalog all possible health effects for fluoride. Rather, it is intended to inform consumers of some of the possible health effects associated with fluoride in drinking water.

What are EPA's Drinking Water Regulations for Fluoride?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for fluoride is 4.0 mg/L or 4.0 ppm. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for fluoride, called a maximum contaminant level (MCL), at 4.0 mg/L or 4.0 ppm. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

EPA has also set a secondary standard (SMCL) for fluoride at 2.0 mg/L or 2.0 ppm. Secondary standards are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply. However, states may choose to adopt them as enforceable standards.

Tooth discoloration and/or pitting is caused by excess fluoride exposures during the formative period prior to eruption of the teeth in children. The secondary standard of 2.0 mg/L is intended as a guideline for an upper bound level in areas which have high levels of naturally occurring fluoride. The level of the SMCL was set based upon a balancing of the beneficial effects of protection from tooth decay and the undesirable effects of excessive exposures leading to discoloration.

Fluoride is voluntarily added to some drinking water systems as a public health measure for reducing the incidence of cavities among the treated population.

The decision to fluoridate a water supply is made by the State or local municipality, and is not mandated by EPA or any other Federal entity. The Centers for Disease Control and Prevention (CDC) provides recommendations about the optimal levels of fluoride in drinking water in order to prevent tooth decay. Information about CDC's recommendations can be found at: http://www.cdc.gov/fluoridation/

States may set more stringent drinking water MCLGs and MCLs for fluoride than EPA.

The drinking water standards are currently under review. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. In 2003 and as part of the first Six Year Review, EPA reviewed the drinking water standard for fluoride and found that new health and exposure data were available on orally ingested fluoride. EPA requested that the National Research Council (NRC) of the National Academies of Science (NAS) conduct a review of this data and in 2006, the NRC published their evaluation in a report entitled, Fluoride in Drinking Water: A Scientific Review of EPA's Standards. The NRC recommended that EPA update its fluoride risk assessment to include new data on health risks and better estimates of total exposure.

In March 2010 and as part of the second Six Year Review, the Agency indicated that the Office of Water was in the process of developing its health and exposure assessments to address the NRC's recommendations. The Agency finalized the risk and exposure assessments for fluoride in January 2011 and announced its intent to review the drinking water regulations for fluoride to determine whether revisions are appropriate.

How does Fluoride get into my Drinking Water?

Some fluoride compounds, such as sodium fluoride and fluorosilicates, dissolve easily into ground water as it moves through gaps and pore spaces between rocks. Most water supplies contain some naturally occurring fluoride. Fluoride also enters drinking water in discharge from fertilizer or aluminum factories. Also, many communities add fluoride to their drinking water to promote dental health.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Fluoride is in my Drinking Water?

When routine monitoring indicates that fluoride levels are above the MCL, your water supplier must take steps to reduce the amount of fluoride so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household or private well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will Fluoride be removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing fluoride to below 4.0 mg/L or 4.0 ppm: distillation or reverse osmosis.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Fluoride Explained

Fluoride is the anion F^- , the reduced form of fluorine when as an ion and when bonded to another element. Inorganic fluorine containing compounds are called fluorides. Fluoride, like other halides, is a monovalent ion (-1 charge). Its compounds often have properties that are distinct relative to other halides. Structurally, and to some extent chemically, the fluoride ion resembles the hydroxide ion.

Occurrence

Solutions of inorganic fluorides in water contain F⁻ and bifluoride HF-2. Few inorganic fluorides are soluble in water without undergoing significant hydrolysis. In terms of its reactivity, fluoride differs significantly from chloride and other halides, and is more strongly solvated due to its smaller radius/charge ratio. Its closest chemical relative is hydroxide. When relatively unsolvated, fluoride anions are called "naked". Naked fluoride is a very strong lewis base. The presence of fluoride and its compounds can be detected by F NMR spectroscopy.

Natural Occurrence

Many fluoride minerals are known, but of paramount commercial importance are fluorite and fluorapatite.

Fluoride is usually found naturally in low concentration in drinking water and foods. The concentration in seawater averages 1.3 parts per million (ppm). Fresh water supplies generally contain between 0.01–0.3 ppm, whereas the ocean contains between 1.2 and 1.5 ppm. In some locations, the fresh water contains dangerously high levels of fluoride, leading to serious health problems.

Applications

Fluorides are pervasive in modern technology. Hydrofluoric acid is the fluoride synthesized on the largest scale. It is produced by treating fluoride minerals with sulfuric acid. Hydrofluoric acid and its anhydrous form hydrogen fluoride are used in the production of fluorocarbons and aluminum fluorides. Hydrofluoric acid has a variety of specialized applications, including its ability to dissolve glass.

Inorganic Chemicals

Fluoride salts are used in the manufacture of many inorganic chemicals, many of which contain fluoride covalently bonded to the metal or nonmetal in question. Some examples of these are: Cryolite (Na_3AIF_6) is a pesticide that can leave fluoride on agricultural commodities. Cryolite was originally utilized in the preparation of aluminum.

Sulfuryl fluoride (SO_2F_2) is used as a pesticide and fumigant on agricultural crops. In 2010, the United States Environmental Protection Agency proposed to withdraw the use of sulfuryl fluoride on food. Sulfuryl fluoride releases fluoride when metabolized.

Sulfur hexafluoride is an inert, nontoxic insulator gas that is used in electrical transformers and as a tracer gas in indoor air quality investigations.

Uranium hexafluoride, although not ionic, is prepared from fluoride reagents. It is utilized in the separation of isotopes of uranium between the fissile isotope U-235 and the non-fissile isotope U-238 in preparation of nuclear reactor fuel and atomic bombs. This is due to the volatility of fluorides of uranium.

Organic Chemicals

Fluoride reagents are significant in synthetic organic chemistry. Organofluorine chemistry has produced many useful compounds over the last 50 years. Included in this area are polytetrafluorethylene (Teflon), polychlorotrifluoroethylene (moisture barriers), efavirenz (pharmaceutical used for treatment of HIV), fluoxetine (an antidepressant), 5-fluorouracil (an anticancer drug), hydrochlorofluorocarbons and hydrofluorcarbons (refrigerants, blowing agents and propellants).

Due to the affinity of silicon for fluoride, and the ability of silicon to expand its coordination number, silyl ether protecting groups can be easily removed by the fluoride sources such as sodium fluoride and tetra-n-butylammonium fluoride (TBAF). This is quite useful for organic synthesis and the production of fine chemicals. The Si-F linkage is one of the strongest single bonds. In contrast, other silyl halides are easily hydrolyzed.

Cavity Prevention

Fluoride-containing compounds are used in topical and systemic fluoride therapy for preventing tooth decay. They are used for water fluoridation and in many products associated with oral hygiene. Originally, sodium fluoride was used to fluoridate water; hexafluorosilicic acid (H_2SiF_6) and its salt sodium hexafluorosilicate (Na_2SiF_6) are more commonly used additives, especially in the United States. The fluoridation of water is known to prevent tooth decay and is considered by the U.S. Centers for Disease Control and Prevention as "one of 10 great public health achievements of the 20th century". In some countries where large, centralized water systems are uncommon, fluoride is delivered to the populace by fluoridating table salt. Fluoridation of water has its critics (see Water fluoridation controversy).

Lead- Inorganic Contaminant 0.015 Action Level

The United States Environmental Protection Agency (EPA) regulates lead in drinking water to protect public health. Lead may cause health problems if present in public or private water supplies in amounts greater than the drinking water standard set by EPA.

What is Lead?

Lead is a toxic metal that was used for many years in products found in and around homes. Even at low levels, lead may cause a range of health effects including behavioral problems and learning disabilities. Children six years old and under are most at risk because this is when the brain is developing. The primary source of lead exposure for most children is lead-based paint in older homes. Lead in drinking water can add to that exposure.

Uses for Lead.

Lead is sometimes used in household plumbing materials or in water service lines used to bring water from the main to the home. A prohibition on lead in plumbing materials has been in effect since 1986. The lead ban, which was included in the 1986 Amendments of the Safe Drinking Water Act, states that only "lead free" pipe, solder, or flux may be used in the installation or repair of (1) public water systems, or (2) any plumbing in a residential or non-residential facility providing water for human consumption, which is connected to a public water system. But even "lead free" plumbing may contain traces of lead. The term "lead free" means that solders and flux may not contain more than 0.2 percent lead, and that pipes and pipe fittings may not contain more than 8.0 percent lead. Faucets and other end use devices must be tested and certified against the ANSI – NSF Standard 61 to be considered lead free.

What are Lead's Health Effects?

Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

This health effects language is not intended to catalog all possible health effects for lead. Rather, it is intended to inform consumers of the most significant and probable health effects, associated with lead in drinking water.

What are EPA's Drinking Water Regulations for Lead?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur with an adequate margin of safety. These non-enforceable health goals, based solely on possible health risks are called maximum contaminant level goals (MCLG) The MCLG for lead is zero.

EPA has set this level based on the best available science which shows there is no safe level of exposure to lead.

For most contaminants, EPA sets an enforceable regulation called a maximum contaminant level (MCL) based on the MCLG. MCLs are set as close to the MCLGs as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. However, because lead contamination of drinking water often results from corrosion of the plumbing materials belonging to water system customers, EPA established a treatment technique rather than an MCL for lead.

A treatment technique is an enforceable procedure or level of technological performance which water systems must follow to ensure control of a contaminant. The treatment technique regulation for lead (referred to as the Lead and Copper rule) requires water systems to control the corrosivity of the water. The regulation also requires systems to collect tap samples from sites served by the system that are more likely to have plumbing materials containing lead.

If more than 10% of tap water samples exceed the lead action level of 15 parts per billion, then water systems are required to take additional actions including: Taking further steps optimize their corrosion control treatment (for water systems serving 50,000 people that have not fully optimized their corrosion control).

Educating the public about lead in drinking water and actions consumers can take to reduce their exposure to lead.

Replacing the portions of lead service lines (lines that connect distribution mains to customers) under the water system's control.

EPA promulgated the Lead and Copper Rule in 1991 and revised the regulation in 2000 and 2007. States may set more stringent drinking water regulations than EPA.

How does Lead get into my Drinking Water?

The major sources of lead in drinking water are corrosion of household plumbing systems; and erosion of natural deposits. Lead enters the water ("leaches") through contact with the plumbing. Lead leaches into water through corrosion – a dissolving or wearing away of metal caused by a chemical reaction between water and your plumbing. Lead can leach into water from pipes, solder, fixtures and faucets (brass), and fittings. The amount of lead in your water also depends on the types and amounts of minerals in the water, how long the water stays in the pipes, the amount of wear in the pipes, the water's acidity and its temperature.

Although the main sources of exposure to lead are ingesting paint chips and inhaling dust, EPA estimates that 10 to 20 percent of human exposure to lead may come from lead in drinking water. Infants who consume mostly mixed formula can receive 40 to 60 percent of their exposure to lead from drinking water.

How will I know if Lead is in my Drinking Water?

Have your water tested for lead. A list of certified laboratory of labs are available from your state or local drinking water authority. Testing costs between \$20 and \$100. Since you cannot see, taste, or smell lead dissolved in water, testing is the only sure way of telling whether there are harmful quantities of lead in your drinking water. You should be particularly suspicious if your home has lead pipes (lead is a dull gray metal that is soft enough to be easily scratched with a house key) or if you see signs of corrosion (frequent leaks, rust-colored water). Your water supplier may have useful information, including whether the service connector used in your home or area is made of lead. Testing is especially important in high-rise buildings where flushing might not work.

Distribution 404 1St Edition

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How can I Reduce Lead in Drinking Water at Home?

Flush your pipes before drinking, and only use cold water for consumption. The more time water has been sitting in your home's pipes, the more lead it may contain. Anytime the water in a particular faucet has not been used for six hours or longer, "flush" your cold-water pipes by running the water until it becomes as cold as it will get.

This could take as little as five to thirty seconds if there has been recent heavy water use such as showering or toilet flushing. Otherwise, it could take two minutes or longer. Your water utility will inform you if longer flushing times are needed to respond to local conditions.

Use only water from the cold-water tap for drinking, cooking, and especially for making baby formula. Hot water is likely to contain higher levels of lead. The two actions recommended above are very important to the health of your family. They will probably be effective in reducing lead levels because most of the lead in household water usually comes from the plumbing in your house, not from the local water supply.

Should I be concerned about Lead in Drinking water in my child's school or child care facility?

Children spend a significant part of their days at school or in a child care facility. The faucets that provide water used for consumption, including drinking, cooking lunch, and preparing juice and infant formula, should be tested.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect and upgrade the supply of safe drinking water. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Lead Explained

Lead is a chemical element in the carbon group with symbol **Pb** (from Latin: *plumbum*) and atomic number 82. Lead is a soft, malleable poor metal. It is also counted as one of the heavy metals. Metallic lead has a bluish-white color after being freshly cut, but it soon tarnishes to a dull grayish color when exposed to air. Lead has a shiny chrome-silver luster when it is melted into a liquid.

Lead is used in building construction, lead-acid batteries, bullets and shot, weights, as part of solders, pewters, fusible alloys, and as a radiation shield. Lead has the highest atomic number of all of the stable elements, although the next higher element, bismuth, has a half-life that is so long (much longer than the age of the universe) that it can be considered stable. Its four stable isotopes have 82 protons, a magic number in the nuclear shell model of atomic nuclei.

Lead, at certain contact degrees, is a poisonous substance to animals, including humans. It damages the nervous system and causes brain disorders. Excessive lead also causes blood disorders in mammals. Like the element mercury, another heavy metal, lead is a neurotoxin that accumulates both in soft tissues and the bones. Lead poisoning has been documented from ancient Rome, ancient Greece, and ancient China.

Characteristics

Lead is a bright and silvery metal with a very slight shade of blue in a dry atmosphere. Upon contact with air, it begins to tarnish by forming a complex mixture of compounds depending on the conditions. The color of the compounds can vary. The tarnish layer can contain significant amounts of carbonates and hydroxycarbonates. It has a few characteristic properties: high density, softness, ductility and malleability, poor electrical conductivity compared to other metals, high resistance to corrosion, and ability to react with organic chemicals.

Various traces of other metals change its properties significantly: the addition of small amounts of antimony or copper increases hardness and improves the corrosion reflection from sulfuric acid for lead. A few other metals also improve only hardness and fight metal fatigue, such as cadmium, tin, or tellurium; metals like sodium or calcium also have this ability, but they weaken the chemical stability. Finally, zinc and bismuth simply impair the corrosion resistance (0.1% bismuth content is the industrial usage threshold). In return, lead impurities mostly worsen the quality of industrial materials, although there are exceptions: for example, small amounts of lead improve the ductility of steel.

Lead has only one common allotrope, which is face-centered cubic, with the lead–lead distance being 349 pm. At 327.5 °C (621.5 °F), lead melts; the melting point is above that of tin (232 °C, 449.5 °F), but significantly below that of germanium (938 °C, 1721 °F).^[6] The boiling point of lead is 1749 °C (3180 °F), which is below those of both tin (2602 °C, 4716 °F) and germanium (2833 °C, 5131 °F). Densities increase down the group: the Ge and Sn values (5.23 and 7.29 g•cm⁻³, respectively) are significantly below that of lead: 11.32 g•cm⁻³.

A lead atom has 82 electrons, having an electronic configuration of $[Xe]4f^{14}5d^{10}6s^{2}6p^{2}$. In its compounds, lead (unlike the other group 14 elements) most commonly loses its two and not four outermost electrons, becoming lead(II) ions, Pb²⁺. Such unusual behavior is rationalized by considering the inert pair effect, which occurs because of the stabilization of the 6s-orbital due to relativistic effects, which are stronger closer to the bottom of the periodic table. Tin shows a weaker such effect: tin(II) is still a reducer.

The figures for electrode potential show that lead is only slightly easier to oxidize than hydrogen. Lead thus can dissolve in acids, but this is often impossible due to specific problems (such as the formation of insoluble salts). Powdered lead burns with a bluish-white flame. As with many metals, finely divided powdered lead exhibits pyrophoricity. Toxic fumes are released when lead is burned.

Isotopes

Lead occurs naturally on Earth exclusively in the form of four isotopes: lead-204, -206, -207, and -208. All four can be radioactive as the hypothetical alpha decay of any would be exothermic, but the lower half-life limit has been put only for lead-204: over 1.4×10¹⁷ years. This effect is, however, so weak that natural lead poses no radiation hazard. Three isotopes are also found in three of the four major decay chains: lead-206, -207 and -208 are final decay products of uranium-238, uranium-235, and thorium-232, respectively.

Mercury - Inorganic Contaminant 0.002 mg/L MCL

EPA regulates mercury in drinking water to protect public health. Mercury may cause health problems if present in public or private water supplies in amounts greater than the drinking water standard set by EPA.

What is Mercury?

Mercury is a liquid metal found in natural deposits such as ores containing other elements.

Uses for Mercury.

Electrical products such as dry-cell batteries, fluorescent light bulbs, switches, and other control equipment account for 50 percent of mercury used.

What are Mercury's Health Effects?

Some people who drink water containing mercury well in excess of the maximum contaminant level (MCL) for many years could experience kidney damage.

This health effects language is not intended to catalog all possible health effects for mercury. Rather, it is intended to inform consumers of some of the possible health effects associated with mercury in drinking water when the rule was finalized.

What are EPA's Drinking Water Regulations for Mercury?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for mercury is 0.002 mg/L or 2 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for mercury, called a maximum contaminant level (MCL), at 0.002 mg/L or 2 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule, the regulation for mercury, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed mercury as part of the Six Year Review and determined that the 0.002 mg/L or 2 ppb MCLG and 0.002 mg/L or 2 ppb MCL for mercury are still protective of human health.

States may set more stringent drinking water MCLGs and MCLs for mercury than EPA.

How does Mercury get into my Drinking Water?

The major sources of mercury in drinking water are erosion of natural deposits; discharge from refineries and factories; runoff from landfills; and runoff from croplands.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Mercury is in my Drinking Water?

When routine monitoring indicates that mercury levels are above the MCL, your water supplier must take steps to reduce the amount of mercury so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will Mercury be removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing mercury to below 0.002 mg/L or 2 ppb: coagulation/filtration, granular activated carbon, lime softening, and reverse osmosis.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Mercury Explained

Mercury is a chemical element with the symbol **Hg** and atomic number 80. It is also known as **quicksilver** or **hydrargyrum** (< Greek "hydr-" *water* and "argyros" *silver*). A heavy, silvery d-block element, mercury is the only metal that is liquid at standard conditions for temperature and pressure; the only other element that is liquid under these conditions is bromine, though metals such as caesium, gallium, and rubidium melt just above room temperature. With a freezing point of -38.83 °C and boiling point of 356.73 °C, mercury has one of the narrowest ranges of its liquid state of any metal.

Mercury occurs in deposits throughout the world mostly as cinnabar (mercuric sulfide). The red pigment vermilion is mostly obtained by reduction from cinnabar. Cinnabar is highly toxic by ingestion or inhalation of the dust. Mercury poisoning can also result from exposure to water-soluble forms of mercury (such as mercuric chloride or methylmercury), inhalation of mercury vapor, or eating seafood contaminated with mercury.

Nitrate (Measured as Nitrogen) - Inorganic Contaminant 10 mg/L MCL

EPA regulates nitrate in drinking water to protect public health. Nitrate may cause health problems if present in public or private water supplies in amounts greater than the drinking water standard set by EPA.

What is Nitrate?

Nitrates and nitrites are nitrogen-oxygen chemical units which combine with various organic and inorganic compounds.

Uses for Nitrate.

The greatest use of nitrates is as a fertilizer. Once taken into the body, nitrates are converted to nitrites.

What are Nitrate's Health Effects?

Infants below six months who drink water containing nitrate in excess of the maximum contaminant level (MCL) could become seriously ill and, if

untreated, may die. Symptoms include shortness of breath and blue baby syndrome.

This health effects language is not intended to catalog all possible health effects for nitrate. Rather, it is intended to inform consumers of some of the possible health effects associated with nitrate in drinking water when the rule was finalized.

What are EPA's Drinking Water Regulations for Nitrate?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for nitrate is 10 mg/L or 10 ppm. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for nitrate, called a maximum contaminant level (MCL), at 10 mg/L or 10 ppm. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule , the regulation for nitrate, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed nitrate as part of the Six Year Review and determined that the 10 mg/L or 10 ppm MCLG and 10 mg/L or 10 ppm MCL for nitrate are still protective of human health.

States may set more stringent drinking water MCLGs and MCLs for nitrate than EPA.

Distribution 404 1St Edition

How does Nitrate get into my Drinking Water?

The major sources of nitrates in drinking water are runoff from fertilizer use; leaking from septic tanks, sewage; and erosion of natural deposits.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Nitrate is in my Drinking Water?

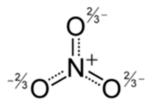
When routine monitoring indicates that nitrate levels are above the MCL, your water supplier must take steps to reduce the amount of nitrate so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 24 hours after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will nitrate be Removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing nitrate to below 10 mg/L or 10 ppm: ion exchange, reverse osmosis, electrodialysis.

How do I learn more about my Drinking Water?


EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Nitrate Explained

The **nitrate ion** is a polyatomic ion with the molecular formula NO_3^- and a molecular mass of 62.0049 g/mol.

Structure

It is the conjugate base of nitric acid, consisting of one central nitrogen atom surrounded by three identically bonded oxygen atoms in a trigonal planar arrangement. The nitrate ion carries a formal charge of -1. This results from a combination formal charge in which each of the three oxygens carries a $-\frac{2}{3}$ charge, whereas the nitrogen carries a +1 charge, all these adding up to formal charge of the polyatomic nitrate ion.

Nitrite (Measured as Nitrogen) - Inorganic Contaminant 1 mg/L MCL

EPA regulates nitrite in drinking water to protect public health. Nitrite may cause health problems if present in public or private water supplies in amounts greater than the drinking water standard set by EPA.

What is Nitrite?

Nitrates and nitrites are nitrogen-oxygen chemical units which combine with various organic and inorganic compounds.

Uses for Nitrite.

The greatest use of nitrates is as a fertilizer. Once taken into the body, nitrates are converted to nitrites.

What are Nitrite's Health Effects?

Infants below six months who drink water containing nitrite in excess of the maximum contaminant level (MCL) could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue baby syndrome.

This health effects language is not intended to catalog all possible health effects for nitrite. Rather, it is intended to inform consumers of some of the possible health effects associated with nitrite in drinking water when the rule was finalized.

What are EPA's Drinking Water Regulations for Nitrite?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for nitrite is 1 mg/L or 1 ppm. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for nitrite, called a maximum contaminant level (MCL), at 1 mg/L or 1 ppm. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule, the regulation for nitrite, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed nitrite as part of the Six Year Review and determined that the 1 mg/L or 1 ppm MCLG and 1 mg/L or 1 ppm MCL for nitrite are still protective of human health. States may set more stringent drinking water MCLGs and MCLs for nitrite than EPA.

How does Nitrite get into my Drinking Water?

The major sources of nitrite in drinking water are runoff from fertilizer use; leaching from septic tanks, sewage; and erosion of natural deposits.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Nitrite is in my Drinking Water?

When routine monitoring indicates that nitrite levels are above the MCL, your water supplier must take steps to reduce the amount of nitrite so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 24 hours after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will Nitrite be removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing nitrite to below 1 mg/L or 1 ppm: ion exchange, reverse osmosis.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Nitrite Explained

The **nitrite** ion, which has the chemical formula NO_2^- , is a symmetric anion with equal N-O bond lengths and a O-N-O bond angle of approximately 120°. Upon protonation, the unstable weak acid nitrous acid is produced. Nitrite can be oxidized or reduced, with the product somewhat dependent on the oxidizing/reducing agent and its strength. The nitrite ion is an ambidentate ligand, and is known to bond to metal centers in at least five different ways. Nitrite is also important in biochemistry as a source of the potent vasodilator nitric oxide. In organic chemistry the NO_2 group is present in nitrous acid esters and nitro compounds. Nitrites are also used in the food production industry for curing meat.

Selenium- Inorganic Contaminant 0.05 mg/L MCL

Selenium (Se) is an essential element for human nutrition, with the majority of our intake coming from foods such as nuts, cereals, meat, fish, and eggs. The concentration of Selenium in drinking water is usually low, and comes from natural minerals. In soils, selenium often occurs in soluble forms such as selenate, which are leached into rivers very easily by runoff increasing the amount of selenium in groundwater. Selenium in water is also a by-product of copper mining / smelting.

Selenium is also used in photoelectric devises because its electrical conductivity varies with light.

Naturally occurring selenium compounds have not been shown to be carcinogenic in animals. However, acute toxicity caused by high levels of selenium in water or other sources of intake has been observed in laboratory animals and in animals grazing in areas where high selenium levels exist in the soil. The US EPA has established the MCL for selenium in water at 0.05 mg/l.

What are selenium's health effects?

Some people who drink water containing selenium well in excess of the maximum contaminant level (MCL) for many years could experience hair or fingernail losses, numbness in fingers or toes, or problems with their circulation.

This health effects language is not intended to catalog all possible health effects for selenium. Rather, it is intended to inform consumers of some of the possible health effects associated with selenium in drinking water when the rule was finalized.

What are EPA's drinking water regulations for selenium?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for selenium is 0.05 mg/L or 50 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for selenium, called a maximum contaminant level (MCL), at 0.05 mg/L or 50 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule, the regulation for selenium, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed selenium as part of the Six Year Review and determined that the 0.05 mg/L or 50 ppb MCLG and 0.05 mg/L or 50 ppb MCL for selenium are still protective of human health.

Selenium Water Treatment

Selenium contamination of water systems may result whenever new agricultural runoff courses through normally dry undeveloped lands. If you have high levels of selenium in your water the following are recommended selenium water treatment options. Anion exchange can reduce the amount of selenium in drinking water by 60 - 95%. Reverse Osmosis Systems are excellent at removing selenium in drinking water.

Selenium shows borderline metalloid or nonmetal behavior. Its most stable form, the grey trigonal allotrope, is sometimes called 'metallic' selenium. This is because its electrical conductivity is several orders of magnitude greater than that of the red monoclinic form.

The metallic character of selenium is further shown by the following properties: Its luster.

Its crystalline structure, which is thought to include weakly 'metallic' interchain bonding.

Its capacity, when molten, to be drawn into thin threads.

Its reluctance to acquire 'the high positive oxidation numbers characteristic of nonmetals'.

Its capacity to form cyclic polycations (such as Se2+ 8) when dissolved in oleums (an attribute it shares with sulfur and tellurium).

The existence of a hydrolyzed cationic salt in the form of trihydroxoselenium (IV) perchlorate $[Se(OH)_3]^+$.CIO- 4.

The Non-metallic Character of Selenium is shown by:

Its brittleness.

Its electronic band structure, which is that of a semiconductor.

The low electrical conductivity ($\sim 10^{-9}$ to 10^{-12} S·cm⁻¹) of its highly purified form. This is comparable to or less than that of bromine (7.95×10⁻¹² S·cm⁻¹), a nonmetal.

Its relatively high electronegativity (2.55 revised Pauling scale).

The retention of its semiconducting properties in liquid form.

Its reaction chemistry, which is mainly that of its nonmetallic anionic forms Se^{2–}, SeO2– 3 and SeO2– 4.

Thallium- Inorganic Contaminant 0.002 mg/L MCL

Thallium is a metal found in natural deposits such as ores containing other elements.

Uses for Thallium.

The greatest use of thallium is in specialized electronic research equipment.

What are Thallium's Health Effects?

Some people who drink water containing thallium well in excess of the maximum contaminant level (MCL) for many years could experience hair loss, changes in their blood, or problems with their kidneys, intestines, or liver problems.

This health effects language is not intended to catalog all possible health effects for thallium. Rather, it is intended to inform consumers of some of the possible health effects associated with thallium in drinking water when the rule was finalized.

What are EPA's Drinking Water Regulations for Thallium?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for thallium is 0.0005 mg/L or 0.5 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for thallium, called a maximum contaminant level (MCL), at 0.002 mg/L or 2 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies.

The Phase V Rule, the regulation for thallium, became effective in 1994. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed thallium as part of the Six Year Review and determined that the 0.0005 mg/L or 0.5 ppb MCLG and 0.002 mg/L or 2 ppb MCL for thallium are still protective of human health. States may set more stringent drinking water MCLGs and MCLs for thallium than EPA.

How does Thallium get into my Drinking Water?

The major sources of thallium in drinking water are leaching from ore-processing sites; and discharge from electronics, glass, and drug factories.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals.

For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Thallium is in my Drinking Water?

When routine monitoring indicates that thallium levels are above the MCL, your water supplier must take steps to reduce the amount of thallium so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

How will Thallium be Removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing thallium to below 0.002 mg/L or 2 ppb: activated alumina; ion exchange.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Thallium Explained

Thallium is a chemical element with symbol **TI** and atomic number 81. This soft gray poor metal is not found free in nature. When isolated, it resembles tin, but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861, in residues of sulfuric acid production. Both used the newly developed method of flame spectroscopy, in which thallium produces a notable green spectral line. Thallium, from Greek $\theta \alpha \lambda \lambda \delta \varsigma$, *thallos*, meaning "a green shoot or twig," was named by Crookes. It was isolated by electrolysis a year later, by Lamy.

Thallium tends to oxidize to the +3 and +1 oxidation states as ionic salts. The +3 state resembles that of the other elements in thallium's group (boron, aluminum, gallium, indium). However, the +1 state, which is far more prominent in thallium than the elements above it, recalls the chemistry of alkali metals, and thallium(I) ions are found geologically mostly in potassium-based ores, and (when ingested) are handled in many ways like potassium ions (K^+) by ion pumps in living cells.

Commercially, however, thallium is produced not from potassium ores, but as a byproduct from refining of heavy metal sulfide ores. Approximately 60–70% of thallium production is used in the electronics industry, and the remainder is used in the pharmaceutical industry and in glass manufacturing. It is also used in infrared detectors. The radioisotope thallium-201 (as the soluble chloride TICI) is used in small, nontoxic amounts as an agent in a nuclear medicine scan, during one type of nuclear cardiac stress test.

Soluble thallium salts (many of which are nearly tasteless) are highly toxic in quantity, and were historically used in rat poisons and insecticides. Use of these compounds has been restricted or banned in many countries, because of their nonselective toxicity.

Thallium poisoning notably results in hair loss. Because of its historic popularity as a murder weapon, thallium has gained notoriety as "the poisoner's poison" and "inheritance powder" (alongside arsenic).

Distribution 404 1St Edition

SOC Section

Common water sampling bottles.

SOC/VOC bottles are the smaller, thin bottles with the septum tops. Be careful not to get any air bubbles in the SOC/VOC bottles and this may take a few weeks to learn to collect a proper sample.

SOC Introduction

Synthetic Organic Chemicals (SOCs) are organic (carbon based) chemicals that are less volatile than Volatile Organic Compounds (VOCs). SOCs are used as pesticides, defoliants, fuel additives and as ingredients for other organic compounds. They are all man made and do not naturally occur in the environment. Some of the more well-known SOCs are Atrazine, 2,4-D, Dioxin and Polychlorinated Biphenyls (PCBs).

SOCs most often enter the natural environment through application of pesticide (including runoff from areas where they are applied), as part of a legally discharged waste stream, improper or illegal waste disposal, accidental releases or as a byproduct of incineration. Some SOCs are very persistent in the environment, whether in soil or water.

SOCs are generally toxic and can have substantial health impacts from both acute (short-term) and chronic (long-term) exposure. Many are known carcinogens (cancer causing). EPA has set Maximum Contaminant Levels (MCL) for 30 SOCs under the Safe Drinking Water Act.

The Safe Drinking Water Act requires that all water sources of all public water systems be periodically monitored for regulated SOCs. The monitoring frequency can be adjusted through a waiver if SOCs are not detected.

EPA established Maximum Contaminant Levels (MCL), Maximum Contaminant Level Goals (MCLG), monitoring requirements and best available technologies for removal for 65 chemical contaminants over a five year period as EPA gathered and analyzed occurrence and health effects data. This series of rules are known as the Chemical Phase Rules and they define regulations for three contaminant groups:

- ✓ Inorganic Chemicals (IOC),
- ✓ Synthetic Organic Chemicals (SOC), and
- ✓ Volatile Organic Chemicals (VOC).

The Chemical Phase rules provide public health protection through the reduction of chronic risks from:

- ✓ cancer;
- ✓ organ damage; and
- ✓ circulatory,
- \checkmark nervous, and
- ✓ reproductive system disorders.

They also help to reduce the occurrence of Methemoglobinemia or "blue baby syndrome" from ingestion of elevated levels of nitrate or nitrite.All public water systems must monitor for Nitrate and Nitrite. Community water systems and Non-transient non-community water systems must also monitor for IOCs, SOCs, and VOCs.

This is a list of the organic chemicals—which include pesticides, industrial chemicals, and disinfection by-products—that are tested for in public water systems (those that provide water to the public), along with the maximum standard for the contaminant, and a brief description of the potential health effects associated with long-term consumption of elevated levels of the contaminants.

The federal standard for most contaminants is listed as a Maximum Contaminant Level (MCL), the lowest concentration at which that particular contaminant is believed to represent a potential health concern. Unless otherwise noted, the MCL is expressed as parts per billion (ppb). Also, because of technological limitations or other factors, it is not possible to test for some contaminants in a reliable fashion. Instead, public water systems are required to use specific Treatment Techniques (TT) that are designed to remove these particular contaminants from the water.

In addition to the chemicals listed, monitoring is done for approximately 60 organic chemicals for which MCLs have not been established. If unacceptable levels are found of these "unregulated" contaminants—based on established state health standards and an assessment of the risks they pose—the response is the same as if an MCL has been exceeded: the public water system must notify those served by the system.

Synthetic Organic Chemicals	MCL (ppb)	Potential Health Effects
Acrylamide	TT	Cancer, nervous system effects
Alachlor	2	Cancer
Aldicarb	3	Nervous system effects
Aldicarb sulfoxide	4	Nervous system effects
Aldicarb sulfone	2	Nervous system effects
Atrazine	3	Liver, kidney, lung, cardiovascular effects; possible carcinogen
Benzo(a)pyrene (PAHs)	0.2	Liver, kidney effects, possible carcinogen
Carbofuran	40	Nervous system, reproductive system effects
Chlordane	2	Cancer
2,4-D	70	Liver, kidney effects
Di(2-ethylhexyl) adipate	400	Reproductive effects
Di(2-ethylhexyl) phthalate	6	Cancer
Dibromochloro-propane (DBCP)	0.2	Cancer
Dinoseb	7	Thyroid, reproductive effects
Diquat	20	Ocular, liver, kidney effects
Endothall	100	Liver, kidney, gastrointestinal effects
Endrin	2	Liver, kidney effects
Epichlorohydrin	TT	Cancer
Ethylene dibromide (EDB)	0.05	Cancer
Glyphosate	700	Liver, kidney effects
Heptachlor	0.4	Cancer
Heptachlor epoxide	0.2	Cancer
Hexachlorobenzene	1	Cancer
Hexachlorocyclopentadiene (HEX)	50	Kidney, stomach effects

Lindane	0.2	Liver, kidney, nervous system, immune system, circulatory system effects	
Methoxychlor	40	Developmental, liver, kidney, nervous system effects	
Oxamyl (Vydate)	200	Kidney effects	
Pentachlorophenol	1	Cancer	
Picloram	500	Kidney, liver effects	
Polychlorinated biphenyls (PCBs)	0.5	Cancer	
Simazine	4	Body weight and blood effects, possible carcinogen	
2,3,7,8-TCDD (Dioxin)	0.00003	Cancer	
Toxaphene	3	Cancer	
2,4,5-TP (Silvex)	50	Liver, kidney effects	

Volatile Organic Compounds (VOCs)

Definitions

Volatile Organic Compounds (VOCs) – "VOCs are ground-water contaminants of concern because of very large environmental releases, human toxicity, and a tendency for some compounds to persist in and migrate with ground-water to drinking-water supply well ... In general, VOCs have high vapor pressures, low-to-medium water solubilities, and low molecular weights. Some VOCs may occur naturally in the environment, other compounds occur only as a result of manmade activities, and some compounds have both origins." - Zogorski and others, 2006

Volatile Organic Compounds (VOCs) – "Volatile organic compounds released into the atmosphere by anthropogenic and natural emissions which are important because of their involvement in photochemical pollution." - Lincoln and others, 1998

Volatile Organic Compounds (VOCs) – "Hydrocarbon compounds that have low boiling points, usually less than 100°C, and therefore evaporate readily. Some are gases at room temperature. Propane, benzene, and other components of gasoline are all volatile organic compounds." - Art, 1993

Volatile Organic Compounds (VOCs) – "VOCs are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and, subsequently, analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They often are compounds of fuels, solvents, hydraulic fluids, paint thinners, and dry-cleaning agents commonly used in urban settings. VOC contamination of drinking water supplies is a human-health concern because many are toxic and are known or suspected human carcinogens." - U.S. Geological Survey, 2005

VOCs Explained

Volatile organic compounds (VOCs) are organic chemicals that have a high vapor pressure at ordinary, room-temperature conditions. Their high vapor pressure results from a low boiling point, which causes large numbers of molecules to evaporate or sublimate from the liquid or solid form of the compound and enter the surrounding air. An example is formaldehyde, with a boiling point of -19 °C (-2 °F), slowly exiting paint and getting into the air.

VOCs are numerous, varied, and ubiquitous. They include both human-made and naturally occurring chemical compounds. Most scents or odors are of VOCs. VOCs play an important role in communication between plants. Some VOCs are dangerous to human health or cause harm to the environment.

Anthropogenic VOCs are regulated by law, especially indoors, where concentrations are the highest. Harmful VOCs are typically not acutely toxic, but instead have compounding long-term health effects. Because the concentrations are usually low and the symptoms slow to develop, research into VOCs and their effects is difficult.

Specific Components Paints and Coatings

A major source of man-made VOCs are coatings, especially paints and protective coatings. Solvents are required to spread a protective or decorative film. Approximately 12 billion liters of paints are produced annually. Typical solvents are aliphatic hydrocarbons, ethyl acetate, glycol ethers, and acetone. Motivated by cost, environmental concerns, and regulation, the paint and coating industries are increasingly shifting toward aqueous solvents.

Chlorofluorocarbons and Chlorocarbons

Chlorofluorocarbons, which are banned or highly regulated, were widely used cleaning products and refrigerants. Tetrachloroethene is used widely in dry cleaning and by industry. Industrial use of fossil fuels produces VOCs either directly as products (e.g., gasoline) or indirectly as byproducts (e.g., automobile exhaust).

Benzene

One VOC that is a known human carcinogen is benzene, which is a chemical found in environmental tobacco smoke, stored fuels, and exhaust from cars in an attached garage. Benzene also has natural sources such as volcanoes and forest fires. It is frequently used to make other chemicals in the production of plastics, resins, and synthetic fibers. Benzene evaporates into the air quickly and the vapor of benzene is heavier than air allowing the compound to sink into low-lying areas. Benzene has also been known to contaminate food and water and if digested can lead to vomiting, dizziness, sleepiness, rapid heartbeat, and at high levels, even death may occur.

Methylene Chloride

Methylene chloride is another VOC that is highly dangerous to human health. It can be found in adhesive removers and aerosol spray paints and the chemical has been proven to cause cancer in animals. In the human body, methylene chloride is converted to carbon monoxide and a person will suffer the same symptoms as exposure to carbon monoxide. If a product that contains methylene chloride needs to be used the best way to protect human health is to use the product outdoors. If it must be used indoors, proper ventilation is essential to keeping exposure levels down.

Perchloroethylene

Perchloroethylene is a volatile organic compound that has been linked to causing cancer in animals. It is also suspected to cause many of the breathing related symptoms of exposure to VOC's. Perchloroethylene is used mostly in dry cleaning. Studies show that people breathe in low levels of this VOC in homes where dry-cleaned clothes are stored and while wearing drycleaned clothing. While dry cleaners attempt to recapture perchlorothylene in the dry cleaning process to reuse it in an effort to save money, they can't recapture it all. To avoid exposure to perchlorothylene, if a strong chemical odor is coming from clothing when picked up from the dry cleaner, do not accept them and request that less of the chemical be used as well as a complete drying of the garments

MTBE

MTBE was banned in the US around 2004 in order to limit further contamination of drinking water aquifers primarily from leaking underground gasoline storage tanks where MTBE was used as an octane booster and oxygenated-additive.

Formaldehyde

Many building materials such as paints, adhesives, wall boards, and ceiling tiles slowly emit formaldehyde, which irritates the mucous membranes and can make a person irritated and uncomfortable. Formaldehyde emissions from wood are in the range of 0.02 - 0.04 ppm. Relative humidity within an indoor environment can also affect the emissions of formaldehyde. High relative humidity and high temperatures allow more vaporization of formaldehyde from wood-materials.

Health Risks

Respiratory, allergic, or immune effects in infants or children are associated with man-made VOCs and other indoor or outdoor air pollutants. Some VOCs, such as styrene and limonene, can react with nitrogen oxides or with ozone to produce new oxidation products and secondary aerosols, which can cause sensory irritation symptoms. Unspecified VOCs are important in the creation of smog.

Health effects include:

Eye, nose, and throat irritation; headaches, loss of coordination, nausea; damage to liver, kidney, and central nervous system. Some organics can cause cancer in animals; some are suspected or known to cause cancer in humans. Key signs or symptoms associated with exposure to VOCs include conjunctival irritation, nose and throat discomfort, headache, allergic skin reaction, dyspnea, declines in serum cholinesterase levels, nausea, emesis, epistaxis, fatigue, dizziness.

The ability of organic chemicals to cause health effects varies greatly from those that are highly toxic, to those with no known health effects. As with other pollutants, the extent and nature of the health effect will depend on many factors including level of exposure and length of time exposed. Eye and respiratory tract irritation, headaches, dizziness, visual disorders, and memory impairment are among the immediate symptoms that some people have experienced soon after exposure to some organics. At present, not much is known about what health effects occur from the levels of organics usually found in homes. Many organic compounds are known to cause cancer in animals; some are suspected of causing, or are known to cause, cancer in humans.

Reducing Exposure

To reduce exposure to these toxins, one should buy products that contain Low-VOC's or No VOC's. Only the quantity which will soon be needed should be purchased, eliminating stockpiling of these chemicals. Use products with VOC's in well ventilated areas. When designing homes and buildings, design teams can implement the best possible ventilation plans, call for the best mechanical systems available, and design assemblies to reduce the amount of infiltration into the building. These methods will help improve indoor air quality, but by themselves they cannot keep a building from becoming an unhealthy place to breathe. While proper building ventilation is a key component to improving indoor air quality, it cannot do the job on its own. As stated earlier, awareness is the key component to improving air quality, when choosing building materials, furnishings, and decorations. When architects and engineers implement best practices in ventilation and mechanical systems, the owner must maintain good air quality levels thereafter.

Limit Values for VOC Emissions

Limit values for VOC emissions into indoor air are published by e.g. AgBB, AFSSET, California Department of Public Health, and others.

Chemical Fingerprinting

The exhaled human breath contains a few hundred volatile organic compounds and is used in breath analysis to serve as a VOC biomarker to test for diseases such as lung cancer. One study has shown that "volatile organic compounds ... are mainly blood borne and therefore enable monitoring of different processes in the body." And it appears that VOC compounds in the body "may be either produced by metabolic processes or inhaled/absorbed from exogenous sources" such as environmental tobacco smoke. Research is still in the process to determine whether VOCs in the body are contributed by cellular processes or by the cancerous tumors in the lung or other organs.

Volatile Organic Chemicals	MCL (ppb)	Potential Health Effects	
Benzene	5	Cancer	
Carbon tetrachloride	5	Liver effects, cancer	
Chlorobenzene	100	Liver, kidney, nervous system effects	
o-Dichlorobenzene	600	Liver, kidney, blood cell effects	
para-Dichlorobenzene	175	Kidney effects, possible carcinogen	
1,2-Dichloroethane	5	Cancer	
1,1-Dichloroethylene	7	Liver, kidney effects, possible carcinogen	
cis-1,2-Dichloroethylene	70	Liver, kidney, nervous system, circulatory system effects	
trans-1,2-Dichloroethylene	100	Liver, kidney, nervous system, circulatory system effects	
1,2-Dichloropropane	5	Cancer	
Ethylbenzene	700	Liver, kidney, nervous system effects	
Methylene chloride	5	Cancer	
Styrene	100	Liver, nervous systems effects, possible carcinogen	
Tetrachloroethylene (PCE)	5	Cancer	
Toluene	1,000	Liver, kidney, nervous system, circulatory system effects	
Total trihalomethanes Chloroform Bromoform Bromodichloromethane Chlorodibromomethane	100	Cancer	
1,2,4-Trichlorobenzene	70	Liver, kidney effects	
1,1,1-Trichloroethane	200	Liver, nervous system effects	
1,1,2-Trichloroethane	5	Kidney, liver effects, possible carcinogen	
Trichloroethylene (TCE)	5	Cancer	
Vinyl chloride	2	Nervous system, liver effects, cancer	

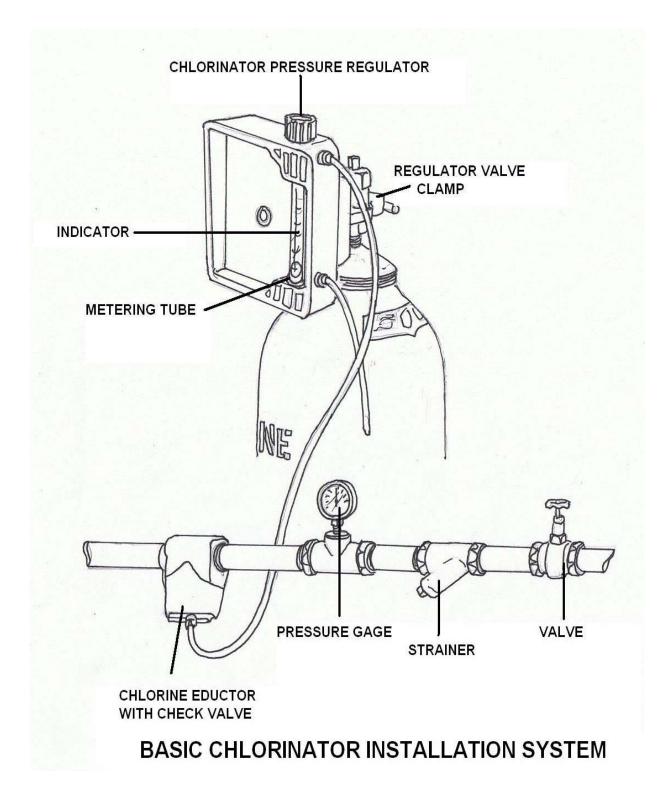
Xylenes (total)

10,000 Liver, kidney, nervous system effects

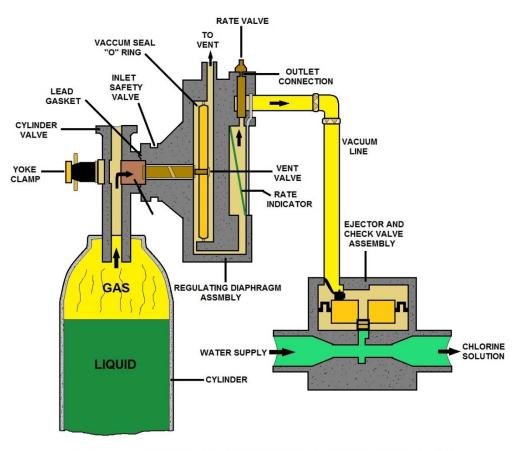
Disinfection By-products	MCL (ppb)	Potential Health Effects
Bromate	10	Cancer
Chlorate	1,000	Anemia, nervous system effects
Haloacetic Acids (HAA5)*	60	Cancer
Total trihalomethanes (TTHMs)**	100	Cancer

*Haloacetic acids consist of monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, acid, monobromoacetic acid, and dibromoacetic acid.

**Total trihalomethanes consist of chloroform, bromoform, bromodichloromethane, and chlorodibromomethane.


Chlorine Section

1-ton chlorine containers, rear side of container.



Chlorine rotometer

Chlorine Gas

Background: Chlorine gas is a pulmonary irritant with intermediate water solubility that causes acute damage in the upper and lower respiratory tract. Chlorine gas was first used as a chemical weapon at Ypres, France in 1915. Of the 70,552 American soldiers poisoned with various gasses in World War I, 1843 were exposed to chlorine gas. Approximately 10.5 million tons and over 1 million containers of chlorine are shipped in the U.S. each year.

150 Lb. SINGLE CYLINDER CHLORINATOR

Chlorine is a yellowish-green gas at standard temperature and pressure. It is extremely reactive with most elements. Because its density is greater than that of air, the gas settles low to the ground. It is a respiratory irritant, and burns the skin. Just a few breaths of it are fatal. CI_2 gas does not occur naturally, although chlorine can be found in a number of compounds.

Atomic Number: 17 Standard State: gas at 298K Melting Point: 171.6K (-101.5 C) Boiling Point: 239.11K (-34.04 C) Density: N/A Molar Volume: 17.39 cm³ Electronegativity: 3.16 Pauling Units **Crystal Structure:** The Diatomic Chlorine molecules arrange themselves in an orthorhombic structure.

Pathophysiology: Chlorine is a greenish-yellow, noncombustible gas at room temperature and atmospheric pressure. The intermediate water solubility of chlorine accounts for its effect on the upper airway and the lower respiratory tract. Exposure to chlorine gas may be pro-longed because its moderate water solubility may not cause upper airway symptoms for several minutes. In addition, the density of the gas is greater than that of air, causing it to remain near ground level and increasing exposure time.

The odor threshold for chlorine is approximately 0.3-0.5 parts per million (ppm); however, distinguishing toxic air levels from permissible air levels may be difficult until irritative symptoms are present.

Mechanism of Activity

The mechanisms of the above biological activity are poorly understood and the predominant anatomic site of injury may vary, depending on the chemical species produced. Cellular injury is believed to result from the oxidation of functional groups in cell components, from reactions with tissue water to form hypochlorous and hydrochloric acid, and from the generation of free oxygen radicals. Although the idea that chlorine causes direct tissue damage by generating free oxygen radicals was once accepted, this idea is now controversial.

The cylinders on the right contain chlorine gas. The gas comes out of the cylinder through a gas regulator. The cylinders are on a scale that operators use to measure the amount used each day. The chains are used to prevent the tanks from falling over.

Chlorine gas is stored in vented rooms that have panic bar equipped doors. Operators have the equipment necessary to reduce the impact of a gas leak, but rely on trained emergency response teams to contain leaks.

Solubility Effects

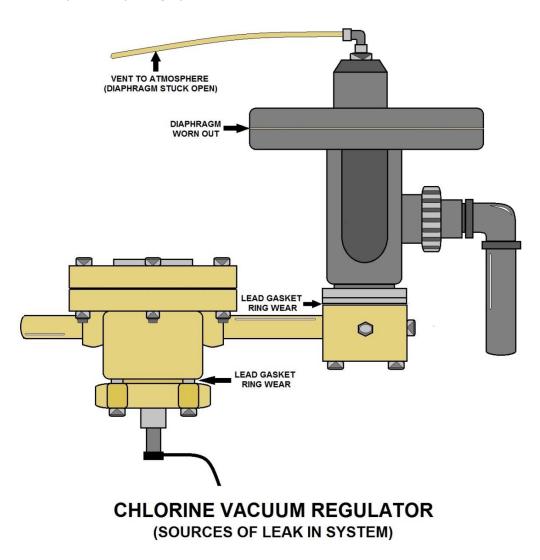
Hydrochloric acid is highly soluble in water. The predominant targets of the acid are the epithelia of the ocular conjunctivae and upper respiratory mucus membranes.

Hypochlorous acid is also highly water soluble with an injury pattern similar to hydrochloric acid.

Hypochlorous acid may account for the toxicity of elemental chlorine and hydrochloric acid to the human body.

Early Response to Chlorine Gas

Chlorine gas, when mixed with ammonia, reacts to form chloramine gas. In the presence of water, chloramines decompose to ammonia and hypochlorous acid or hydrochloric acid. The early response to chlorine exposure depends on the concentration of chlorine gas, duration of exposure, water content of the tissues exposed, and individual susceptibility.


Immediate Effects

The immediate effects of chlorine gas toxicity include acute inflammation of the conjunctivae, nose, pharynx, larynx, trachea, and bronchi. Irritation of the airway mucosa leads to local edema secondary to active arterial and capillary hyperemia. Plasma exudation results in filling the alveoli with edema fluid, resulting in pulmonary congestion.

Pathological Findings

Pathologic findings are nonspecific. They include severe pulmonary edema, pneumonia, hyaline membrane formation, multiple pulmonary thromboses, and ulcerative tracheobronchitis.

The hallmark of pulmonary injury associated with chlorine toxicity is pulmonary edema, manifested as hypoxia. Non-cardiogenic pulmonary edema is thought to occur when there is a loss of pulmonary capillary integrity.

Using DPD Method for Chlorine Residuals

N, N – diethyl-p-phenylenediame, want to impress someone, memorize that.

Small portable chlorine measuring kit. The redder the mixture, the hotter or stronger the chlorine is in solution.

Measuring Chlorine Residual

Chlorine residual is the amount of chlorine remaining in water that can be used for disinfection. A convenient, simple and inexpensive way to measure chlorine residual is to use a small portable kit with pre-measured packets of chemicals that are added to water. (Make sure you buy a test kit using the *DPD method*, and not the outdated orthotolodine method.)

Chlorine test kits are very useful in adjusting the chlorine dose you apply. You can measure what chlorine levels are being found in your system (especially at the far ends).

Free chlorine residuals need to be checked and recorded daily. These results should be kept on file for a health or regulatory agency inspection during a regular field visit.

The most accurate method for determining chlorine residuals is to use the laboratory amperometric titration method.

Chemistry of Chlorination

Chlorine can be added as sodium hypochlorite, calcium hypochlorite or chlorine gas. When any of these is added to water, chemical reactions occur as these equations show:

CI 2 + H 2 O \rightarrow HOCI + HCI (chlorine gas) (water) (hypochlorous acid) (hydrochloric acid)

CaOCI + H 2 O \rightarrow 2HOCI + Ca(OH) (calcium hypochlorite) (water) (hypochlorous acid) (calcium hydroxide)

NaOCI + H 2 O \rightarrow HOCI + Na(OH) (sodium hypochlorite) (water) (hypochlorous acid) (sodium hydroxide)

All three forms of chlorine produce hypochlorous acid (HOCI) when added to water. Hypochlorous acid is a weak acid but a strong disinfecting agent. The amount of hypochlorous acid depends on the pH and temperature of the water. Under normal water conditions, hypochlorous acid will also chemically react and break down into a hypochlorite ion.

(OCI -): HOCI H + + OCI – Also expressed HOCI \rightarrow H + + OCI – (by pachlorous asid) (by drogon) (by pachlorite ion)

(hypochlorous acid) (hydrogen) (hypochlorite ion)

The hypochlorite ion is a much weaker disinfecting agent than hypochlorous acid, about 100 times less effective.

Let's now look at how pH and temperature affect the ratio of hypochlorous acid to hypochlorite ions. As the temperature is decreased, the ratio of hypochlorous acid increases. Temperature plays a small part in the acid ratio. Although the ratio of hypochlorous acid is greater at lower temperatures, pathogenic organisms are actually harder to kill. All other things being equal, higher water temperatures and a lower pH are more conducive to chlorine disinfection.

Types of Residual

If water were pure, the measured amount of chlorine in the water should be the same as the amount added. But water is not 100% pure. There are always other substances (interfering agents) such as iron, manganese, turbidity, etc., which will combine chemically with the chlorine.

This is called the *chlorine demand*. Naturally, once chlorine molecules are combined with these interfering agents, and they are not capable of disinfection. It is free chlorine which is much more effective as a disinfecting agent.

So let's look now at how free, total, and combined chlorine are related. When a chlorine residual test is taken, either a total or a free chlorine residual can be read.

Total residual is all chlorine that is available for disinfection.

Total chlorine residual = free + combined chlorine residual.

Free chlorine residual is a much stronger disinfecting agent. Therefore, most water regulating agencies will require that your daily chlorine residual readings be of free chlorine residual.

Break-point chlorination is where the chlorine demand has been satisfied, any additional chlorine will be considered *free chlorine*.

Residual Concentration/Contact Time (CT) Requirements

Disinfection to eliminate fecal and coliform bacteria may not be sufficient to adequately reduce pathogens such as Giardia or viruses to desired levels. Use of the "*CT*" disinfection concept is recommended to demonstrate satisfactory treatment, since monitoring for very low levels of pathogens in treated water is analytically very difficult.

The CT concept, as developed by the United States Environmental Protection Agency (Federal Register, 40 CFR, Parts 141 and 142, June 29, 1989), uses the combination of disinfectant residual concentration (mg/L) and the effective disinfection contact time (in minutes) to measure effective pathogen reduction. The residual is measured at the end of the process, and the contact time used is the T10 of the process unit (time for 10% of the water to pass).

CT = Concentration (mg/L) x Time (minutes)

The effective reduction in pathogens can be calculated by reference to standard tables of required CTs.

500-pound chlorine container and 150 pound chlorine gas cylinders. The 1/2 ton is on a scale. Cylinders stand upright and containers on their sides.

Required Giardia/Virus Reduction

All surface water treatment systems shall ensure a minimum reduction in pathogen levels: 3-log reduction in Giardia and 4-log reduction in viruses. These requirements are based on unpolluted raw water sources with Giardia levels of = 1 cyst/100 L, and a finished water goal of 1 cyst/100,000 L (equivalent to 1 in 10,000 risk of infection per person per year). Higher raw water contamination levels may require greater removals as shown on Table 4.1.

TABLE 4.1 LEVEL OF GIARDIA REDUCTION Raw Water Giardia Levels* Recommended Giardia Log Reduction

< 1 cyst/100 L 3-log
1 cyst/100 L - 10 cysts/100 L 3-log - 4-log
10 cysts/100 L - 100 cysts/100 L 4-log - 5-log
> 100 cysts/100 L > 5-log
*Use geometric means of data to determine raw water Giardia levels for compliance.

Required CT Value

Required CT values are dependent on pH, residual concentration, temperature, and the disinfectant used. The tables attached to Appendices A and B shall be used to determine the required CT.

Calculation and Reporting of CT Data

Disinfection CT values shall be calculated daily, using either the maximum hourly flow and the disinfectant residual at the same time, or by using the lowest CT value if it is calculated more frequently. Actual CT values are then compared to required CT values. Results shall be reported as a reduction Ratio, along with the appropriate pH, temperature, and disinfectant residual. The reduction Ratio must be greater than 1.0 to be acceptable. Users may also calculate and record actual log reductions. Reduction Ratio = CT actual ÷ CT required.

Here are some important chlorine cylinder parts. Upper left, yoke type connector, upper right cylinder wrenches and fusible plugs.

Chlorine (DDBP)

Today, most of our drinking water supplies are free of the micro-organisms — viruses, bacteria, and protozoa — that cause serious and life-threatening diseases, such as cholera and typhoid fever. This is largely due to the introduction of water treatment, particularly chlorination, at the turn of the century. Living cells react with chlorine and reduce its concentration while they die. Their organic matter and other substances that are present convert to chlorinated derivatives, some of which are effective killing agents. Chlorine present as CI, HOCI, and OCI⁻ is called *free available chlorine* and that which is bound but still effective is *combined chlorine*. A particularly important group of compounds with combined chlorine is the chloramines formed by reactions with ammonia.

One especially important feature of disinfection using chlorine is the ease of overdosing to create a residual concentration. There is a constant danger that safe water leaving the treatment plant may become contaminated later. There may be breaks in water mains, loss of pressure that permits an inward leak, or plumbing errors. This residual concentration of chlorine provides some degree of protection right to the water faucet. With free available chlorine, a typical residual is from 0.1 to 0.5 ppm. Because chlorinated organic compounds are less effective, a typical residual is 2 ppm for combined chlorine.

There will be no chlorine residual unless there is an excess over the amount that reacts with the organic matter present. However, reaction kinetics complicates interpretation of chlorination data. The correct excess is obtained in a method called *Break Point Chlorination*.

Chlorine by-products

Chlorination by-products are the chemicals formed when the chlorine used to kill diseasecausing micro-organisms reacts with naturally occurring organic matter (i.e., decay products of vegetation) in the water. The most common chlorination by-products found in U.S. drinking water supplies are the trihalomethanes (THMs).

The principal trihalomethanes are:

Chloroform, bromodichloromethane, chlorodibromomethane, and bromoform. Other less common chlorination by-products includes the haloacetic acids and haloacetonitriles.

The amount of THMs formed in drinking water can be influenced by a number of factors, including the season and the source of the water. For example, THM concentrations are generally lower in winter than in summer, because concentrations of natural organic matter are lower and less chlorine is required to disinfect at colder temperatures. THM levels are also low when wells or large lakes are used as the drinking water source, because organic matter concentrations are generally low in these sources. The opposite — high organic matter concentrations and high THM levels — is true when rivers or other surface waters are used as the source of the drinking water.

Health Effects

Laboratory animals exposed to very high levels of THMs have shown increased incidences of cancer. Also, several studies of cancer incidence in human populations have reported associations between long-term exposure to high levels of chlorination by-products and an increased risk of certain types of cancer.

For instance, a recent study conducted in the Great Lakes basin reported an increased risk of bladder and possibly colon cancer in people who drank chlorinated surface water for 35 years or more.

Possible relationships between exposure to high levels of THMs and adverse reproductive effects in humans have also been examined recently. In a California study, pregnant women who consumed large amounts of tap water containing elevated levels of THMs were found to have an increased risk of spontaneous abortion.

The available studies on health effects do not provide conclusive proof of a relationship between exposure to THMs and cancer or reproductive effects, but indicate the need for further research to confirm their results and to assess the potential health effects of chlorination by-products other than THMs.

Chlorine storage room, notice the vents at the bottom and top. The bottom vent will allow the gas to ventilate because Cl_2 gas is 2.5 times heavier than air and 1.2 times heavier than water.

Risks and Benefits of Chlorine

Current evidence indicates the benefits of chlorinating our drinking water — reduced incidence of water-borne diseases — are much greater than the risks of health effects from THMs.

Although other disinfectants are available, chlorine continues to be the choice of water treatment experts. When used with modern water filtration practices, chlorine is effective against virtually all infectious agents — bacteria, viruses, and protozoa. It is easy to apply, and most importantly, small amounts of chlorine remain in the water and continue to disinfect throughout the distribution system. This ensures the water remains free of microbial contamination on its journey from the treatment plant to the consumer's tap.

A number of cities use ozone to disinfect their source water and to reduce THM formation. Although ozone is a highly effective disinfectant, it breaks down quickly, so that small amounts of chlorine or other disinfectants must be added to the water to ensure continued disinfection as the water is piped to the consumer's tap. Modifying water treatment facilities to use ozone can be expensive, and ozone treatment can create other undesirable by-products that may be harmful to health if they are not controlled (i.e., bromate).

Examples of other disinfectants include chloramines and chlorine dioxide. Chloramines are weaker disinfectants than chlorine, especially against viruses and protozoa; however, they are very persistent and, as such, can be useful for preventing re-growth of microbial pathogens in drinking water distribution systems.

Chlorine dioxide can be an effective disinfectant, but it forms chlorate and chlorite, compounds whose toxicity has not yet been fully determined. Assessments of the health risks from these and other chlorine-based disinfectants and chlorination by-products are currently under way.

In general, the preferred method of controlling chlorination by-products is removal of the naturally occurring organic matter from the source water so it cannot react with the chlorine to form by-products. THM levels may also be reduced through the replacement of chlorine with alternative disinfectants.

A third option is removal of the by-products by adsorption on activated carbon beds. It is extremely important that water treatment plants ensure the methods used to control chlorination by-products do not compromise the effectiveness of water disinfection.

Chlorine Piping

Water softening may be needed when your source water is too hard for successful chlorination using HTH.

Chlorinator Parts

- ✓ Ejector
- ✓ Check Valve Assembly
- ✓ Rate Valve
- ✓ Diaphragm Assembly
- ✓ Interconnection Manifold
- ✓ Rotometer Tube and Float
- ✓ Pressure Gauge
- ✓ Gas Supply

Various Chlorine measurement devices or Rotometers.

Safety Information: There is a fusible plug on every chlorine tank. This metal plug will melt at 158 ° to 165° F. This is to prevent a build-up of excessive pressure and the possibility of cylinder rupture due to fire or high temperatures.

Chlorination Equipment Requirements

For all water treatment facilities, chlorine gas under pressure shall not be permitted outside the chlorine room. The chlorine room is the room where chlorine gas cylinders and/or ton containers are stored. Vacuum regulators shall also be located inside the chlorine room. The chlorinator, which is the mechanical gas proportioning equipment, may or may not be located inside the chlorine room. For new and upgraded facilities, from the chlorine room, chlorine gas vacuum lines should be run as close to the point of solution application as possible. Injectors should be located to minimize the length of pressurized chlorine solution lines. A gas pressure relief system shall be included in the gas vacuum line between the vacuum regulator(s) and the chlorinator(s) to ensure that pressurized chlorine gas does not enter the gas vacuum lines leaving the chlorine room.

The gas pressure relief system shall vent pressurized gas to the atmosphere at a location that is not hazardous to plant personnel; the vent line should be run in such a manner that moisture collecting traps are avoided. The vacuum regulating valve(s) shall have positive shutdown in the event of a break in the downstream vacuum lines. As an alternative to chlorine gas, it is permissible to use hypochlorite with positive displacement pumping. Antisiphon valves shall be incorporated in the pump heads or in the discharge piping.

Capacity

The chlorinator shall have the capacity to dose enough chlorine to overcome the demand and maintain the required concentration of the *free* or *combined* chlorine.

Methods of Control

The chlorine feed system shall be automatic proportional controlled, automatic residual controlled, or compound loop controlled. In the automatic proportional controlled system, the equipment adjusts the chlorine feed rate automatically in accordance with the flow changes to provide a constant pre-established dosage for all rates of flow. In the automatic residual controlled system, the chlorine feeder is used in conjunction with a chlorine residual analyzer which controls the feed rate of the chlorine feeders to maintain a particular residual in the treated water.

In the compound loop control system, the feed rate of the chlorinator is controlled by a flow proportional signal and a residual analyzer signal to maintain particular chlorine residual in the water. Manual chlorine feed systems may be installed for groundwater systems with constant flow rate.

Standby Provision

As a safeguard against malfunction and/or shut-down, standby chlorination equipment having the capacity to replace the largest unit shall be provided. For uninterrupted chlorination, gas chlorinators shall be equipped with an automatic changeover system. In addition, spare parts shall be available for all chlorinators.

Weigh Scales

Scales for weighing cylinders shall be provided at all plants using chlorine gas to permit an accurate reading of total daily weight of chlorine used. At large plants, scales of the recording and indicating type are recommended. As a minimum, a platform scale shall be provided. Scales shall be of corrosion-resistant material.

Securing Cylinders

All chlorine cylinders shall be securely positioned to safeguard against movement. Tag the cylinder *empty* and store upright and chained. Ton containers may not be stacked.

Chlorine Leak Detection

Automatic chlorine leak detection and related alarm equipment shall be installed at all water treatment plants using chlorine gas. Leak detection shall be provided for the chlorine rooms. Chlorine leak detection equipment should be connected to a remote audible and visual alarm system and checked on a regular basis to verify proper operation.

Leak detection equipment shall not automatically activate the chlorine room ventilation system in such a manner as to discharge chlorine gas. During an emergency, if the chlorine room is unoccupied, the chlorine gas leakage shall be contained within the chlorine room itself in order to facilitate a proper method of cleanup.

Consideration should also be given to the provision of caustic soda solution reaction tanks for absorbing the contents of leaking one-ton cylinders where such cylinders are in use.

Chlorine leak detection equipment may not be required for very small chlorine rooms with an exterior door (i.e., floor area less than 3m²).

You can use a spray solution of Ammonia or a rag soaked with Ammonia to detect a small Cl₂ leak. If there is a leak, the ammonia will create a white colored smoke. Ammonium Chloride.

Safety Equipment

The facility shall be provided with personnel safety equipment to include the following:

Respiratory equipment, safety shower, eyewash, gloves, eye protection, protective clothing, cylinder and/or ton repair kits.

Respiratory equipment shall be provided which has been approved under the Occupational Health and Safety Act, General Safety Regulation - Selection of Respiratory Protective Equipment. Equipment shall be in close proximity to the access door(s) of the chlorine room.

Chlorine Room Design Requirements

Where gas chlorination is practiced, the gas cylinders and/or the ton containers up to the vacuum regulators shall be housed in a gas-tight, well illuminated, corrosion resistant and mechanically ventilated enclosure. The chlorinator may or may not be located inside the chlorine room. The chlorine room shall be located at the ground floor level.

Ventilation

Gas chlorine rooms shall have entirely separate exhaust ventilation systems capable of delivering one complete air change per minute during periods of chlorine room occupancy only - there shall be no continuous ventilation. The air outlet from the room shall be 150 mm above the floor and the point of discharge located to preclude contamination of air inlets to buildings or areas used by people. The vents to the outside shall have insect screens.

Air inlets should be louvered near the ceiling, the air being of such temperature as to not adversely affect the chlorination equipment.

Separate switches for fans and lights shall be outside the room at all entrance or viewing points, and a clear wire-reinforced glass window shall be installed in such a manner as to allow the operator to inspect from the outside of the room.

Heating

Chlorine rooms shall have separate heating systems, if a forced air system is used to heat the building. Hot water heating system for the building will negate the need for a separate heating system for the chlorine room. The heat should be controlled at approximately 15°C. Cylinders or containers shall be protected to ensure that the chlorine maintains its gaseous state when entering the chlorinator.

Access

All access to the chlorine room shall only be from the exterior of the building. Visual inspection of the chlorination equipment from inside may be provided by the installation of glass window(s) in the walls of the chlorine room. Windows should be at least 0.20 m2 in area, and be made of clear wire reinforced glass.

There should also be a *panic bar* on the inside of the chlorine room door for emergency exit.

Storage of Chlorine Cylinders

- ✓ If necessary, a separate storage room may be provided to simply store the chlorine gas cylinders, with no connection to the line. The chlorine cylinder storage room shall have access either to the chlorine room or from the plant exterior, and be arranged to prevent the uncontrolled release of spilled gas.
- Chlorine gas storage room shall have provision for ventilation at thirty air changes per hour.
- ✓ Viewing glass windows and panic button on the inside of door should also be provided.
- ✓ In very large facilities, entry into the chlorine rooms may be through a vestibule from outside.

Scrubbers

For facilities located within residential or densely populated areas, consideration shall be given to provide scrubbers for the chlorine room.

Troubleshooting Hypochlorination Problems

Problem

- 1. Chemical feed pump won't run.
- 2. Low chlorine residual at POE.
- 2. Low chlorine residual at POE.
- 3. Chemical feed pump won't prime.
- 4. Loss of prime

Possible Cause

- 1A. No power.
- 1B. Electrical problem with signal from well pump or flow sensor.
- 1C. Motor failure.
- 2A. Improper procedure for running chlorine residual test or expired chemical reagents.
- 2B. Pump not feeding an adequate quantity of chlorine.
- 2C. Change in raw water quality.
- 2D. Pump air bound.
- 2E. Chlorine supply tank empty.
- 2F. Reduced effectiveness of chlorine solution.
- 2G. Damaged suction or discharge lines. (cracks or crimps)
- 2H. Connection at point of injection clogged or leaking.
- 3A. Speed and stroke setting inadequate.
- 3B. Suction lift too high due to feed pump relocation.
- 3C. Discharge pressure too high.
- 3D. Suction fitting clogged.
- 3E. Trapped air in suction line.
- 3F. Suction line not submerged in solution.
- 4A. Solution tank empty.
- 4B. Air leaks in suction fittings.
- 4C. Foot valve not in vertical position.
- 4D. Air trapped in suction tubing.

Possible Solution

1A. Check to see if plug is securely in place.

Insure that there is power to the outlet and control systems.

1B. Check pump motor starter. Bypass flow sensor to determine if pump will operate manually.

1C. Check manufacturer's information.

2A Check expiration date on chemical reagents. Check test procedure as described in test kit manual. Speed or stroke setting too low.

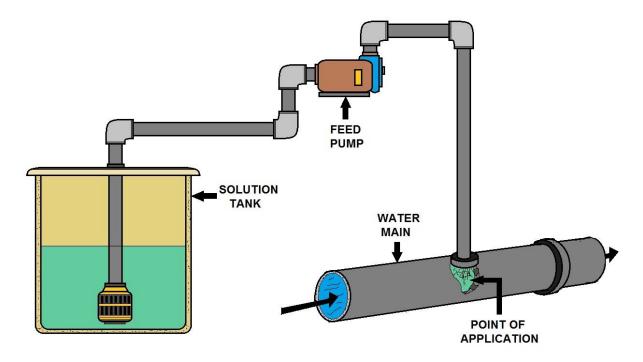
2B. Damaged diaphragm or suction leak.

2C. Test raw water for constituents that may cause increased chlorine demand. (i.e. iron,

manganese, etc.)

- 2D. Check foot valve.
- 2E. Fill supply tank.

2F. Check date that chlorine was received. Sodium hypochlorite solution may lose effectiveness after 30 days. If that is the case, the feed rate must be increased to obtain the desired residual.


2G. Clean or repair lines with problems.

2H. Flush line and connection with mild acid such as Acetic or Muriatic. Replace any damaged parts that may be leaking.

3A. Check manufacturers' recommendations for proper settings to prime pump.

Distribution 404 1St Edition

- 3B. Check maximum suction lift for pump and relocate as necessary.
- 3C. Check well pump discharge pressure.
- Check pressure rating on chemical feed pump.
- 3D. Clean or replace screen.
- 3E. Insure all fittings are tight.
- 3F. Add chlorine solution to supply tank.
- 4A. Fill tank.
- 4B. Check for cracked fittings.
- 4C. Adjust foot valve to proper position.
- 4D. Check connections and fittings.

SODIUM HYPOCHLORITE FEEDING

Disinfection Policy Procedure Example

Disinfection may be accomplished with calcium or sodium hypochlorites or gas chlorine or other disinfecting agents approved by the Department. Proposals for the use of disinfecting agents other than those specifically listed above must be approved by the Department prior to preparation of final plans and specifications. The Department will grant approval when all available information establishes that the chemical to be used as a disinfecting agent meets the following conditions: the residual levels created by the use of the chemical will not jeopardize the health of the user of the water, testing procedures for residual elements are recognized in "*Standard Methods for the Examination of Water and Wastewater*" (1978 Edition-American Public Health Association) (see Section 930.15) and the chemical will destroy bacteria in the water supply.

Chlorination Equipment. The Chlorinator shall be designed to provide a free chlorine residual of at least two milligrams per liter in the water after contact time of at least 30 minutes at flow rates as indicated in Exhibit A. The equipment shall be of such design that it will operate accurately over the desired feeding range. Where flow is uniform, actuation of a constant volume feeder by the pump circuit is required. Where flow is variable, automatic flow proportioning is required.

Contact Time and Point of Application. A minimum free chlorine residual of at least 0.1 milligram per liter shall be maintained at distant points in the water distribution system. Chlorine shall be applied after the filter and prior to the filtered water storage tank.

Testing Equipment. Chlorine residual test equipment capable of measuring free chlorine residual shall be provided and shall be capable of measuring residuals to the nearest 0.1 mg/1 in the range below 0.5 mg/1, to the nearest 0.3 mg/1 between 0.5 and 1.0 mg/1, and to the nearest 0.5 mg/1 between 1.0 mg/1 and 2.0 mg/1.

Hypochlorinator. Positive displacement pumps shall be provided to inject hypochlorite solution. The pump shall be of variable flow type and shall be of sufficient capacity to feed the required amount of disinfectant.

If calcium hypochlorite is used, the concentration of calcium hypochlorite in the solution shall not exceed 5 percent. The solution container shall have a minimum capacity equal to the volume of solution required per day. The hypochlorinator shall be electrically interconnected with the raw water feed pump so that both will start and stop together.

The Water Department should maintain an emergency hypochlorinator in reserve status at the operation center to be used during non-routine chlorination occurrences. Additionally, an adequate supply of Sodium Hypochlorite is maintained at all times. All reservoirs are routinely chlorinated to produce a free chlorine residual.

Emergency chlorination of any of the Water Department's reservoirs can occur through access ports in each of the reservoir structures.

Alternate Disinfectants

Chloramine

Chloramine is a very weak disinfectant for Giardia and virus reduction. It is recommended that it be used in conjunction with a stronger disinfectant. It is best utilized as a stable distribution system disinfectant.

In the production of chloramines, the ammonia residuals in the finished water, when fed in excess of stoichiometric amount needed, should be limited to inhibit growth of nitrifying bacteria.

Chlorine Dioxide

Chlorine dioxide may be used for either taste or odor control or as a pre-disinfectant. Total residual oxidants (including chlorine dioxide and chlorite, but excluding chlorate) shall not exceed 0.30 mg/L during normal operation or 0.50 mg/L (including chlorine dioxide, chlorite and chlorate) during periods of extreme variations in the raw water supply.

Chlorine dioxide provides good Giardia and virus protection but its use is limited by the restriction on the maximum residual of 0.5 mg/L ClO₂/chlorite/chlorate allowed in finished water. This limits usable residuals of chlorine dioxide at the end of a process unit to less than 0.5 mg/L.

Where chlorine dioxide is approved for use as an oxidant, the preferred method of generation is to entrain chlorine gas into a packed reaction chamber with a 25% aqueous solution of sodium chlorite (NaClO₂).

Warning: Dry sodium chlorite is explosive and can cause fires in feed equipment if leaking solutions or spills are allowed to dry out.

Ozone

Ozone is a very effective disinfectant for both Giardia and viruses. Ozone CT (contact time) values must be determined for the ozone basin alone; an accurate T10 value must be obtained for the contact chamber, residual levels measured through the chamber and an average ozone residual calculated.

Ozone does not provide a system residual and should be used as a primary disinfectant only in conjunction with free and/or combined chlorine.

Ozone does not produce chlorinated byproducts (such as trihalomethanes) but it may cause an increase in such byproduct formation if it is fed ahead of free chlorine; ozone may also produce its own oxygenated byproducts such as aldehydes, ketones or carboxylic acids. Any installed ozonation system must include adequate ozone leak detection alarm systems, and an ozone off-gas destruction system.

Ozone may also be used as an oxidant for removal of taste and odor or may be applied as a pre-disinfectant.

Amperometric Titration

The chlorination of water supplies and polluted waters serves primarily to destroy or deactivate disease-producing microorganisms. A secondary benefit, particularly in treating drinking water, is the overall improvement in water quality resulting from the reaction of chlorine with ammonia, iron, manganese, sulfide, and some organic substances.

Chlorination may produce adverse effects. Taste and odor characteristics of phenols and other organic compounds present in a water supply may be intensified. Potentially carcinogenic chloro-organic compounds such as chloroform may be formed.

Combined chlorine formed on chlorination of ammonia- or amine-bearing waters adversely affects some aquatic life. To fulfill the primary purpose of chlorination and to minimize any adverse effects, it is essential that proper testing procedures be used with a foreknowledge of the limitations of the analytical determination.

Chlorine applied to water in its molecular or hypochlorite form initially undergoes hydrolysis to form free chlorine consisting of aqueous molecular chlorine, hypochlorous acid, and hypochlorite ion. The relative proportion of these free chlorine forms is pH- and temperature-dependent. At the pH of most waters, hypochlorous acid and hypochlorite ion will predominate. Free chlorine reacts readily with ammonia and certain nitrogenous compounds to form combined chlorine. With ammonia, chlorine reacts to form the chloramines: monochloramine, dichloramine, and nitrogen trichloride.

The presence and concentrations of these combined forms depend chiefly on pH, temperature, initial chlorine-to-nitrogen ratio, absolute chlorine demand, and reaction time. Both free and combined chlorine may be present simultaneously. Combined chlorine in water supplies may be formed in the treatment of raw waters containing ammonia or by the addition of ammonia or ammonium salts. Chlorinated wastewater effluents, as well as certain chlorinated industrial effluents, normally contain only combined chlorine. Historically the principal analytical problem has been to distinguish between free and combined forms of chlorine.

Hach's AutoCAT 9000[™] Automatic Titrator is the newest solution to hit the disinfection industry – a comprehensive, bench top chlorine-measurement system that does it all: calibration, titration, calculation, real-time graphs, graphic print output, even electrode cleaning. More a laboratory assistant than an instrument, the AutoCAT 9000 gives you:

High throughput, performs the titration and calculates concentration, all automatically:

Forward titration: USEPA-accepted methods for free and total chlorine and chlorine dioxide with chlorite

Back titration: USEPA-accepted method for total chlorine in wastewater

Accurate, yet convenient, the easiest way to complete ppb-level amperometric titration

If you're dechlorinating, modifying your current disinfectant delivery, changing over to another chlorine species, or adjusting disinfection processes to meet new regulations, this is the workhorse system that yields the fast, accurate residual readings you need.

Method	Method Focus	Title	Order Number	Source
4500-Cl ⁻ B	Chloride by Silver Nitrate Titration	Standard Methods for the Examination of Water and Wastewater, 18th & 19th Ed.	Included in Standard Methods	American Water Works Assn.
4500-CI ⁻ D	Chloride by Potentiometric Method	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CI D	Chlorine Residual by Amperometric Titration (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CI E	Chlorine Residual by Low Level Amperometric Titration (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CI F	Chlorine Residual by DPD Ferrous Titration (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CI G	Chlorine Residual by DPD Colorimetric Method (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CI H	Chlorine Residual by Syringaldazine (FACTS) Method (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CI I	Chlorine Residual by Iodometric Electrode Technique (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-ClO₂ C	Chlorine Dioxide by the Amperometric Method I	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-ClO₂ D	Chlorine Dioxide by the DPD Method (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CIO ₂ E	Chlorine Dioxide by the Amperometric Method II (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.

Chlorine Dioxide Methods

Most tests for chlorine dioxide rely upon its oxidizing properties. Consequently, numerous test kits are readily available that can be adapted to measure chlorine dioxide. In addition, new methods that are specific for chlorine dioxide are being developed. The following are the common analytical methods for chlorine dioxide:

	DPD glycine	Chloropheno I Red	Direct Absorbance	lodometric Titration	Amperometri c Titration
Method Type:	Colorimetric	Colorimetric	Colorimetric	Titrimetric	Titrimetric
How It Works	Glycine removes Cl_2 ; ClO_2 forms a pink color, whose intensity is proportional to the ClO_2 concentration	CIO ₂ bleaches chlorophenol red indicator. The degree of bleaching is proportional to the concentration of CIO ₂ .	The direct measuremen t of CIO ₂ is determined between 350 and 450 nM.	Two aliquots are taken one is sparged with N_2 to remove ClO ₂ . Kl is added to the other sample at pH7 and titrated to a colorless endpoint. The pH is lower to 2, the color allowed to reform and the titration continued. These titrations are repeated on the sparged sample.	
Range	0.5 to 5.0 ppm.	0.1 to 1.0 ppm	100 to 1000 ppm	> 1 ppm	< 1ppm
Interferences	Oxidizers	None	Color, turbidity	Oxidizers	
Complexity	Simple	Moderate	Simple	Moderate	High
Equipment Required			r	Titration equipmen t	Amperometric Titrator
EPA Status	Approved	Not approved	Not approved	Not approved	Approved
Recommendatio n	Marginal	Yes	Marginal	Yes	Marginal

Chlorine Exposure Limits

This information is necessary to pass your certification exam.

* OSHA PEL 1 PPM - IDLH 10 PPM and Fatal Exposure Limit 1,000 PPM

The current Occupational Safety and Health Administration (**OSHA**) permissible exposure limit (**PEL**) for chlorine is 1 ppm (3 milligrams per cubic meter $(mg/m^{(3)})$) as a ceiling limit. A worker's exposure to chlorine shall at no time exceed this ceiling level. * **IDLH 10 PPM**

Physical and chemical properties of chlorine: A yellowish green, nonflammable and liquefied gas with an unpleasant and irritating smell. Can be readily compressed into a clear, ambercolored liquid, a noncombustible gas, and a strong oxidizer. Solid chlorine is about 1.5 times heavier than water and gaseous chlorine is about 2.5 times heavier than air. Atomic number of chlorine is 17. Cl is the elemental symbol and Cl_2 is the chemical formula.

Monochloramine, dichloramine, and trichloramine are also known as Combined Available Chlorine. $Cl_2 + NH_4$.

HOCI and OCI-: The OCL- is the hypochlorite ion and both of these species are known as free available chlorine, they are the two main chemical species formed by chlorine in water and they are known collectively as hypochlorous acid and the hypochlorite ion. When chlorine gas is added to water, it rapidly hydrolyzes. The chemical equations best describes this reaction is $Cl_2 + H_2O - H + Cl + HOCI$. Hypochlorous acid is the most germicidal of the chlorine compounds with the possible exception of chlorine dioxide.

Yoke-type connectors should be used on a chlorine cylinder's valve assuming that the threads on the valve may be worn.

The connection from a chlorine cylinder to a chlorinator should be replaced by using a new, approved gasket on the connector. Always follow your manufacturer's instructions.

On a 1 ton Cl_2 gas container, the chlorine pressure reducing valve should be located downstream of the evaporator when using an evaporator. This is the liquid chlorine supply line and it is going to be made into chlorine gas.

Here are several safety precautions when using chlorine gas: In addition to protective clothing and goggles, chlorine gas should be used only in a well-ventilated area so that any leaking gas cannot concentrate. Emergency procedures in the case of a large uncontrolled chlorine leak are to: notify local emergency response team, warn and evacuate people in adjacent areas, and be sure that no one enters the leak area without adequate self-contained breathing equipment.

Here are several symptoms of chlorine exposure: burning of eyes, nose, and mouth; coughing, sneezing, choking; nausea and vomiting; headaches and dizziness; fatal pulmonary edema, pneumonia and skin blisters. A little Cl₂ will corrode the teeth and then progress to throat cancer.

Approved method for storing a 150 - 200 pound chlorine cylinder: secure each cylinder in an upright position, attach the protective bonnet over the valve and firmly secure each cylinder. Never store near heat. Always store the empty in an upright, secure position with proper signage.

Corrosion Control

Corrosion is the deterioration of a substance by chemical action. Lead, cadmium, zinc, copper and iron might be found in water when metals in water distribution systems corrode. Drinking water contaminated with certain metals (such as lead and cadmium) can harm human health.

Corrosion also reduces the useful life of water distribution systems and can promote the growth of microorganisms, resulting in disagreeable tastes, odors, slimes and further corrosion. Because it is widespread and highly toxic, lead is the corrosion product of greatest concern. The EPA has banned the use of lead solders, fluxes and pipes in the installation or repair of any public water system. In the past, solder used in plumbing has been 50% tin and 50% lead. Using lead-free solders, such as silver-tin and antimony-tin is a key factor in lead corrosion control.

The highest level of lead in consumers' tap water will be found in water that has been standing in the pipes after periods of nonuse (overnight or longer). This is because standing water tends to leach lead or copper out of the metals in the distribution system more readily than does moving water. Therefore, the simplest short-term or immediate measure that can be taken to reduce exposure to lead in drinking water is to let the water run for two to three minutes before each use. Also, drinking water should not be taken from the hot water tap, as hot water tends to leach lead more readily than cold. Long-term measures for addressing lead and other corrosion by-products include pH and alkalinity adjustment; corrosion inhibitors; coatings and linings; and cathodic protection, all discussed below.

Cathodic Protection

Cathodic protection is an electrical system used for the prevention of rust, corrosion, and pitting of metal surfaces which are in contact with water or soil. Cathodic protection protects steel from corrosion which is the natural electrochemical process that results in the deterioration of a material because of its reaction with its environment. Metallic structures, components and equipment exposed to aqueous environments, soil or seawater can be subject to corrosive attack and accelerated deterioration. Therefore, it is often necessary to utilize either impressed current or sacrificial anode cathodic protection (CP) in combination with coatings as a means of suppressing the natural degradation phenomenon to provide a long and useful service life. However, if proper considerations are not given, problems can arise which can produce unexpected, premature failure. E.M.F. is a crazy term is used to express the electrical pressure available to cause a flow of current when an electric circuit is closed.

There are Two Types of Cathodic Protection:

Ø Sacrificial Anodes (Galvanic Systems) Ù Impressed (Induced) Current Systems

How Does Cathodic Protection Work?

Sacrificial anodes are pieces of metal more electrically active than the steel piping system. Because these anodes are more active, the corrosive current will exit from them rather than the piping system. Thus, the system is protected while the attached anode is "*sacrificed*."

Sacrificial anodes can be attached to existing piping system or coated steel for a pre-engineered Cathodic protection system. An asphalt coating is not considered a suitable dielectric coating. Depleted anodes must be replaced for continued Cathodic protection of the system. **Impressed or Induced Current Systems**

An impressed current cathodic protection system consists of anodes, cathodes, a rectifier and the soil. The rectifier converts the alternating current to direct current. The direct current is then sent through an insulated copper wire to anodes that are buried in the soil near the piping system. Typical anode materials are ceramic, high silicon cast iron, or graphite. Ceramic anodes are not consumed, whereas high silicon cast iron and graphite anodes partially dissolve each year and must be replaced over time. The direct current then flows from the anode through the soil to the piping system, which acts as the cathode, and back to the rectifier through another insulated copper wire. As a result of the electrochemical properties of the impressed current cathodic protection system, corrosion takes place only at the anodes and not at the piping system. Depleted anodes must be replaced for continued Cathodic protection of the piping system.

Sacrificial Anode System

In this system, a metal or alloy reacting more vigorously than that corroding specimen, acts as an anode and the corroding structure as a whole is rendered Cathodic. These anodes are made of materials such as magnesium, aluminum or zinc, which are anodic with respect to the protected structure. The sacrificial anodes are connected directly to the structure.

Advantages

- 1. Needs no external power source.
- 2. Does not involve maintenance work
- 3. If carefully designed it can render protection for anticipated period.
- 4. Installation is simple
- 5. Does not involve expensive accessories like rectifier unit, etc.,
- 6. Economical for small structures

Disadvantages

1. The driving voltage is small and therefore the anodes have to be fitted close to the structure or on the structure, thereby increasing the weight or load on the structure.

2. The anodes have to be distributed all over the structure (as throwing power is lower) and therefore have design limitations in certain applications.

3. Once designed and installed, protection current cannot be altered or increased as may be needed in case of cathode area extension (unprotected) or foreign structure interference (physical contact).

Impressed Current System

The impressed current anode system, on the other hand, has several advantages over the sacrificial anode systems. In this system the protection current is "*Forced*" through the environment to the structure (cathode) by means of an external D.C. source. Obviously we need some material to function as anodes. It can be high silicon chromium cast iron anodes, graphite anodes, or lead-silver alloy anodes.

Advantages

1. Since the driving voltage is large, this system offers freedom of installation design and location.

2. Fewer anodes can protect large structure.

3. Variations in protection current requirements can be adjusted to some extent (to be incorporated at design stage).

Disadvantages

1. Shut down of D.C. supply for a long times allows structure to corrode again.

2. Reversal of anode cathode connection at D.C. source will be harmful, as structure will dissolve anodic

3. Needs trained staff for maintenance of units and for monitoring

4. Initial investments are higher and can pay off only in long run and economic only for large structures

- 5. Power cost must be incorporated in all economic considerations.
- 6. Possibility of over protection should be avoided as it will affect the life of the paint.
- 7. Any foreign structure coming within this field will cause an interference problem.

Alkalinity and pH Adjustment

Adjusting pH and alkalinity is the most common corrosion control method because it is simple and inexpensive. pH is a measure of the concentration of hydrogen ions present in water; alkalinity is a measure of water's ability to neutralize acids.

Generally, water pH less than 6.5 is associated with uniform corrosion, while pH between 6.5 and 8.0 can be associated with pitting corrosion. Some studies have suggested that systems using only pH to control corrosion should maintain a pH of at least 9.0 to reduce the availability of hydrogen ions as electron receptors. However, pH is not the only factor in the corrosion equation; carbonate and alkalinity levels affect corrosion as well.

Generally, an increase in pH and alkalinity can decrease corrosion rates and help form a protective layer of scale on corrodible pipe material. Chemicals commonly used for pH and alkalinity adjustment are hydrated lime (CaOH2 or calcium hydroxide), caustic soda (NaOH or sodium hydroxide), soda ash (Na2CO3 or sodium carbonate), and sodium bicarbonate (NaHCO3, essentially baking soda). Care must be taken, however, to maintain pH at a level that will control corrosion but not conflict with optimum pH levels for disinfection and control of disinfection by-products.

Corrosion Inhibitors

Inhibitors reduce corrosion by forming protective coatings on pipes. The most common corrosion inhibitors are inorganic phosphates, sodium silicates and mixtures of phosphates and silicates. These chemicals have proven successful in reducing corrosion in many water systems.

The phosphates used as corrosion inhibitors include polyphosphates, orthophosphates, glassy phosphates and bimetallic phosphates. In some cases, zinc is added in conjunction with orthophosphates or polyphosphates. Glassy phosphates, such as sodium hexametaphosphate, effectively reduce iron corrosion at dosages of 20 to 40 mg/l. Glassy phosphate has an appearance of broken glass and can cut the operator. Sodium silicates have been used for over 50 years to inhibit corrosion. The effectiveness depends on the water pH and carbonate concentration.

Sodium silicates are particularly effective for systems with high water velocities, low hardness, low alkalinity and a pH of less than 8.4. Typical coating maintenance doses range from 2 to 12 mg/1. They offer advantages in hot water systems because of their chemical stability. For this reason, they are often used in boilers of steam heating systems.

Granular Activated Carbon / Powdered Activated Carbon

Along with aeration, granular activated carbon (GAC) and powdered activated carbon (PAC) are suitable treatments for removal of organic contaminants such as VOCs, solvents, PCBs, herbicides and pesticides.

Activated carbon is carbon that has been exposed to very high temperature, creating a vast network of pores with a very large internal surface area; one gram of activated carbon has a surface area equivalent to that of a football field. It removes contaminants through adsorption, a process in which dissolved contaminants adhere to the surface of the carbon particles.

GAC can be used as a replacement for existing media (such as sand) in a conventional filter or it can be used in a separate contactor such as a vertical steel pressure vessel used to hold the activated carbon bed.

After a period of a few months or years, depending on the concentration of the contaminants, the surface of the pores in the GAC can no longer adsorb contaminants and the carbon must be replaced. Several operational and maintenance factors affect the performance of granular activated carbon.

Contaminants in the water can occupy adsorption sites, whether or not they are targeted for removal. Also, adsorbed contaminants can be replaced by other contaminants with which GAC has a greater affinity, so their presence might interfere with removal of contaminants of concern.

A significant drop in the contaminant level in influent water can cause a GAC filter to desorb, or slough off, adsorbed contaminants, because GAC is essentially an equilibrium process. As a result, raw water with frequently changing contaminant levels can result in treated water of unpredictable quality.

Bacterial growth on the carbon is another potential problem. Excessive bacterial growth may cause clogging and higher bacterial counts in the treated water. The disinfection process must be carefully monitored in order to avoid this problem.

Powdered activated carbon consists of finely ground particles and exhibits the same adsorptive properties as the granular form. PAC is normally applied to the water in a slurry and then filtered out. The addition of PAC can improve the organic removal effectiveness of conventional treatment processes and also remove tastes and odors.

Advantages of PAC are that it can be used on a short-term or emergency basis with conventional treatment, creates no headloss, does not encourage microbial growth, and has relatively small capital costs.

The main disadvantage is that some contaminants require large doses of PAC for removal. It is also somewhat ineffective in removing natural organic matter due to the competition from other contaminants for surface adsorption and the limited contact time between the water and the carbon.

Disinfection Review Summary

Chlorine

Upon adding chlorine to water, two chemical species, known together as free chlorine, are formed. These species, hypochlorous acid (HOCI, electrically neutral) and hypochlorite ion (OCI-, electrically negative), behave very differently. Hypochlorous acid is not only more reactive than the hypochlorite ion, but is also a stronger disinfectant and oxidant.

The ratio of hypochlorous acid to hypochlorite ion in water is determined by the pH. At low pH (higher acidity), hypochlorous acid dominates while at high pH hypochlorite ion dominates. Thus, the speed and efficacy of chlorine disinfection against pathogens may be affected by the pH of the water being treated. Fortunately, bacteria and viruses are relatively easy targets of chlorination over a wide range of pH. However, treatment operators of surface water systems treating raw water contaminated by the parasitic protozoan Giardia may take advantage of the pH-hypochlorous acid relationship and adjust the pH to be effective against Giardia, which is much more resistant to chlorination than either viruses or bacteria.

Another reason for maintaining a predominance of hypochlorous acid during treatment has to do with the fact that pathogen surfaces carry a natural negative electrical charge. These surfaces are more readily penetrated by the uncharged, electrically neutral hypochlorous acid than the negatively charged hypochlorite ion. Moving through slime coatings, cell walls and resistant shells of waterborne microorganisms, hypochlorous acid effectively destroys these pathogens. Water is made microbiologically safe as pathogens either die or are rendered incapable of reproducing. A typical bacterium has a negatively charged slime coating on its exterior cell wall, which is effectively penetrated by electrically neutral hypochlorous acid, favored by lower pH's.

Factors in Chlorine Disinfection: Concentration and Contact Time

In an attempt to establish more structured operating criteria for water treatment disinfection, the CXT concept came into use in 1980. Based on the work of several researchers, CXT values [final free chlorine concentration (mg/L) multiplied by minimum contact time (minutes)], offer water operators guidance in computing an effective combination of chlorine concentration and chlorine contact time required to achieve disinfection of water at a given temperature. The CXT formula demonstrates that if an operator chooses to decrease the chlorine concentration, the required contact time must be lengthened. Similarly, as higher strength chlorine solutions are used, contact times may be reduced (Connell, 1996).

Chloramines

Chloramines are chemical compounds formed by combining a specific ratio of chlorine and ammonia in water. Because chloramines are relatively weak as a disinfectant, they are almost never used as a primary disinfectant. Chloramines provide a durable residual, and are often used as a secondary disinfectant for long distribution lines and where free chlorine demand is high. Chloramines may also be used instead of chlorine in order to reduce chlorinated byproduct formation and to remove some taste and odor problems.

Advantages

- ✓ Reduced formation of THMs, HAAs
- ✓ Will not oxidize bromide to bromine forming brominated byproducts
- ✓ More stable residual than free chlorine
- ✓ Excellent secondary disinfectant, has been found to be better than free chlorine at controlling coliform bacteria and biofilm growth
- ✓ Lower taste and odor than free chlorine

Limitations

- ✓ Weak disinfectant and oxidant
- ✓ Requires shipment and handling of ammonia or ammonia compounds as well as chlorinating chemicals
- ✓ Ammonia is toxic to fish, and may pose problems for aquarium owners
- ✓ Will cause problems for kidney dialysis if not removed from water

Chlorine Dioxide

Chlorine dioxide (ClO₂) is generated on-site at water treatment facilities. In most generators sodium chlorite and elemental chlorine are mixed in solution, which almost instantaneously forms chlorine dioxide. Chlorine dioxide characteristics are quite different from chlorine. In solution it is a dissolved gas, which makes it largely unaffected by pH but volatile and relatively easily stripped from solution. Chlorine dioxide is also a strong disinfectant and a selective oxidant. While chlorine dioxide does produce a residual it is only rarely used for this purpose.

Advantages

- ✓ Effective against Cryptosporidium
- ✓ Up to five times faster than chlorine at inactivating Giardia
- ✓ Disinfection is only moderately affected by pH
- ✓ Will not form chlorinated byproducts (THMs, HAAs)
- ✓ Does not oxidize bromide to bromine (can form bromate in sunlight)
- ✓ More effective than chlorine in treating some taste and odor problems
- ✓ Selective oxidant used for manganese oxidation and targeting some chlorine resistant organics

Limitations

- ✓ Inorganic byproduct formation (chlorite, chlorate)
- ✓ Highly volatile residuals
- ✓ Requires on-site generation equipment and handling of chemicals (chlorine and sodium chlorite)
- Requires a high level of technical competence to operate and monitoring equipment, product and residuals
- ✓ Occasionally poses unique odor and taste problems
- ✓ High operating cost (chlorite chemical cost is high)

Understanding Chlorine Basics

Chlorine is applied to water in one of three forms: elemental chlorine (chlorine gas), hypochlorite solution (bleach), or dry calcium hypochlorite. All three forms produce free chlorine in water.

Advantages

- ✓ Highly effective against most pathogens
- ✓ Provides a residual to protect against recontamination and to reduce bio-film growth in the distribution system
- ✓ Easily applied, controlled, and monitored
- ✓ Strong oxidant meeting most preoxidation objectives
- ✓ Operationally the most reliable
- ✓ The most cost-effective disinfectant

Limitations

- ✓ Byproduct formation (THMs, HAAs)
- ✓ Will oxidize bromide to bromine, forming brominated organic byproducts
- ✓ Not effective against Cryptosporidium
- ✓ Requires transport and storage of chemicals

Elemental Chlorine

Elemental chlorine is the most commonly used form of chlorine. It is transported and stored as a liquefied gas under pressure. Water treatment facilities typically use chlorine in 100 and 150-lb cylinders or one-ton containers. Some large systems use railroad tank cars or tanker trucks.

Distribution 404 1St Edition

Advantages

- ✓ Lowest cost of chlorine forms
- ✓ Unlimited shelf-life

Limitations

- ✓ Hazardous gas requires special handling and operator training
- ✓ Additional regulatory requirements, including EPA's Risk Management Program and the Occupational Safety and Health Administration's Process Safety Management program

Factors in Chlorine Disinfection: Concentration and Contact Time

In an attempt to establish more structured operating criteria for water treatment disinfection, the CXT concept came into use in 1980. Based on the work of several researchers, CXT values [final free chlorine concentration (mg/L) multiplied by minimum contact time (minutes)], offer water operators guidance in computing an effective combination of chlorine concentration and chlorine contact time required to achieve disinfection of water at a given temperature. The CXT formula demonstrates that if an operator chooses to decrease the chlorine concentration, the required contact time must be lengthened. Similarly, as higher strength chlorine solutions are used, contact times may be reduced (Connell, 1996).

Disinfection and Bioterrorism

Disinfection is crucial to water system security, providing the 'front line' of defense against biological contamination. Normal filtration and disinfection processes would dampen or remove the threats posed by a number of potential bioterrorism agents. In addition, water systems should maintain an ability to increase disinfection doses in response to a particular threat.

However, conventional treatment barriers in no way guarantee safety from biological attacks. For many potential bioterrorism agents, there is little scientific information about what levels of reduction can be achieved with chlorine or other disinfectants. In addition, contamination of water after it is treated could overwhelm the residual disinfectant levels in distribution systems.

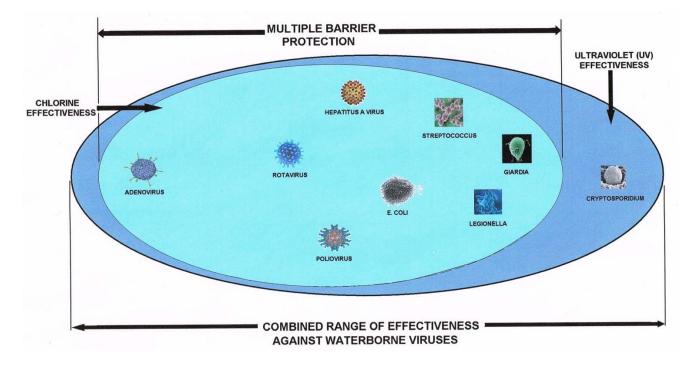
Furthermore, typical water quality monitoring does not provide real-time data to warn of potential problems (Rose 2002). Additional research and funding are needed to improve prevention, detection, and responses to potential threats.

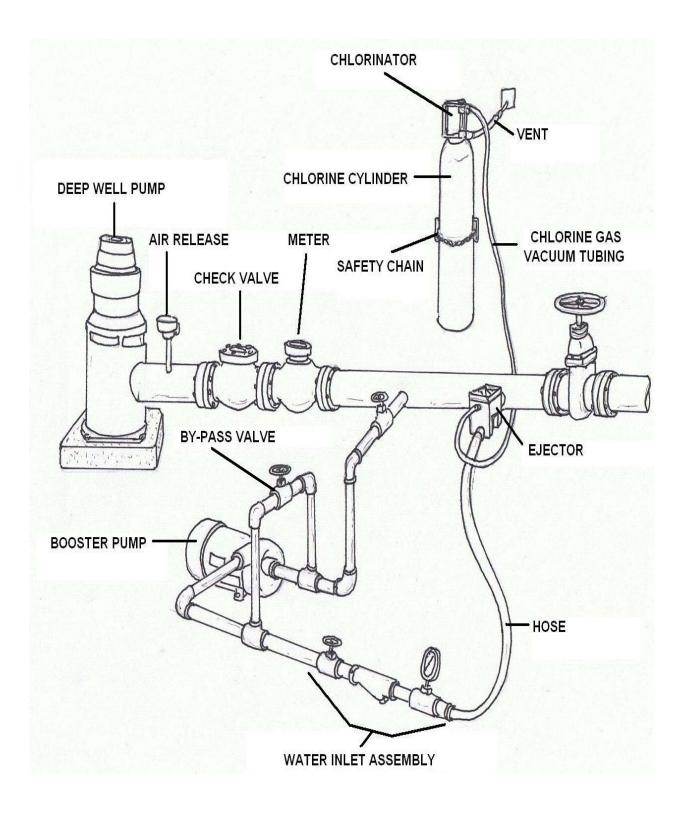
Protecting Chlorine and Other Treatment Chemicals

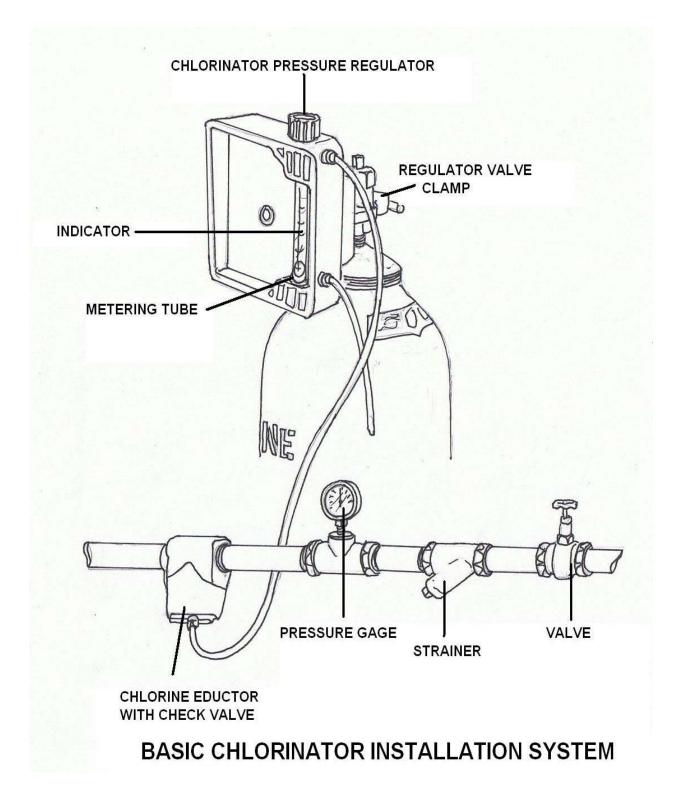
As part of its vulnerability assessment, each water system must consider its transportation, storage and use of treatment chemicals. These chemicals are both critical assets (necessary for delivering safe water) and potential vulnerabilities (may pose significant hazards, if released). For example, a release of chlorine gas would pose an immediate threat to system operators, and a large release may pose a danger to the surrounding community. As part of its vulnerability assessment, a water system using chlorine must determine if existing layers of protection are adequate. If not, a system should consider additional measures to reduce the likelihood of an attack or to mitigate the potential consequences.

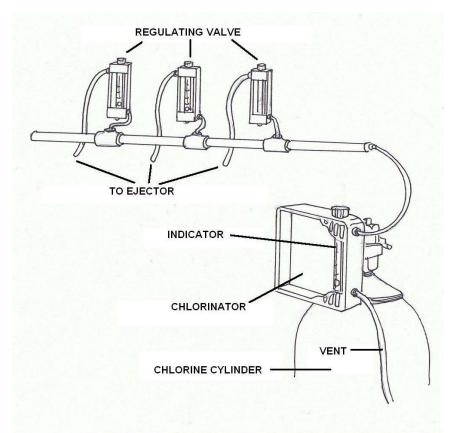
Possible measures to address chlorine security include: enhanced physical barriers (e.g., constructing secure chemical storage facilities), policy changes (e.g., tightening procedures for receiving chemical shipments), reducing quantities stored on site, or adopting alternative disinfection methods.

These options must be weighed and prioritized, considering the unique characteristics and resources of each system. Water system officials must evaluate the risk-tradeoffs associated with each option. For example, reducing the chemical quantities on-site may reduce a system's ability to cope with an interruption of chemical supplies. Furthermore, changing disinfection technologies will not necessarily improve overall safety and security.

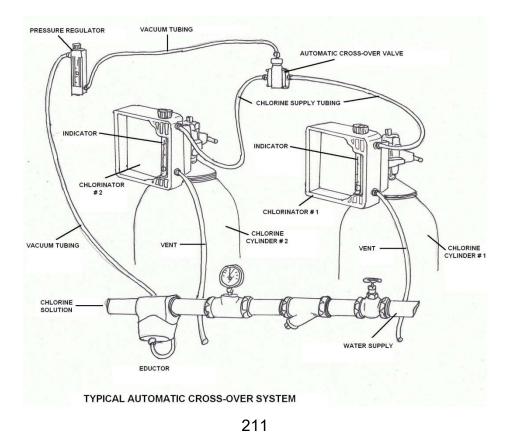

Understanding Calculation and Reporting of CT Data


Basically, log inactivation is a measurement of how effective a disinfection process is at killing microorganisms in a specific environment. Operationally, directly measuring log inactivation is not practical, but determining the microbial inactivation for an individual water treatment plant (WTP) can be achieved using the log inactivation calculations.


The log inactivation calculation adjusts the WTP's CT value to account for the disinfection chemical reaction process variables that influence the disinfection process efficiency.


Log Inactivation

"Log inactivation" is a convenient way to express the number or percent of microorganisms inactivated (killed or unable to replicate) through the disinfection process. For example, a 3 log inactivation value means that 99.9% of microorganisms of interest have been inactivated. Log inactivation measures the effectiveness of the disinfection process, which is influenced by variables including disinfectant concentration, temperature, pH and disinfectant type (e.g., lower temperature results in less inactivation since the reactions slow down as temperature decreases).



TYPICAL REMOTE AND MULTI-POINT SYSTEM

Distribution 404 1St Edition

CT and Log Inactivation Calculation Overview

This reference takes you step by step through the CT and log inactivation calculation procedure, through an example calculation, and presents the disinfection segment concept.

"CT" (minutes•mg/L) in the context of water treatment is defined as the product of: C, for "residual disinfectant concentration" in mg/L (determined before or at the first customer) and T, for the corresponding "disinfectant contact time" in minutes. CT is a measure of the disinfection process reaction time, but CT is only one of several variables that control the effectiveness of the disinfection process.

CTCALC = Concentration Time, Calculated Value (minutes•mg/L)

C = Residual disinfectant concentration measured during peak flow (mg/L)

T = Actual Detention Time (minutes)

 $CTCALC = C \times T$

TDT = Theoretical Detention Time (minutes)

V = Volume, based on low water level (gallons)

Q = Peak hourly flow (gpm)

TDT = V/Q

Volume Equations:

Cylindrical: $\pi \times r2 \times d$ Pipeline: $\pi \times r2 \times l$ Rectangular: $l \times w \times d$ d = minimum water depth π = 3.1416

Disinfection Segments Total inactivation = Σ log inactivation from each disinfection segment Disinfection Profile

Almost all community and non-transient, non-community public water systems that use Surface Water or Ground Water Under the Direct Influence of Surface Water sources are required to develop a disinfection profile. Systems are required to retain the disinfection profile in graphic form and it must be available for review by the state as part of a sanitary survey.

Disinfection Profile and Benchmark

• A disinfection profile is a graphical representation of a system's level of *Giardia lamblia* or virus inactivation measured, at least weekly, during the course of a year.

• A benchmark is the lowest monthly average microbial inactivation during the disinfection profile time period.

The EPA has developed a disinfection profile spreadsheet calculator that calculates and graphs the disinfection profile for *Giardia* and viruses. The spreadsheet can be downloaded from: http://www.epa.gov/safewater/mdbp/lt1eswtr.html.

Understanding Chlorine Demand

The amount of chlorine used by reactions with substances that oxidize in the water before chlorine residual can be measured. It is the difference between the amount of chlorine added to wastewater and the amount of chlorine residual remaining after a given contact time. Chlorine demand may change with dosage, time, temperature, pH, and the type and amount of pollutants in the water.

The presence of chlorine residual in drinking water indicates that: 1) a sufficient amount of chlorine was added initially to the water to inactivate the bacteria and some viruses that cause diarrheal disease; and, 2) the water is protected from recontamination during storage. The presence of free residual chlorine in drinking water is correlated with the absence of disease-causing organisms, and thus is a measure of the potability of water.

While chlorine's most important attributes are its broad-spectrum germicidal potency and persistence in water distribution systems, its ability to efficiently and economically address many other water treatment concerns has also supported its wide use. Chlorine-based compounds are the only major disinfectants exhibiting lasting residual properties. Residual protection guards against microbial regrowth and prevents contamination of the water as it moves from the treatment plant to household taps.

Definitions

When chlorine is added to water, some of the chlorine reacts first with organic materials and metals in the water and is not available for disinfection (this is called the chlorine demand of the water). The remaining chlorine concentration after the chlorine demand is accounted for is called total chlorine. Total chlorine is further divided into: 1) the amount of chlorine that has reacted with nitrates and is unavailable for disinfection which is called combined chlorine and, 2) the free chlorine, which is the chlorine available to inactivate disease-causing organisms, and thus a measure to determine the potability of water.

For example, if using completing clean water the chlorine demand will be zero, and there will be no nitrates present, so no combined chlorine will be present. Thus, the free chlorine concentration will be equal to the concentration of chlorine initially added. In natural waters, especially surface water supplies such as rivers, organic material will exert a chlorine demand, and nitrates will form combined chlorine. Thus, the free chlorine concentration will be less than the concentration of chlorine initially added.

Chlorine Dose, Demand, and Residual

Most water treatment plants are required to disinfect the water, a process used to kill harmful bacteria. The most frequently used method of disinfection is the addition of chlorine. Here, we will briefly introduce three terms used during chlorination - chlorine dose, chlorine demand, and chlorine residual. These three characteristics are related to each other using the following equation:

(Chlorine demand) = (Chlorine dose) - (Chlorine residual)

The amount of chlorine added to the water is known as the chlorine dose. This is a measured quantity chosen by the operator and introduced into the water using a chlorinator or hypochlorinator.

As the chlorine reacts with bacteria and chemicals in the water, some of the chlorine is used up. The amount of chlorine used up by reacting with substances in the water is known as the chlorine demand. If nothing reacts with the chlorine (as would be the case in distilled water), then the chlorine demand is zero. However, in most cases the operator should count on some of the chlorine dose being used up when it reacts with substances in the water.

The amount of chlorine remaining in the water after some of the chlorine reacts with substances in the water is known as the chlorine residual. This lab introduces a test which can be used to calculate the chlorine residual. The chlorine residual is the most important of these three values - dose, demand, and residual - because it represents the actual amount of chlorine remaining in the water to act as a disinfectant.

The test for chlorine residual is performed frequently at most water treatment plants. Since regulations require a certain level of chlorine in water at the far ends of the distribution system, operators should be sure to test the chlorine residual in the distribution system as well as in the clear well.

Combined residual chlorination involves the addition of chlorine to water to produce, with natural ammonia present or with ammonia added, a combined available chlorine residual. Combined available chlorine forms have lower oxidation potentials than free available chlorine forms and are less effective as oxidants. They are also less effective as disinfectants. In fact, 25 times more combined available residual chlorine must be obtained to meet the same disinfectant level as a free available residual. The contact time has to be up to 100 times greater to obtain the same level of bacterial kill at the same pH and temperature conditions.

When a combined available chlorine residual is desired, the character of the water determines how it can be accomplished. These conditions may have to be considered:

1. If the water contains sufficient ammonia to produce the desired level of combined residual, the application of sufficient chlorine alone is all that is needed.

2. If the water contains too little or no ammonia, then addition of both chlorine and ammonia is required.

3. If the water has a free available chlorine, the addition of ammonia alone is all that is required. A combined chlorine residual should contain little or no free available chlorine.

The practice of combined residual chlorination is the most effective way of maintaining a stable residual throughout the distribution system to the point of consumer use. Combined residuals in the distribution system are generally longer-lasting and will carry farther into the system, but they are not as effective as free residuals are at disinfecting. The levels required by the regulatory agencies, when using combined residuals, is 1.0 ppm to 2.0 ppm.

Understanding Chlorine Residual

The amount of available chlorine present in wastewater after a given contact time (20 minutes at peak flow; 30 minutes at average flow), and under specific conditions including pH and temperature.

For effective water treatment, the water supply industry has recognized the need for adequate exposure to the disinfectant and sufficient disinfectant dosage for a certain amount of time. In the 1980s, the two functions were combined with the development of the CT values for various disinfectants.

CT represents the combination of the disinfectant dosage and the length of time water has been exposed to a minimum amount of the disinfectant residual.

Mathematically it is represented as CT = concentration x time concentration = final disinfectant concentration in mg/l time = minimum exposure time in minutes

In an assessment of disinfection effectiveness, two types of organisms have been chosen as disinfection surrogates – the protozoan Giardia and viruses. CT values established for disinfection of surface waters require treatment plants to achieve a three-log or 99.9% reduction in Giardia and a four-log or 99.99% virus reduction. It is important to recognize that the use of chlorine as the disinfectant is only one part of the treatment process. Equally important is the need for improved filtration to remove organisms. A combination of proper disinfection and filtration is most effective in providing safe drinking water. Recent experiments in controlling Cryptosporidium also suggest the effectiveness of filtration in the water treatment process.

Free residual chlorination involves the application of chlorine to water to produce--either directly or by first destroying any naturally present ammonia--a free available chlorine residual and to maintain this residual through part or all of the water treatment plant and distribution system. Free available residual forms have higher oxidation potentials than combined available chlorine forms and are more effective as disinfectants.

When free available chlorine residuals are desired, the characteristics of the water will determine how this will be accomplished. This may have to be considered:

 If the water contains no ammonia or other nitrogen compounds, any application of chlorine will yield a free residual once it has reacted with any bacteria, virus and other microorganisms present in the water.
 If the water contains ammonia, it results in the formation of a combined residual, which must be destroyed by applying an excess of chlorine.

Breakpoint Chlorination

Breakpoint chlorination is the name of the process of adding chlorine to water until the chlorine demand has been satisfied. Chlorine demand equals the amount of chlorine used up before a free available chlorine residual is produced. Further additions of chlorine will result in a chlorine residual that is directly proportional to the amount of chlorine added beyond the breakpoint. Public water supplies normally chlorinate past the breakpoint.

When chlorine is initially added to water, the following may happen:

1. If the water contains some iron, manganese, organic matter, and ammonia, the chlorine reacts with these materials and no residual is formed, meaning that no disinfection has taken place.

2. If additional chlorine is added at this point, it will react with the organics and ammonia to form chloramines. The chloramines produce a combined chlorine residual. As the chlorine is combined with other substances, it loses some of the disinfection strength. Combined residuals have poor disinfection power and may be the cause of taste and odor problems.

3. With a little more chlorine added, the chloramines and some of the chlororganics are destroyed.

4. With still more chlorine added, a free chlorine residual is formed, free in the sense that it can react quickly.

Free available chlorine is the best residual for disinfection. It disinfects faster and without the swimmingpool odor of combined residual chlorine. The free available residual forms at the breakpoint; therefore, the process is called breakpoint chlorination. The common practice today is to go just beyond the breakpoint to a residual of about .2 to .5 ppm.

A variety of reactions take place during chlorination. When chlorine is added to a water containing ammonia (NH₃), the ammonia reacts with hypochlorous acid (HOCL) to form monochloramine, dichloramine, and trichloramine. The formation of these chloramines depends on the pH of the water and the initial chlorine-ammonia ratio.

Ammonia + Hypochlorous acid ----> Chloramine + Water

NH3 + HOC1> NH2C1 + H20	Monochloramine
NH2C1 + HOC1> NHC12 +	H20 Dichloramine
NHC12 + HOC1> NC13 + H2	20 Trichloramine

At the pH of most natural water (pH 6.5 to 7.5), monochloramine and dichloramine exist together. At pH levels below 5.5, dichloramine exists by itself. Below pH 4.0, trichloramine is the only compound found. The monochloramine and dichloramine forms have a definite disinfection power. Dichloramine is a more effective disinfecting agent than monochloramine. However, dichloramine is not recommended as a disinfectant due to the possibility of the formation of taste and odor compounds. Chlorine reacts with phenol and salicylic acid to form chlorophenol, which has an intense medicinal odor. This reaction is much slower in the presence of monochloramines.

Both the chlorine residual and the contact time are essential for effective disinfection. It is important to have complete mixing. The operator also needs to be aware that changes in the pH may affect the ability of the chlorine to disinfect the water. The operator must examine the application and select the best point of feed and the best contact time to achieve the results desired. The operator needs to consider:

1. Whether the injection point and the method of mixing is designed so that the disinfectant is able to get into contact with all of the water to be disinfected. This also depends on whether pre- and/or post-chlorination is being used.

2. Contact time. In situations of good initial mixing, the longer the contact time, the more effective the disinfection.

3. Effectiveness of upstream treatment processes. The lower the turbidity of the water, the more effective the disinfection.

4. Temperature. At higher temperatures the rate of disinfection is more rapid.

Dosage and type of chemical. Usually the higher the dose, the quicker the disinfection rate. The form of disinfectant (chloramine or free chlorine) and the type of chemical used influence the disinfection rate.
 pH. The lower the pH, the better the disinfection.

Emergency Disinfection of Drinking Water

USE ONLY WATER THAT HAS BEEN PROPERLY DISINFECTED FOR DRINKING, COOKING, MAKING ANY PREPARED DRINK, OR FOR BRUSHING TEETH

1. Use bottled water that has not been exposed to flood waters if it is available.

2. If you don't have bottled water, you should boil water to make it safe. Boiling water will kill most types of disease-causing organisms that may be present. If the water is cloudy, filter it through clean cloths or allow it to settle, and draw off the clear water for boiling. Boil the water for one minute, let it cool, and store it in clean containers with covers.

3. If you can't boil water, you can disinfect it using household bleach. Bleach will kill some, but not all, types of disease-causing organisms that may be in the water. If the water is cloudy, filter it through clean cloths or allow it to settle, and draw off the clear water for disinfection. Add 1/8 teaspoon (or 8 drops) of regular, unscented, liquid household bleach for each gallon of water, stir it well and let it stand for 30 minutes before you use it. Store disinfected water in clean containers with covers.

4. If you have a well that has been flooded, the water should be tested and disinfected after flood waters recede. If you suspect that your well may be contaminated, contact your local or state health department or agriculture extension agent for specific advice.

(U.S. federal agencies and the Red Cross recommend these same four steps to disinfect drinking water in an emergency. Please, read the text below for important details about disinfection.

More information about disinfection

In times of crisis, follow advice from local officials. Local health departments or public water systems may urge consumers to use more caution or to follow additional measures than the information provided here.

Look for other sources of potable water in and around your home.

When your home water supply is interrupted by natural or other forms of disaster, you can obtain limited amounts of water by draining your hot water tank or melting ice cubes. In most cases, well water is the preferred source of drinking water. If it is not available and river or lake water must be used, avoid sources containing floating material and water with a dark color or an odor. Generally, flowing water is better quality than stagnant water.

Examine the physical condition of the water.

When emergency disinfection is necessary, disinfectants are less effective in cloudy, murky or colored water. Filter murky or colored water through clean cloths or allow it to settle. It is better to both settle and filter.

- ✓ After filtering until it is clear, or allowing all dirt and other particles to settle, draw off the clean and clear water for disinfection. Water prepared for disinfection should be stored only in clean, tightly covered, containers, not subject to corrosion.
- ✓ Choose a disinfection method.
- ✓ Boiling and chemical treatment are two general methods used to effectively disinfect small quantities of filtered and settled water.

Boiling

Boiling is the surest method to make water safe to drink and kill disease-causing microorganisms like Giardia lamblia and Cryptosporidium, which are frequently found in rivers and lakes. These disease-causing organisms are less likely to occur in well water (as long as it has not been affected by flood waters). If not treated properly and neutralized, Giardia may cause diarrhea, fatigue, and cramps after ingestion. Cryptosporidium is highly resistant to disinfection. It may cause diarrhea, nausea and/or stomach cramps. People with severely weakened immune systems are likely to have more severe and more persistent symptoms than healthy individuals.

Boil filtered and settled water vigorously for one minute (at altitudes above one mile, boil for three minutes). To improve the flat taste of boiled water, aerate it by pouring it back and forth from one container to another and allow it to stand for a few hours, or add a pinch of salt for each quart or liter of water boiled.

If boiling is not possible, chemical disinfection of filtered and settled water collected from a well, spring, river, or other surface water body will still provide some health benefits and is better than no treatment at all.

Chemical Treatment

When boiling is not practical, certain chemicals will kill most harmful or disease-causing organisms. For chemical disinfection to be effective, the water must be filtered and settled first. Chlorine and iodine are the two chemicals commonly used to treat water. They are somewhat effective in protecting against exposure to Giardia, but may not be effective in controlling more resistant organisms like Cryptosporidium. Chlorine is generally more effective than iodine in controlling Giardia, and both disinfectants work much better in warm water. You can use a non-scented, household chlorine bleach that contains a chlorine compound to disinfect water. Do not use non-chlorine bleach to disinfect water. Typically, household chlorine bleaches will be 5.25% available chlorine. Follow the procedure written on the label. When the necessary procedure is not given, find the percentage of available chlorine on the label and use the information in the following table as a guide. (Remember, 1/8 teaspoon and 8 drops are about the same quantity.)

Available Chlorine

Drops per Quart/Gallon of Clear Water Drops per Liter of Clear Water

1% 10 per Quart - 40 per Gallon 10 per Liter

4-6% 2 per Quart - 8 per Gallon (1/8 teaspoon) 2 per Liter

7-10% 1 per Quart - 4 per Gallon 1 per Liter

(If the strength of the bleach is unknown, add ten drops per quart or liter of filtered and settled water. Double the amount of chlorine for cloudy, murky or colored water or water that is extremely cold.)

Mix the treated water thoroughly and allow it to stand, preferably covered, for 30 minutes. The water should have a slight chlorine odor. If not, repeat the dosage and allow the water to stand for an additional 15 minutes. If the treated water has too strong a chlorine taste, allow the water to stand exposed to the air for a few hours or pour it from one clean container to another several times.

You can use granular calcium hypochlorite to disinfect water.

Add and dissolve one heaping teaspoon of high-test granular calcium hypochlorite (approximately ¼ ounce) for each two gallons of water, or 5 milliliters (approximately 7 grams) per 7.5 liters of water. The mixture will produce a stock chlorine solution of approximately 500 milligrams per liter, since the calcium hypochlorite has available chlorine equal to 70 percent of its weight. To disinfect water, add the chlorine solution in the ratio of one part of chlorine solution to each 100 parts of water to be treated. This is roughly equal to adding 1 pint (16 ounces) of stock chlorine to each 12.5 gallons of water or (approximately ½ liter to 50 liters of water) to be disinfected. To remove any objectionable chlorine odor, aerate the disinfected water by pouring it back and forth from one clean container to another.

You can use chlorine tablets to disinfect filtered and settled water.

Chlorine tablets containing the necessary dosage for drinking water disinfection can be purchased in a commercially prepared form. These tablets are available from drug and sporting goods stores and should be used as stated in the instructions. When instructions are not available, use one tablet for each quart or liter of water to be purified.

You can use tincture of iodine to disinfect filtered and settled water.

Common household iodine from the medicine chest or first aid kit may be used to disinfect water. Add five drops of 2 percent U.S. or your country's approved Pharmacopeia tincture of iodine to each quart or liter of clear water. For cloudy water add ten drops and let the solution stand for at least 30 minutes.

You can use iodine tablets to disinfect filtered and settled water.

Purchase commercially prepared iodine tablets containing the necessary dosage for drinking water disinfection at drug and sporting goods stores. Use as stated in instructions. When instructions are not available, use one tablet for each quart or liter of filtered and settled water to be purified.

ONLY USE WATER THAT HAS BEEN PROPERLY DISINFECTED FOR DRINKING, COOKING, MAKING ANY PREPARED DRINK, OR FOR BRUSHING TEETH.

Summary and Illustration of Key Points

- ✓ Filter murky or colored water through clean cloths or allow it to settle. It is better to both settle and filter.
- ✓ Boiling is the surest method to make water safe to drink and kill disease-causing microorganisms like Giardia lamblia and Cryptosporidium, which are frequently found in rivers and lakes.
- ✓ To improve the flat taste of boiled water, aerate it by pouring it back and forth from one container to another and allow it to stand for a few hours, or add a pinch of salt for each quart or liter of water boiled.
- ✓ When boiling is not practical, certain chemicals will kill most harmful or disease-causing organisms. Chlorine (in the form of unscented bleach) and iodine are the two chemicals commonly used to treat water.
- ✓ You can use a non-scented, household chlorine bleach that contains a chlorine compound to disinfect water. (Remember, 1/8 teaspoon and 8 drops are about the same quantity.)
- ✓ You can use tincture of iodine to disinfect filtered and settled water. Common household iodine from the medicine chest or first aid kit may be used to disinfect water.
- ✓ Tincture of iodine. For cloudy water add ten drops and let the solution stand for at least 30 minutes.

Understanding Combined Chlorine Residual

The residual consisting of chlorine that is combined with ammonia, nitrogen, or nitrogenous compounds (chloramines).

Understanding Free Available Chlorine

The residual consisting of hypochlorite ions (OCI-), hypochlorous acid (HOCI) or a combination of the two. These are the most effective in killing bacteria.

Total Combined Chlorine Residual

The total amount of chlorine present in a sample. This is the sum of the free chlorine residual and the combined available chlorine residual.

Understanding Pre-Chlorination

Chlorination is the application of chlorine to water to accomplish some definite purpose. In this lesson, we will be concerned with the application of chlorine for the purpose of disinfection, but you should be aware that chlorination can also be used for taste and odor control, iron and manganese removal, and to remove some gases such as ammonia and hydrogen sulfide.

Chlorination is currently the most frequently used form of disinfection in the water treatment field. However, other disinfection processes have been developed. These alternatives will be discussed at the end of this lesson.

Pre-Chlorination and Post-Chlorination

Like several other water treatment processes, chlorination can be used as a pretreatment process (prechlorination) or as part of the primary treatment of water (postchlorination). Treatment usually involves either postchlorination only or a combination of prechlorination and postchlorination.

Pre-chlorination is the act of adding chlorine to the raw water. The residual chlorine is useful in several stages of the treatment process - aiding in coagulation, controlling algae problems in basins, reducing odor problems, and controlling mudball formation. In addition, the chlorine has a much longer contact time when added at the beginning of the treatment process, so prechlorination increases safety in disinfecting heavily contaminated water.

Post-chlorination is the application of chlorine after water has been treated but before the water reaches the distribution system. At this stage, chlorination is meant to kill pathogens and to provide a chlorine residual in the distribution system. Post-chlorination is nearly always part of the treatment process, either used in combination with prechlorination or used as the sole disinfection process.

Until the middle of the 1970s, water treatment plants typically used both prechlorination and postchlorination. However, the longer contact time provided by prechlorination allows the chlorine to react with the organics in the water and produce carcinogenic substances known as trihalomethanes. As a result of concerns over trihalomethanes, prechlorination has become much less common in the United States. Currently, prechlorination is only used in plants where trihalomethane formation is not a problem.

Understanding Breakpoint Chlorination

Addition of chlorine to water until the chlorine demand has been satisfied. Since ammonia is present in all domestic wastewaters, the reaction of ammonia with chlorine is a great significance. When chlorine is added to waters containing ammonia, the ammonia reacts with hypochlorous acid (HOCI) to form monochloramine, dichloramine and trichloramine.

The formation of these chloramines depends on the pH of the solution and the initial chlorine-ammonia ratio.

Chlor-Alkali Membrane Process

The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride solution (brine). Depending on the method, several products besides hydrogen can be produced. If the products are separated, chlorine and sodium hydroxide (caustic soda) are the products; by mixing, sodium hypochlorite or sodium chlorate are produced, depending on the temperature. Higher temperatures are needed for the production of sodium chlorate instead of sodium hypochlorite. Industrial scale production began in 1892. When using calcium chloride or potassium chloride, the products contain calcium or potassium instead of sodium.

The process has a high energy consumption, for example over 4 billion kWh per year in West Germany in 1985, and produces equal (molar) amounts of chlorine and sodium hydroxide, which makes it necessary to find a use for the product for which there is less demand, usually the chlorine. There are three production methods in use. While the mercury cell method produces chlorine-free sodium hydroxide, the use of several tons of mercury leads to serious environmental problems. In a normal production cycle a few hundred pounds of mercury per year are emitted, which accumulate in the environment. Additionally, the chlorine and sodium hydroxide produced via the mercury-cell chloralkali process are themselves contaminated with trace amounts of mercury. The membrane and diaphragm method use no mercury, but the sodium hydroxide contains chlorine, which must be removed.

Understanding Chlorine's Effectiveness

In 1881, German bacteriologist Robert Koch demonstrated under controlled laboratory conditions that pure cultures of bacteria could be destroyed by hypochlorite (bleach). The bulk of chlorine disinfection research, which was conducted from the 1940s to the 1970s with a focus on bacteria, provided observations as to how chlorine kills the microorganism. The observations that (1) bacterial cells dosed with chlorine release nucleic acids, proteins and potassium and (2) membrane functions such as respiration and active transport are affected more by chlorine than are cytoplasmic processes, directed researchers' attention to the surface of the bacterial cell. The hypothesis was that the bacterial cell wall, under environmental stress, could interact with chlorine.

Chlorine exposure appears to cause physical, chemical, and biochemical alterations to the cell wall, thus destroying the cell's protective barrier, terminating vital functions, resulting in death of the microorganism. A possible sequence of events during chlorination would be: (1) disruption of the cell wall barrier by reactions of chlorine with target sites at the cell surface, (2) release of vital cellular constituents from the cell, (3) termination of membrane-associated functions, and (4) termination of cellular functions within the cell. During the course of this sequence of events, the microorganism dies, meaning it is no longer capable of growing or causing disease.

Understanding Chlorine Solubility Effects

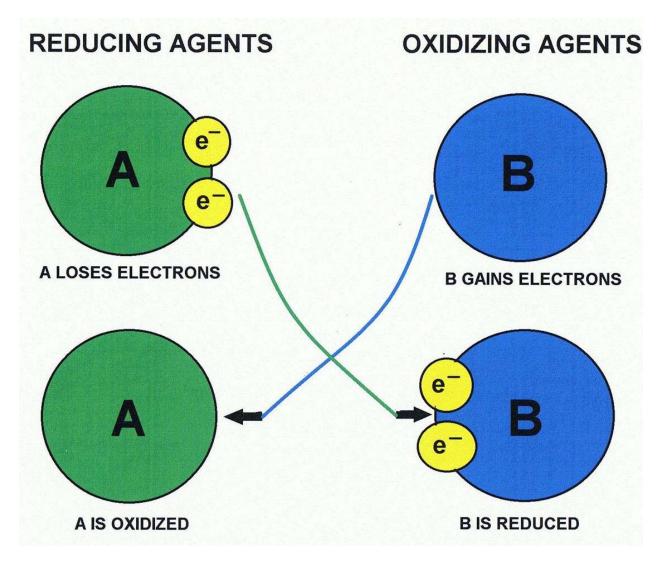
Chlorine is only slightly soluble in water; its maximum solubility is approximately one percent at 49° C. At temperatures below this point it combines with water to form chlorine ice, a crystalline substance. When the water supply to a gas chlorinator is below normal room temperature, it may cool the chlorine gas to the point at which chlorine ice is formed and accumulates on the needle valve and gas outlet tube, resulting in erratic feed results. Because the vapor pressure of chlorine increases with rising temperatures, its solubility also decreases. At 212° F. chlorine is insoluble in water.

Chlorine dissolved in water forms a weak corrosive mixture of hydrochloric and hypochlorous acid. The corrosivity of chlorine solutions in water creates problems in handling chlorine spills and chlorine containers. Chlorine reacts with many compounds. Because of its great affinity for hydrogen, it removes hydrogen from some compounds, such as hydrogen sulfide. It also reacts with ammonia or other nitrogen-containing compounds to form various mixtures of chloramines. It reacts with organic materials, sometimes with explosive violence.

Chemicals like chlorine, bromine, and ozone are examples of oxidizers. It is their ability to oxidize or steal electrons from other substances that makes them good water sanitizers. As soon as the oxidizing agent is

added to the water, it begins to combine with microorganisms like bacteria, algae, and whatever else the water may contain.

Now the free and available oxidizer is combining with contaminants and its effectiveness is reduced according to how much combining took place. Although the hydrogen ion does not play a direct reduction role on copper surfaces, pH can influence copper corrosion by altering the equilibrium potential of the oxygen reduction half-reaction and by changing the speciation of copper in solution (Reiber, 1989). Copper corrosion increases rapidly as the pH drops below 6; in addition, uniform corrosion rates can be high at low pH values (below about pH 7), causing metal thinning. At higher pH values (above about pH 8), copper corrosion problems are almost always associated with non-uniform or pitting corrosion processes (Edwards et al., 1994a; Ferguson et al., 1996). Edwards et al. (1994b) found that for new copper surfaces exposed to simple solutions that contained bicarbonate, chloride, nitrate, perchlorate or sulphate, increasing the pH from 5.5 to 7.0 roughly halved corrosion rates, but further increases in pH yielded only subtle changes.


The prediction of copper levels in drinking water relies on the solubility and physical properties of the cupric oxide, hydroxide and basic carbonate solids that comprise most scales in copper water systems (Schock et al., 1995). In the cupric hydroxide model of Schock et al. (1995), a decrease in copper solubility with higher pH is evident. Above a pH of approximately 9.5, an upturn in solubility is predicted, caused by carbonate and hydroxide complexes increasing the solubility of cupric hydroxide. Examination of experience from 361 utilities reporting copper levels under the U.S. EPA Lead and Copper Rule revealed that the average 90th-percentile copper levels were highest in waters with pH below 7.4 and that no utilities with pH above 7.8 exceeded the U.S. EPA's action level for copper of 1.3 mg/L (Dodrill and Edwards, 1995). However, problems associated with copper solubility were also found to persist up to about pH 7.9 in cold, high-alkalinity and high-sulphate groundwater (Edwards et al., 1994a).

In the pH range of 7-9, both the corrosion rate and the degree of tuberculation of iron distribution systems generally increase with increasing pH (Larson and Skold, 1958; Stumm, 1960; Hatch, 1969; Pisigan and Singley, 1987). Iron levels, however, were usually reported to decrease with increasing pH (Karalekas et al., 1983; Kashinkunti et al., 1999; Broo et al., 2001; Sarin et al., 2003).

In a pipe loop system constructed from 90- to100-year-old unlined cast iron pipes taken from a Boston distribution system, iron concentrations were found to steadily decrease when the pH was raised from 7.6 to 9.5 (Sarin et al., 2003). Similarly, when iron was measured in the distribution system following a pH increase from 6.7 to 8.5, a consistent downward trend in iron concentrations was found over 2 years (Karalekas et al., 1983). These observations are consistent with the fact that the solubility of iron-based corrosion by-products decreases with increasing pH.

Water with low pH, low alkalinity and low calcium is particularly aggressive towards cement materials. The water quality problems that may occur are linked to the chemistry of the cement. Lime from the cement releases calcium ions and hydroxyl ions into the drinking water. This, in turn, may result in a substantial pH increase, depending on the buffering capacity of the water (Leroy et al., 1996). Pilot-scale tests were conducted to simulate low-flow conditions of newly lined cement mortar pipes carrying low-alkalinity water (Douglas et al., 1996). In the water with an initial pH of 7.2, alkalinity of 14 mg/L as calcium carbonate and calcium at 13 mg/L as calcium carbonate, measures of pH as high as 12.5 were found.

Similarly, in the water with an initial pH of 7.8, alkalinity of 71 mg/L as calcium carbonate and calcium at 39 mg/L as calcium carbonate, measures of pH as high as 12 were found. The most significant pH increases were found during the 1st week of the experiment, and pH decreased slowly with aging of the lining. In a series of field and test rig trials to determine the impact of in situ cement mortar lining on water quality, Conroy et al. (1994) observed that in low-flow and low-alkalinity water (around 10 mg/L as calcium carbonate), pH increases exceeding 9.5 could occur for over 2 years following the lining.

Strong reducing agents easily lose (or donate) electrons. An atom with a relatively large atomic radius tends to be a better reductant. In such species, the distance from the nucleus to the valence electrons is so long that these electrons are not strongly attracted. These elements tend to be strong reducing agents.

Good reducing agents tend to consist of atoms with a low electronegativity, the ability of an atom or molecule to attract bonding electrons, and species with relatively small ionization energies serve as good reducing agents too. "The measure of a material to oxidize or lose electrons is known as its oxidation potential".

Reducing agents can be ranked by increasing strength by ranking their oxidation potentials. The reducing agent is stronger when it has a more positive oxidation potential and weaker when it has a negative oxidation potential.

Understanding Amperometric Titration

It appears that DPD colorimetric determination and amperometric titration as described in Standard Methods are the procedures most commonly used for routine measurement of total chlorine. Few studies have been conducted to evaluate these or other total residual chlorine measurement techniques. Bender5 studied approximately 10 test procedures and found that results using the DPD colorimetric procedure were consistently higher than those using amperometric titration. Brooks and Seegert6 described an amperometric titration procedure employing a recording polargraph and microburette, which was reported to be accurate and free from interference. The reliability of the DPD colorimetric method for free chlorine has been increasingly questioned in recent years. The suitability of that procedure for accurate total chlorine determinations appears to the authors to be questionable, as well. Amperometric titration as described in Standard Methods cannot be used to measure total chlorine concentrations less than about 0.05 mg/L, which is at least an order of magnitude greater than levels of concern in natural waters for potential toxicity to aquatic organisms. A reliable, simple procedure for low-level total chlorine determinations is clearly needed.

Analytical Procedure

Section 409C of Standard Methods includes a General Discussion section on amperometric titration for the determination of chlorine in aqueous solutions. That discussion is applicable to the procedure used by the authors. Also included in Standard Methods is a section concerning the titration apparatus. Basically, the titration equipment consists of a buret capable of accurately delivering 0.01 mL of titrant, a sample cup, and a stirring device in which is housed a platinum electrode and a KCI reference electrode. Several companies manufacture amperometric titrators that fit this general description. The experience of the senior author is that some of the commercial titrators are less suitable than others, primarily because of the small surface area of some of the electrodes employed. A Wallace and Tiernan amperometric titrator was used by the authors in developing and applying the procedure described below.

Reagents

a. Chlorine-free water. Only distilled or demineralized water that is free of chlorine should be used in preparing reagents. Chlorine-free water may be prepared by passing distilled or demineralized water through a suitable activated carbon filter adsorption column. The water may be tested for the presence of chlorine by titrating a sample as described in the Procedure section. Any deflection in the meter upon the addition of PAO titrant indicates the presence of chlorine or other oxidants that would interfere in the titration procedure.

b. Standard phenylarsine oxide (PAO), 0.00564 N. See Standard Methods Section 409B, paragraph 3a.

Standardization – Dilute 50.00 mL of freshly prepared 0.0002256 N potassium biniodate to 200 mL in chlorine-free water. Add approximately 1.5 g KI and stir to dissolve. Add 1 mL acetate buffer and allow to stand in the dark for 6 minutes. Titrate using the amperometric titrator and determine the equivalence point as detailed in the Procedure section. If the standard PAO is 0.00564 N, exactly 2.00 mL of PAO will be required to reach the equivalence point.

c. Phenylarsine oxide titrant, 0.000564 N. Dilute 10.00 mL of 0.00564 N PAO to 100.0 mL in chlorine-free water.

Standardization – Dilute 5.00 mL of 0.0002256 N potassium biniodate to 200 mL with chlorine-free water. Add approximately 1.5 g KI and stir to dissolve. Add 1 mL acetate buffer and allow to stand in the dark for 6 minutes. Titrate using the amperometric titrator and determine the equivalence point as detailed in the Procedure section below. If the PAO titrant is 0.000564 N, exactly 2.00 mL of PAO will be required to reach the equivalence point.

d. Potassium biniodate, 0.0002256 N. Dissolve 0.7332 g reagent grade $KH(IO_3)2$ in 500 mL chlorine-free water and dilute to 1.00 L. Dilute 10.00 mL of that solution to 100.0 mL with chlorine-free water. That solution is used for the standardization of the PAO and should be freshly prepared.

e. Acetate buffer solution, pH 4. See Standard Methods1 Section 409B, paragraph 3e.

f. Potassium iodide, (KI), reagent grade crystals.

Procedure

a. Titrant selection. Normally a 200-mL sample is used in titration. Each 0.1 mL of 0.000564 N PAO corresponds to 0.01 mg/L in a 200-mL sample. The titrant normality should be selected such that no more than about 4 mL of titrant will be required to reach the equivalence point. Thus, if the chlorine concentration in the majority of the samples to be titrated is less than about 0.4 mg/L, use 0.000564 N PAO as the titrant. If only samples containing chlorine concentrations in excess of 0.4 mg/L are to be analyzed, use 0.00564 N PAO as the titrant. If samples containing concentrations of chlorine in excess of about 0.4 mg/L are to be titrated only occasionally and the volume of 0.000564 N PAO required for titration is found to be excessive, a suitable subsample may be used and diluted to 200 mL with chlorine-free water.

b. Titration procedure (total residual chlorine). Prior to beginning the titration, rinse the buret with PAO titrant by filling it completely and allowing the titrant to run into an empty sample cup. Repeating this operation three or four times will ensure that the correct titrant concentration reaches the sample cup. Remove the sample cup and rinse with distilled water and with the sample to be titrated. Add 200 mL of the sample to the sample cup. Add approximately 1.5 g (\pm 0.2 g) crystalline KI and allow to dissolve, using the agitator on the titrator for mixing.

The exact amount of KI added is not critical, but the analyst should weigh 1.5 g of this reagent periodically to become familiar with the approximate amount required. Add 1 mL of acetate buffer and allow the microammeter on the titrator to reach a stable reading; the titration should be started within about 30 seconds following the addition of the KI to the sample.

Full-scale deflection on the microammeter is 100 units. The meter should be initially adjusted to read between 90 and 100 units. Record the initial reading prior to the addition of titrant. Titrate by adding suitable volumes of titrant and recording the titrant volume added and the resultant current reading. At least three (and preferably five to ten) readings of current and titrant volume added should be obtained prior to passing the equivalence point; then add excess titrant to ensure that there is no further meter deflection. Record the final meter reading. If, during the titration, the meter reading falls to near or below 10 units, record the low reading, re-adjust the meter to read between 90 and 100 units, record the high reading, and continue the titration. This approach allows calculation of the total meter deflection, which is used in determining the equivalence point.

The equivalence point is determined by plotting the total meter deflection as a function of titrant volume added. It is important that the total meter deflection be used in preparing this plot. A straight line is drawn through the first few points in the plot and a second straight line is drawn parallel to the abscissa and corresponding to the final total deflection in the meter reading. The equivalence point is determined by the intersection of those two lines. When 0.000564 N PAO is used as the titrant, the chlorine concentration is 0.1-times the titrant volume at the equivalence point. This plotting procedure is also outlined in the ASTM Water Manual8 under procedures ASTM D1253 (Tests for Residual Chlorine in Water) and ASTM D1427 (Tests for Residual Chlorine in Waste Water).

c. Sample storage and handling. Chlorine measurements should be made as soon after sample collection as possible. Samples to be analyzed for chlorine should be stored in the dark and packed on ice if they must be held for more than a few minutes before analysis. Chlorine compounds are highly reactive and may be rapidly lost from samples due to the effects of volatilization, phototransformation, and chlorine demand. Storage of samples on ice and in the dark between sampling and analysis will help minimize the rate of dissipation. It is important to estimate the changes that occur in chlorine content in the subject water between sample collection and analysis.

This can be accomplished by performing a "time-lag" test. To perform a time-lag test, a single large (approximately 2-L) sample of the water being analyzed is collected. The chlorine concentration in that sample is determined six to ten times over a period of one to three hours, depending on the normal sample holding time. The measured concentrations are then plotted as a function of time, normally on semilog paper. In most cases, the decrease in chlorine concentration over time can be described by first-order reaction kinetics.

The original chlorine content in any sample can be computed given the measured concentration and the holding time. A time-lag study should be performed on a regular basis for each type of water being analyzed because of variability in water compositions. The sample set used for the study should be handled in the same way as other samples (i.e., the samples should be kept cold and in the dark). Even when time-lag studies are made a part of the routine analytical procedure, it is important that the delay between sample collection and chlorine analysis be held to a minimum.

Sodium Hypochlorite

Sodium Hypochlorite, or bleach, is produced by adding elemental chlorine to sodium hydroxide. Typically, hypochlorite solutions contain from 5 to 15% chlorine, and are shipped by truck in one- to 5,000- gallon containers.

Advantages

- ✓ Solution is less hazardous and easier to handle than elemental chlorine
- ✓ Fewer training requirements and regulations than elemental chlorine

Limitations

- ✓ Limited shelf-life
- ✓ Potential to add inorganic byproducts (chlorate, chlorite and bromate) to water
- ✓ Corrosive to some materials and more difficult to store than most solution chemicals
- ✓ Higher chemical costs than elemental chlorine

Calcium Hypochlorite

Calcium hypochlorite is another chlorinating chemical used primarily in smaller applications. It is a white, dry solid containing approximately 65% chlorine, and is commercially available in granular and tablet forms.

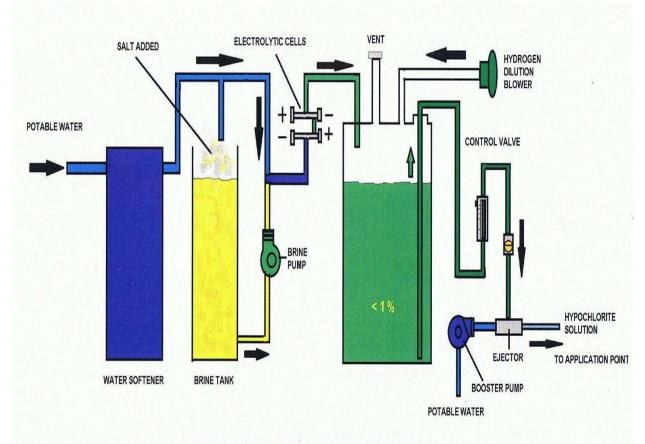
Advantages

- ✓ More stable than sodium hypochlorite, allowing longer storage
- ✓ Fewer training requirements and regulations than elemental chlorine

Limitations

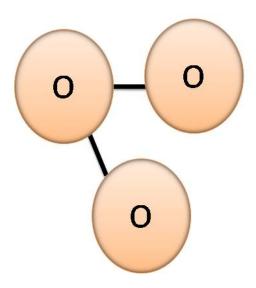
- ✓ Dry chemical requires more handling than sodium hypochlorite
- ✓ Precipitated solids formed in solution complicate chemical feeding
- ✓ Higher chemical costs than elemental chlorine
- ✓ Fire or explosive hazard if handled improperly
- ✓ Potential to add inorganic byproducts (chlorate, chlorite and bromate) to water

Onsite Hypochlorite Generation


In recent years some municipalities have installed on-site hypochlorite generators that produce weak hypochlorite solutions (~0.8%) using an electrolytic cell and a solution of salt water.

Advantages

✓ Minimal chemical storage and transport


Limitations

- ✓ More complex and requires a higher level of maintenance and technical expertise
- ✓ High capital cost
- ✓ Operating costs are often higher than for commercial hypochlorite
- ✓ Requires careful control of salt quality
- ✓ Weak solution requires high volume chemical feed and control
- ✓ Byproducts in generated hypochlorite may be difficult to monitor and control
- ✓ System backup may be more difficult and costly

HYPOCHLORITE GENERATOR

Ozone (O₃) Molecule

Ozone (O_3) is generated on-site at water treatment facilities by passing dry oxygen or air through a system of high voltage electrodes. Ozone is one of the strongest oxidants and disinfectants available. Its high reactivity and low solubility, however, make it difficult to apply and control. Contact chambers are fully contained and non-absorbed ozone must be destroyed prior to release to avoid corrosive and toxic conditions. Ozone is more often applied for oxidation rather than disinfection purposes.

Advantages

- ✓ Strongest oxidant/disinfectant available.
- ✓ Produces no chlorinated THMs, HAAs.
- ✓ Effective against Cryptosporidium at higher concentrations.
- ✓ Used with Advanced Oxidation processes to oxidize refractory organic compounds.

Limitations

- ✓ Process operation and maintenance requires a high level of technical competence.
- ✓ Provides no protective residual.
- ✓ Forms brominated byproducts (bromate, brominated organics).
- ✓ Forms nonhalogenated byproducts (ketenes, organic acids, aldehydes).
- ✓ Breaks down more complex organic matter; smaller compounds can enhance microbial re-growth in distribution systems and increase DBP formation during secondary disinfection processes.
- ✓ Higher operating and capital costs than chlorination.
- ✓ Difficult to control and monitor particularly under variable load conditions

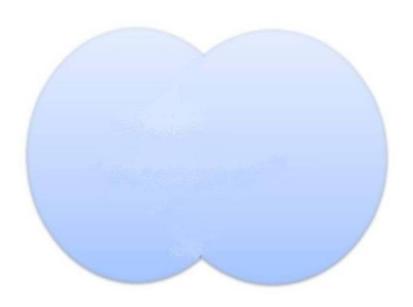
Ultraviolet Radiation

Ultraviolet (UV) radiation, generated by mercury arc lamps, is a non-chemical disinfectant. When UV radiation penetrates the cell wall of an organism, it damages genetic material, and prevents the cell from reproducing. Although it has a limited track record in drinking water applications, UV has been shown to effectively inactivate many pathogens while forming limited disinfection byproducts.

Advantages

- ✓ Effective at inactivating most viruses, spores and cysts.
- \checkmark No chemical generation, storage, or handling.
- ✓ Effective against Cryptosporidium.
- ✓ No known byproducts at levels of concern

Limitations


- ✓ No residual protection.
- ✓ Low inactivation of some viruses (reoviruses and rotaviruses).
- ✓ Difficult to monitor efficacy.
- ✓ Irradiated organisms can sometimes repair and reverse the destructive effects of UV through a process known as photo-reactivation.
- ✓ May require additional treatment steps to maintain high-clarity water.
- ✓ Does not provide oxidation, or taste and odor control.
- ✓ High cost of adding backup/emergency capacity.
- ✓ Mercury lamps may pose a potable water and environmental toxicity risk.

Alternative Disinfectants

Up until the late 1970s, chlorine was virtually the only disinfectant used to treat drinking water. Chlorine was considered an almost ideal disinfectant, based on its proven characteristics:

- ✓ Effective against most known pathogens.
- ✓ Provides a residual to prevent microbial re-growth and protect treated water throughout the distribution system.
- ✓ Suitable for a broad range of water quality conditions.
- ✓ Easily monitored and controlled

Oxygen – O₂ Molecule

228

Bacteriological Monitoring Review

26 waterborne-disease outbreaks have been documented each year in the United States over the past 25 years (Kramer and others, 1996). The persistence of outbreaks over time indicates that more progress is needed to meet the "drinkable and swimmable" goals of Federal water-quality legislation. Although significant improvements in drinking water and wastewater treatment have been achieved, waterborne disease outbreaks indicate that certain types and sources of waterborne pathogens (disease-causing organisms) are still a threat to human health in the United States (Craun, 1992). In particular, waterborne disease outbreaks caused by Escherichia coli O157.:H7 were reported more frequently in 1995-96 than in previous years, and during that same period, Cryptosporidium and Giardia caused large outbreaks associated with recreational water quality (Levy and others, 1998).

Microbiological examination of water is used to determine the sanitary quality of water and the public health risk from waterborne disease. Although microbiological monitoring of finished waters is well established, microbiological monitoring of source waters and recreational waters is considered by some to be fragmented, incomplete, or virtually nonexistent in many parts of the Nation (Rose and others, 1999). Data to characterize the microbiological quality of source waters are usually collected for local purposes, most often to judge compliance with standards for protection of public health in swimmable or drinkable waters. For example, monitoring programs vary widely at the local level for recreational waters, and the result is the inconsistent use of indicator organisms across the United States (U.S. Environmental Protection Agency, 1999a).

There is a need to identify human and animal factors associated with contamination of different source and recreational waters and to understand the processes that affect microbiological water quality. Concepts about the relation between the occurrence and distribution of microbiological contaminants and a range of environmental factors such as climate, hydrology, land use, and human and animal population densities need to be tested in areas that represent the national water-use patterns for public and domestic supply and for recreational uses.

Understanding Bacteriological Monitoring Understanding Bacteria Sampling

Waterborne bacterial pathogens in the United States include species in the genera Salmonella, Shigella, Vibrio, Campylobacter, Yersinia, and pathogenic strains of E. coli. Because bacterial pathogens generally appear intermittently in low concentrations in the environment and because methods of culturing are difficult, fecal-indicator bacteria are used to indicate the possible presence of pathogens. The most widely used bacterial indicators include total coliforms, fecal coliforms, E. coli, fecal streptococci, enterococci, and Clostridium perfringens (C. perfringens). A good indicator organism should be applicable in all types of water; unable to reproduce in ambient waters; be harmless to man and other animals; lend itself to easy, quantitative testing procedures; be of warm-blooded animal origin; correlate with fecal contamination; and be present in waters in greater numbers than and survive as long as or longer than pathogens.

The historical definition of the total-coliform group has been based on the method used for detection (lactose fermentation) rather than on systematic bacteriology (American Public Health Association and others, 1998). Total coliforms are defined as aerobic and facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation at 35°C within 48 hours (Britton and Greeson, 1989). Elevated temperature tests identify those genera of total coliform bacteria that belong in the more specific fecal-coliform group. Fecal coliforms are total coliforms capable of producing gas from lactose at 44.5°C.

Escherichia coli is a species of the fecal-coliform group. Total coliforms include several genera that are found in the human intestine; however, some genera are also found in soils, on vegetation, and in industrial wastes. This multiplicity of sources makes the sanitary significance of total coliforms difficult to establish (Palmer and others, 1984).

They are used as a rough measure of source-water quality and as a screen for fecal contamination. In addition, speciation of the total-coliform group may provide information on treatment effectiveness and the source of colonization of a distribution system or well (American Public Health Association, 1998, p. 9-1). The fecal-coliform indicator used to assess fecal contamination of water has been faulted because of nonfecal sources of at least one member of the fecal coliform group. For example, thermotolerant Klebsiella species have been observed in pulp- and papermill effluents, textile-processing-plant effluent, cotton-mill wastewaters, and sugar-beet wastes, in the absence of fecal contamination (U.S. Environmental Protection Agency, 1986a).

Alternatively, E. coli is a natural inhabitant of the gastrointestinal tract of warm-blooded animals and is direct evidence of fecal contamination from warm-blooded animals. The fecal streptococci are a group of fecalindicator bacteria that include a variety of species and strains that are all gram positive cocci. Although the normal habitat of fecal streptococci is the gastrointestinal tract of warm-blooded animals, some species are not exclusive to animals (American Public Health Association, 1998, p. 9-74). In fact, studies on the distribution of fecal streptococci in water indicate that at least one strain commonly found in environmental samples is ubiquitous and can exist for extended periods in soil and water (Geldreich, 1976). Fecal streptococci, therefore, have limited value as an indicator of fecal contamination in environmental samples. The enterococci group is a subgroup of the fecal streptococci, and it is considered a more specific indicator of fecal contamination.

The enterococci are differentiated from other streptococci by their ability to grow in 6.5 percent chloride, at pH 9.6, and at elevated temperatures. The enterococci method is valuable for determining the extent of fecal contamination of recreational surface waters, especially marine waters (American Public Health Association, 1998, p. 9-75).

In addition, because enterococcci cells are a different shape and have different survival rates than members of the coliform group, enterococci may be useful in assessing transport of fecal contamination in ground water.

Clostridium perfringens

Clostridium perfringens is present in large numbers in human and animals wastes, and its spores are more resistant to disinfection and environmental stresses than is E. coli. Clostridium perfringens has been suggested as a conservative tracer of past fecal contamination and as an indicator for chlorinated water in distribution systems (Bisson and Cabelli, 1980).

Clostridium perfringens, however, is probably not an appropriate indicator for most recreational waters because spores in the sediment are resuspended into the water column from swimmer or wave disturbances (Bisson and Cabelli, 1980). One exception is that C. perfringens may be a reliable indicator of streamwater quality in tropical climates, where warm water temperatures support the growth and reproduction of E. coli and aerobic conditions preclude the growth and sporulation of C. perfringens (Fujioka and Shizumura, 1985).

Clostridium perfringens has also been found to be a sensitive indicator of microorganisms entering streams from point sources but not a reliable indicator of nonpoint sources (Sorenson and others, 1989). Detection of C. perfringens in water has been proposed as an indicator of the presence and density of pathogenic viruses and possibly other stress resistant microorganisms (U.S. Environmental Protection Agency, 1996c).

Protozoan Pathogens

The principal protozoan pathogens that affect the public health acceptability of waters in the United States are Giardia lamblia (Giardia) and Cryptosporidium parvum (Cryptosporidium). These organisms are widely distributed in the aquatic environment and have been implicated in several recent outbreaks of waterborne disease, including a well-publicized outbreak of cryptosporidiosis in Milwaukee, Wisconsin (Rose and others, 1997). Both Giardia and Cryptosporidium produce environmentally resistant forms (called cysts and occysts), which allow for the extended survival of the parasites in water and treated water.

Because cysts and oocysts are more resistant to disinfection and survive longer in the environment than bacterial indicators, fecal-indicator bacteria are not adequate indicators for Giardia and Cryptosporidium in source waters. The presence of protozoan pathogens in water, therefore, must be verified by identification of the pathogens themselves. The USEPA-required method for detection of Giardia and Cryptosporidium in source and drinking water under the ICR involves nominal porosity filtration and indirect fluorescent antibody procedures (U.S. Environmental Protection Agency, 1996c). The ICR method has been criticized for being difficult to implement, being characterized by poor recovery of target organisms, and yielding highly variable results (U.S. Environmental Protection Agency, 1996b). As a result, the USEPA supported the development of Method 1622 for Cryptosporidium (U.S. Environmental Protection Agency, 1998b), and Method 1623 for Giardia and Cryptosporidium (U.S. Environmental Protection Agency, 1999c). Method 1622 was validated through an interlaboratory study and revised as a final, valid method in January 1999.

Understanding Routine Coliform Sampling

Streamwater sample collection

When designing a sampling plan, consider that the spatial and temporal distribution of microorganisms in surface water can be as variable as the distribution of suspended sediment because microorganisms are commonly associated with solid particles. The standard samplers can be used to collect streamwater samples for bacterial and viral indicators, *Cryptosporidium*, and *Giardia* providing that the equipment coming in contact with the water is properly cleaned and sterilized. For streamwater samples, these include the US-D77TM, US-D95, US-DH81, and weighted- and open-bottle samplers with autoclavable Teflon, glass, or polypropylene components.

• Prepare a separate set of sterile equipment (bottles nozzles, and caps) for sampling at each site.

• Follow sampling techniques given in Shelton (1994) to ensure that a sample is representative of the flow in the cross section. Use equal-width increment (EWI) or equal-discharge-increment

(EDI) methods described in Edwards and Glysson (1988), unless site characteristics dictate otherwise.

• Because churn and cone splitters cannot be autoclaved, use a sterile 3-L bottle to composite subsamples for bacterial and viral indicators when using EDI and EWI methods. If possible, composite by collecting subsamples at vertical locations in the cross section without overfilling the bottle.

• Alternatively, if the stream depth and (or) velocity is not sufficient to use depth-width integrating techniques, collect a sample by a hand-dip method (Myers and Sylvester, 1997).

• Collect approximately 1 L of streamwater for bacterial and viral indicators. Process the sample for *E. coli* and enterococci; send the remainder (at least 500 mL) on ice to the laboratory for *C. perfringens* and coliphage analysis.

Method 1623

For *Cryptosporidium* and *Giardia* analysis by Method 1623 (U.S. Environmental Protection Agency, 1999c), collect 10 L of streamwater for each protozoan pathogen using standard sampling techniques described in Myers and Sylvester (1997). Special sterilization procedures are needed for equipment used in the collection of samples for *Cryptosporidium* and *Giardia*. Autoclaving is not effective in neutralizing the epitopes on the surfaces of the oocysts and cysts that will react with the antibodies used for detection.

• Wash and scrub the equipment with soap and warm tap water to remove larger particulates and rinse with deionized water. Submerge the equipment in a vessel containing 12 percent hypochlorite solution for 30 minutes. Wash the equipment free of residual sodium hypochlorite solution with three rinses of filter-sterilized water; do not de-chlorinate the equipment using sodium thiosulfate. This procedure is best done in the office with dedicated sampling equipment for each site; however, it may be done in the field as long as the hypochlorite solution is stored and disposed of properly.

• Composite the sample in a 10-L cubitainer that is pre-sterilized by the manufacturer. The cubitainer is sent in a cardboard box to laboratory for *Cryptosporidium* analysis. The sample does not have to be kept on ice during transport. At this time, two methods are recommended for analysis of water samples for enteric viruses: (1) the reverse-transcriptase, polymerase chain reaction (RTPCR) method (G. Shay Fout, U.S. Environmental Protection Agency, written commun., 1997) and (2) the cell-culture method (U.S. Environmental Protection Agency, 1996c). Sampling and equipment cleaning procedures are more thoroughly described elsewhere (G. Shay Fout, U.S. Environmental Protection Agency, 1996c). Briefly, 100 L of streamwater is pumped by means of a specially designed sampling apparatus and passed through a Virosorb1 1MDS filter (Cuno, Meriden, Conn.). The sampling equipment is obtained from the analyzing laboratory; for example, the USGS Ohio District Laboratory has modified the sampling apparatus (G. Shay Fout, U.S. Environmental Protection Agency, 1997) into a self-contained box with easy-to-use control valves. The 1MDS filters, which remove viruses present in the water by charge interactions, are kept on ice and sent to a central laboratory for virus elution, concentration, and detection.

Groundwater Sample Collection

Collecting ground-water samples by use of sterile techniques requires knowledge of the type of well, its use, its construction, and its condition.

• Swab the electronic tape used for water-level measurements with isopropyl or ethyl alcohol.

• In sampling subunit survey wells, once purging criteria have been met as described in Koterba and others (1995), collect the sample directly from the tap into a sterile container.

• Remove screens, filters, other devices from the tap before collecting the sample, and do not sample from leaking taps. Because we are interested in the microbial population in the ground water and not in the distribution system, it is best to sample directly from the wellhead using a pump with sterile tubing, if possible. Because this is operationally prohibitive for private domestic wells, a tap that yields water directly from the well and before entering the holding tank is preferred. Water collected after treatment is unsuitable for microbiological analysis.

• Document the stage of the distribution system from which water was collected and details about the distribution system, including the type of tank and condition of the tank and pipes. In addition, if the well can easily be opened for inspection, document the condition of the well, including the sanitary seal (if any) and the amount of debris in the well. Any information on the location of the well, including proximity to septic systems or feedlots, should also be documented in the field at the time of sampling.

For wells without in-place pumps, samples should be obtained by use of the following methods (in descending order from most to least desirable):

(1) a peristaltic or vacuum pump with autoclavable silicon tubing,

(2) a sterile bailer,

(3) a chlorine-disinfected pump and tubing, or

(4) a detergent-cleaned pump and tubing. Pre-sampling activities, such as purging, must be carried out in such a way as to avoid contaminating the well. All equipment must be properly cleaned and sterilized between sites, using a Liquinox wash and a thorough tap water or deionized-water rinse.

If using this last method, collect additional field blanks to evaluate the effectiveness of the cleaning procedure. Refer to Myers and Sylvester (1997) for a detailed discussion of ground-water sampling for microbiological analysis.

Because ground water is less prone to microbiological contamination than surface water, larger volumes of ground water are needed than of surface water.

• For regular sampling, collect 3 L of ground water for bacterial and viral indicators.

• Process the sample for total coliforms, *E. coli*, and enterococci using 200-mL sample volumes for each analysis; send the remainder (at least 2.5 L) to the laboratory for coliphage analysis. In the laboratory, coliphage analysis is done using 1 L for somatic and 1 L for F-specific coliphage.

• For enteric virus analysis by RT-PCR and cell culture, use the same sampler for ground-water samples as for streamwater samples; pump 2,000 L of ground water through the sampling apparatus and 1MDS filter.

Sample Preservation and Storage

Holding times for samples before processing are 6 hours for total coliforms, *E. coli*, and enterococci and 24 hours for *C. perfringens*, coliphage, *Cryptosporidium*, *Giardia*, and the 1MDS filters for enteric viruses by RTPCR and cell culture.

• After collection, immediately store the sample on ice.

• Be sure to keep the sample out of direct sunlight, because ultraviolet rays kill microorganisms.

• Add sodium thiosulfate to sample bottles for bacterial and viral indicators if the water collected contains residual chlorine. (Samples may have residual chlorine if the sampling site is downstream from a wastewater-treatment plant that chlorinates its effluents). Add ethylene diaminetetracetic acid to sample bottles when water is suspected to contain trace elements such as copper, nickel, and zinc at concentrations greater than 1 mg/L (Britton and Greeson, 1989, p. 5-6; U.S. Environmental Protection Agency, 1978, p. 6; American Public Health Association and others, 1998, p. 9-19). (Sodium thiosulfate or ethylene diaminetetracetic acid are not added to containers for *Cryptosporidium* and *Giardia*).

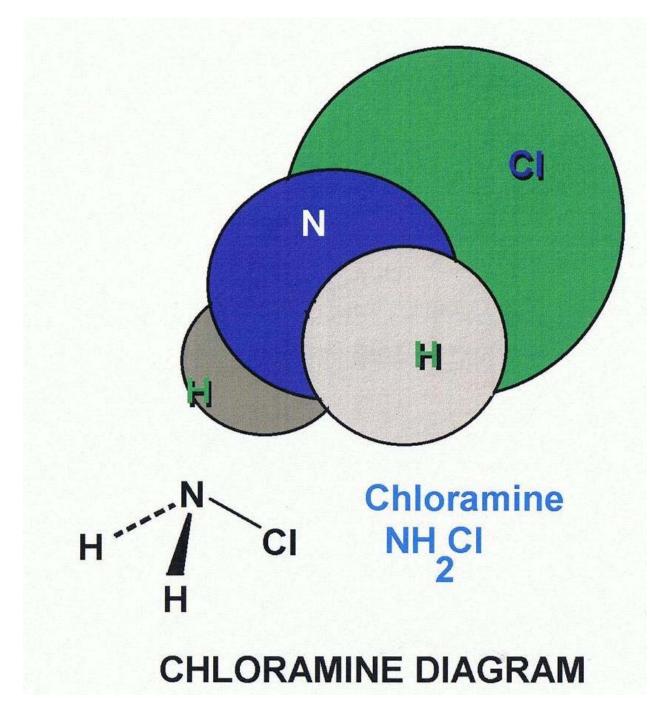
Analytical Methods

Field Analysis

Analysis of water samples for total coliforms, *E. coli*, and enterococci, are done by use of membrane filtration (MF) or most-probable number (MPN) methods. Because membrane filtration is easier to use and provides a more precise quantification of bacteria than MPN, MF is recommended for most analyses. Refer to Myers and Sylvester (1997) for complete MF procedures.

Different MF methods are used for quantification of bacteria in ground-water and streamwater samples.

• For examining streamwater samples for *E. coli*, use the USEPA-recommended mTEC agar method (Environmental Protection Agency, 1986b).


• For examining ground-water samples for total coliforms and *E. coli*, use the MI method (Brenner and others, 1993).

• For enterococci, use the mEI method (U.S. Environmental Protection Agency, 1997).

• For streamwater, plate sufficient sample volumes in order to obtain at least one plate in the ideal count range. For ground water, a 200-mL sample volume is usually sufficient.

Testing of new microbiological monitoring methods and comparing the recoveries of new methods to the USEPA-approved method can be done by use of the NAWQA network. For ground-water samples, for example, one may include a commercially available MPN kit, Colilert (Idexx Laboratories, Westbrook, Maine), for simultaneous detection of total coliforms and *Escherichia coli*.

For streamwater sampling, one may include a single-step modified Mtec medium with 5-bromo-6-chloro-3indolyl' β -d-glucuronide (Bennett Smith, USEPA, Cincinnati, Ohio, oral commun., 1997); this method was developed to replace the mTEC method. Other new methods can be added to the monitoring program for field testing as they are developed.

Chloramines are derivatives of ammonia by substitution of one, two or three hydrogen atoms with chlorine atoms. Monochloramine is an inorganic compound with the formula NH_2CI . It is an unstable colorless liquid at its melting point of -66° C, but it is usually handled as a dilute aqueous solution where it is used as a disinfectant. The term chloramine also refers to a family of organic compounds with the formulas R_2NCI and $RNCI_2$ (R is an organic group). Dichloramine, $NHCI_2$, and nitrogen trichloride, NCI_3 , are also well known.

Laboratory Analysis

Samples need to be kept on ice and shipped to a central laboratory for analysis of coliphage, *C. perfringens*, *Cryptosporidium*, *Giardia*, and enteric viruses by the current analytical methods. The single-agar layer (SAL), direct plating method with induction of β -galactosidase (Ijzerman and Hagedorn, 1992) is recommended for detection of somatic and F-specific coliphage in streamwater samples. In this method, 100-mL sample volumes are mixed with an agar medium, *E. coli* host culture, chemicals that induce the β -galactosidase enzyme, and appropriate antibiotics. The mixtures are poured into four 150- x 15-mm plates and incubated at 35°C.

Upon infection by coliphage in the water sample, the *E. coli* host cells are lysed and stable indolyl product that is dark blue is visible within each plaque. Viral plaques are easily identified and enumerated by the distinct blue circle. Because of contamination by naturally occurring bacteria in streamwater samples, antibiotic- resistant host-culture strains, *E. coli* CN-13 (resistant to nalidixic acid) and *E. coli* F-amp (resistant to streptomycin and ampicillin) are used as hosts for somatic and F-specific coliphage, respectively. Large sample volumes, such as 1-L volumes or greater, are recommended for detection of coliphage in ground water. Because the SAL method is impractical for sample volumes above 100 mL, an alternative method should be used for ground-water sample analysis.

One example, currently being tested by USEPA, is a two-step enrichment presence-absence method (U.S. Environmental Protection Agency, 1999e). Samples for enumeration of *C. perfringens* are analyzed by use of the mCP agar method (U.S. Environmental Protection Agency, 1996c). Standard MF techniques are used, and the plates are incubated anaerobically for 24 hours at 44.5°C. After incubation, the plates are exposed to ammonium hydroxide, and all straw-colored colonies that turn dark pink to magenta are counted as *C. perfringens*. In the laboratory, *C. perfringens* analyses are done on 100-, 30-,and 10-mL volumes of streamwater. In the case of a high-flow or high-turbidity streamwater sample, lower sample volumes may be plated.

Method 1623 (U.S. Environmental Protection Agency, 1999c) is recommended for detection of *Cryptosporidium* oocysts and *Giardia* cysts in water. The oocysts are concentrated on a capsule filter from a 10-L water sample, eluted from the capsule filter with buffer, and concentrated by centrifugation. Immunomagnetic separation (IMS) is used to separate the oocysts from other particulates in the sample. In IMS, the oocysts are magnetized by attachment of magnetic beads conjugated to an antibody and then are separated from sediment and debris by means of a magnet.

Fluorescently labeled antibodies and vital dye are used to make the final microscopic identification of oocysts and cysts. The reverse-transcriptase, polymerase chain reaction (RT-PCR) and cell-culture methods are recommended for detection of enteric viruses in water samples (G. Shay Fout, U.S. Environmental Protection Agency, written commun., 1997; U.S. Environmental Protection Agency, 1996c). To prepare samples for RT-PCR and cell culture, attached viruses are eluted from a 1MDS filter with beef extract (pH 9.5), concentrated using celite (pH 4.0), and eluted with sodium phosphate (pH 9.5).

For RT-PCR analysis, viruses are isolated from the eluate by ultracentrifugation through a sucrose gradient, and trace contaminants are removed by extraction with a solvent mixture. During these steps, the 10-L streamwater sample (or 2,000-L ground-water sample) is concentrated down to 40 µL. An aliquot of the concentrate is used for RT-PCR, wherein any target viral RNA is converted to DNA and amplified by use of an enzymatic process. The RT-PCR products are analyzed by agarose gel electrophoresis and confirmed by hybridization. The enteric viruses detected by use of this method include enterovirus, hepatitis-A, rotavirus, reovirus, and calicivirus.

For cell-culture analysis, the sample eluate is added to a monlayer of a continuous cell line derived from African green monkey kidney cells (U.S. Environmental Protection Agency, 1996c). Each cell culture is examined microscopically for the appearance of cytopathic effects (CPE) for a total of 14 days; if CPE is not observed in 14 days, a second passage is done. Results are reported as most probable number of infectious units per volume of water.

QA/QC Activities and Measures

QA/QC activities and measures to take to reduce contamination.

• Use a sterilization indicator, such as autoclave tape, in preparing sample bottles and other equipment for collection of microbiological samples to determine whether adequate temperatures and pressures have been attained during autoclaving.

• Prepare a separate set of sterile equipment for microbiological sampling at each site.

• Before processing samples in the field vehicle, wipe down the area with a disinfectant (such as isopropyl alcohol) to ensure a sterile working surface.

• Monitor the incubators daily to ensure temperatures are appropriate for the methods used.

For bacteria samples, membrane-filtration (MF) equipment and MF procedure blanks are used to estimate analytical bias.

Field personnel should do the following:

• Prepare an MF equipment blank, a 50- to 100-mL aliquot of sterile buffered water plated before the sample—for every sample by field personnel for total coliform, *E. coli*, and enterococci analyses to determine the sterility of equipment and supplies.

• Prepare a MF procedure blank, a 50- to 100-mL aliquot of sterile buffered water plated after the sample for every fourth sample to measure the effectiveness of the analyst's rinsing technique or presence of incidental contamination of the buffered water.

If contamination from a MF equipment or procedure blank is found, results are suspect and are qualified or not reported. Proper and consistent procedures for counting and identifying target colonies will be followed, as described in Myers and Sylvester (1997).

• After counting, turn the plate 180° and ensure the second count is within 5 percent of the first count. Have a second analyst check calculations of bacterial concentrations in water for errors.

For coliphage, *Cryptosporidium, Giardia*, and enteric virus samples, equipment and field blanks are used to determine sampling and analytical bias. Equipment blanks for these analyses are different from the MF equipment blanks for bacterial analysis. An equipment blank is a blank solution (sterile buffered water) subjected to the same aspects of sample collection, processing, storage, transportation, and laboratory handling as an environmental sample, but it is processed in an office or laboratory. Field blanks are the same as equipment blanks except that they are generated under actual field conditions.

• For enteric virus analysis, collect one equipment blank after collection of the first sample to ensure that equipment cleaning and sterilization techniques are adequate.

• For coliphage, Cryptosporidium, Giardia, and enteric virus analyses, collect field blanks periodically.

At a minimum, the number of field blanks should equal 5 percent of the total number of samples collected. Five percent of samples collected for bacterial and viral indicators (total coliforms, *E. coli*, enterococci, *C. perfringens*, and coliphage) should be nested replicate samples to estimate sampling and analytical variability. For streamwater samples, concurrent replicates to estimate sampling variability are collected by alternating subsamples in each vertical between two collection bottles. For ground-water samples, sequential replicates are collected one after another into separate sterile bottles. Concurrent and sequential replicates are then analyzed in duplicate (split replicates) to estimate analytical variability.

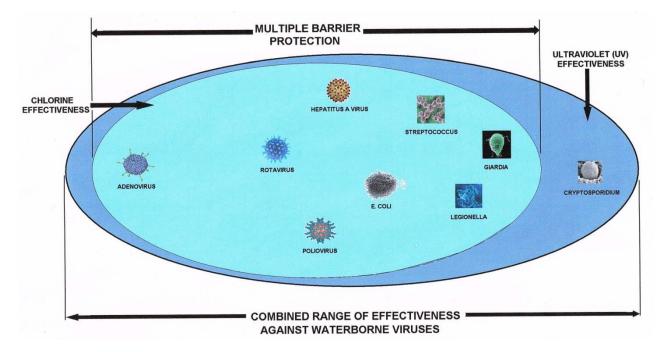
• Because of the expense associated with collection and analysis of samples for pathogens (*Cryptosporidium* and enteric viruses), collect only one replicate sample per year at a site wherein detection of pathogens was found in an earlier sample.

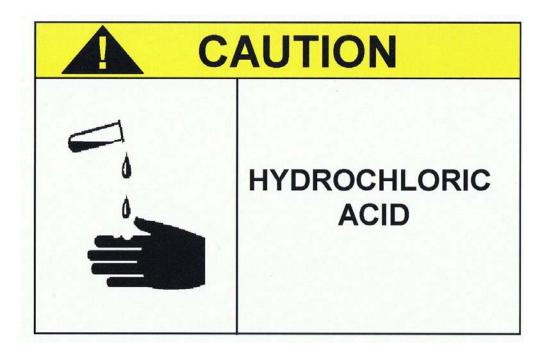
To assess analytical bias of the sampling and analytical method, 2 to 5 percent of the samples collected for enteric virus should be field matrix spikes.

• Run all but 10 L of ground water through the 1 MDS filter and collect the remaining 10 L in a carboy. In the laboratory, the poliovirus vaccine will be added to the 10 L and then passed through the same 1MDS filter. Analysis will be done by use of the cell-culture and RT-PCR methods. • All cell-culture positive samples are serotyped to identify or discount laboratory contamination. Because of the variability in the performance of Method 1623 for recovery of *Cryptosporidium* and *Giardia*, each sample will be collected in duplicate—one will be a regular sample and the other a matrix spike. The laboratory will add a known

quantity of cysts and oocysts to the matrix spike to determine recovery efficiency, as described in USEPA (1999c).

Quality Assurance and Quality Control in the Laboratory


The following criteria may be used to evaluate each production analytical laboratory: (1) appropriate, approved, and published methods, (2) documented standard operating procedures, (3) approved quality-assurance plan, (4) types and amount of quality-control data fully documented and technical defensible, (5) participation in the standard reference sample project (6) scientific capability of personnel, and (7) appropriate laboratory equipment.


The microbiology laboratories must follow good laboratory practices—cleanliness, safety practices, procedures for media preparation, specifications for reagent water quality—as set forth by American Public Health Association (1998) and Britton and Greeson (1989). Some specific guidelines are listed in the following paragraphs.

Reference cultures are used by the central laboratory to evaluate the performance of the test procedures, including media and reagents. Pure cultures of *E. coli, Enterobacter aerogenes,* and *Streptococcus faecalis* (American Type Culture Collection, Rockville, Md.) are used to ensure that MF culture media and buffered water are performing adequately. A pure culture of *C. perfringens*, isolated from a sewage sample and verified by standard procedures, is used to evaluate the test procedure and each lot of media and reagents.

Because contamination of samples from coliphage during the analytical procedure is highly probable (Francy and others, 2000), a negative control of host and sterile buffered water is run concurrently with each batch of samples. In addition, to ensure that the method is being executed properly, a positive-control sewage sample is run with each batch of samples. A laminar flow safety hood is recommended for processing the samples for coliphage analysis. Alternatively, a separate coliphage room may be established to discourage laboratory contamination during the analytical process. An ultraviolet light is installed and operated for 8 hours every night in the safety hood or coliphage room to reduce contamination.

The laboratory should follow the QA/QC guidelines in Method 1623 (U.S. Environmental Protection Agency, 1999c) for *Cryptosporidium* and *Giardia* and in the cell-culture and RT-PCR analysis for enteric viruses (G. Shay Fout, U.S. Environmental Protection Agency, written commun., 1997; U.S. Environmental Protection Agency, 1996c).

Hydrochloric acid is a clear, colorless solution of hydrogen chloride (HCI) in water. It is a highly corrosive, strong mineral acid with many industrial uses. Hydrochloric acid is found naturally in gastric acid.

Hydrogen chloride (HCl) is a monoprotic acid, which means it can dissociate (*i.e.*, ionize) only once to give up one H⁺ ion (a single proton). In aqueous hydrochloric acid, the H⁺ joins a water molecule to form a hydronium ion, H_3O^+ :

$HCI + H_2O \rightarrow H_3O^+ + CI^-$

The other ion formed is Cl⁻, the chloride ion. Hydrochloric acid can therefore be used to prepare salts called *chlorides*, such as sodium chloride. Hydrochloric acid is a strong acid, since it is essentially completely dissociated in water.

Monoprotic acids have one acid dissociation constant, K_a , which indicates the level of dissociation in water. For a strong acid like HCl, the K_a is large. Theoretical attempts to assign a K_a to HCl have been made. When chloride salts such as NaCl are added to aqueous HCl they have practically no effect on pH, indicating that Cl⁻ is an exceedingly weak conjugate base and that HCl is fully dissociated in aqueous solution. For intermediate to strong solutions of hydrochloric acid, the assumption that H⁺ molarity (a unit of concentration) equals HCl molarity is excellent, agreeing to four significant digits.

Of the six common strong mineral acids in chemistry, hydrochloric acid is the monoprotic acid least likely to undergo an interfering oxidation-reduction reaction. It is one of the least hazardous strong acids to handle; despite its acidity, it consists of the non-reactive and non-toxic chloride ion. Intermediate-strength hydrochloric acid solutions are quite stable upon storage, maintaining their concentrations over time. These attributes, plus the fact that it is available as a pure reagent, make hydrochloric acid an excellent acidifying reagent.

Disinfection Byproduct Regulations

Drinking water chlorination has contributed to a dramatic decline in waterborne disease rates and increased life expectancy in the United States. Largely because of this success, many Americans take it for granted that their tap water will be free of disease-causing organisms. In recent years, regulators and the general public have focused greater attention on potential health risks from chemical contaminants in drinking water. One such concern relates to disinfection byproducts (DBPs), chemical compounds formed unintentionally when chlorine and other disinfectants react with certain organic matter in water.

In the early 1970s, EPA scientists first determined that drinking water chlorination could form a group of byproducts known as trihalomethanes (THMs), including chloroform. Concerned that these chemicals may be carcinogenic to humans, EPA set the first regulatory limits for THMs in 1979. Since that time, a wealth of research has improved our understanding of how DBPs are formed, their potential health risks, and how they can be controlled. It is now recognized that all chemical disinfectants form some potentially harmful byproducts. The byproducts of chlorine disinfection are by far the most thoroughly studied.

While the available evidence does not prove that DBPs in drinking water cause adverse health effects in humans, high levels of these chemicals are certainly undesirable. Cost-effective methods to reduce DBP formation are available and should be adopted where possible. However, the International Programme on Chemical Safety (IPCS), a joint venture of the United Nations Environment Programme, the International Labor Organization, and the World Health Organization (IPCS 2000, p. 13) strongly cautions:

The health risks from these byproducts at the levels at which they occur in drinking water are extremely small in comparison with the risks associated with inadequate disinfection. Thus, it is important that disinfection not be compromised in attempting to control such byproducts.

Recent EPA regulations have further limited THMs and other DBPs in drinking water. Most water systems are meeting these new standards by controlling the amount of natural organic matter prior to disinfection, while ensuring that microbial protection remains the top priority. DBPs and Human Cancer Risk Toxicology studies have reported that high doses of some DBPs, including THMs and haloacetic acids (HAAs), can cause cancer in laboratory animals. Based largely on these animal data, EPA considers individual THMs and HAAs to be either possible or probable human carcinogens, although any risk from the low levels found in drinking water would be slight. After reviewing the full body of toxicology studies, the IPCS concluded, "None of the chlorination byproducts studied to date is a potent carcinogen at concentrations normally found in drinking water" (IPCS 2000, p. 376).

Some epidemiology studies have reported an association between human exposure to DBPs and elevated cancer risks, while other studies have found no association. EPA evaluated the existing cancer epidemiology studies and found that only for bladder cancer were associations with chlorinated water somewhat consistent. Even in these studies, cancer risks were not strongly correlated to measured THM levels, indicating that other factors cannot be ruled out (Craun et al., 2001). EPA has concluded, "The present epidemiologic data do not support a causal relationship between exposure to chlorinated drinking water and development of cancer at this time" (EPA 1998). The IPCS reached a similar conclusion in 2000, noting that a causal relationship between DBPs and increased cancer remains an open question (IPCS 2000).

Balancing DBP and Microbial Risks

Continuing evidence of waterborne disease occurrence suggests that microbial risks should receive a much higher level of attention than disinfection byproducts. For this reason, The American Academy of Microbiology (Ford and Colwell, 1996) has recommended, the health risks posed by microbial pathogens should be placed as the highest priority in water treatment to protect public health. A report published by the International Society of Regulatory Toxicology and Pharmacology (Coulston and Kolbye, 1994) stated "The reduction in mortality due to waterborne infectious diseases, attributed largely to chlorination of potable

water supplies, appears to outweigh any theoretical cancer risks (which may be as low as zero) posed by the minute quantities of chlorinated organic chemicals reported in drinking waters disinfected with chlorine."

The IPCS (IPCS 2000, p. 375) reached similar conclusions:

Disinfection is unquestionably the most important step in the treatment of water for drinking water supplies. The microbial quality of drinking water should not be compromised because of concern over the potential long-term effects of disinfectants and DBPs. The risk of illness and death resulting from exposure to pathogens in drinking water is very much greater than the risks from disinfectants and DBPs.

Controlling Disinfection Byproducts

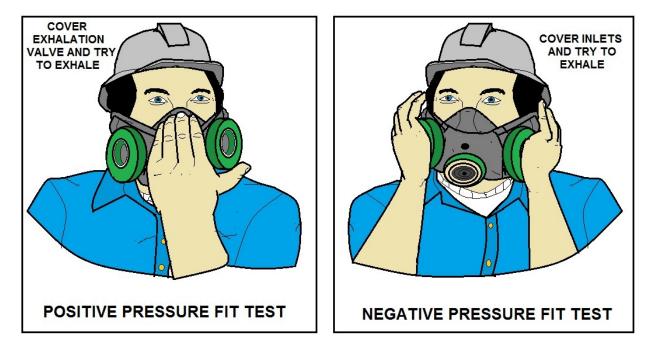
Treatment techniques are available that provide water suppliers the opportunity to maximize potable water safety and quality while minimizing the risk of DBP risks. Generally, the best approach to reduce DBP formation is to remove natural organic matter precursors prior to disinfection. EPA has published a guidance document for water system operators entitled, Controlling Disinfection byproducts and Microbial Contaminants in Drinking Water (EPA, 2001).

The EPA guidance discusses three processes to effectively remove natural organic matter prior to disinfection:

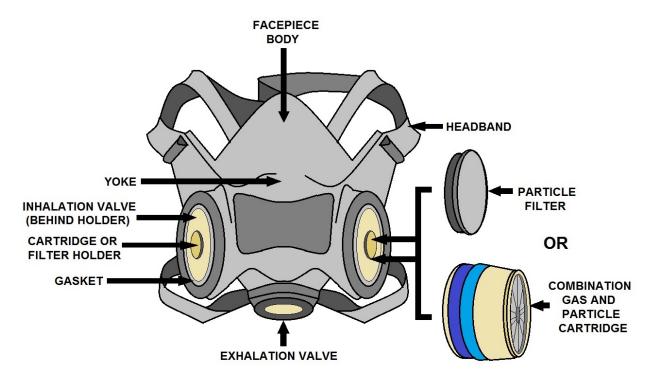
1. Coagulation and Clarification

Most treatment plants optimize their coagulation process for turbidity (particle) removal. However, coagulation processes can also be optimized for natural organic matter removal with higher doses of inorganic coagulants (such as alum or iron salts), and optimization of pH.

2. Absorption

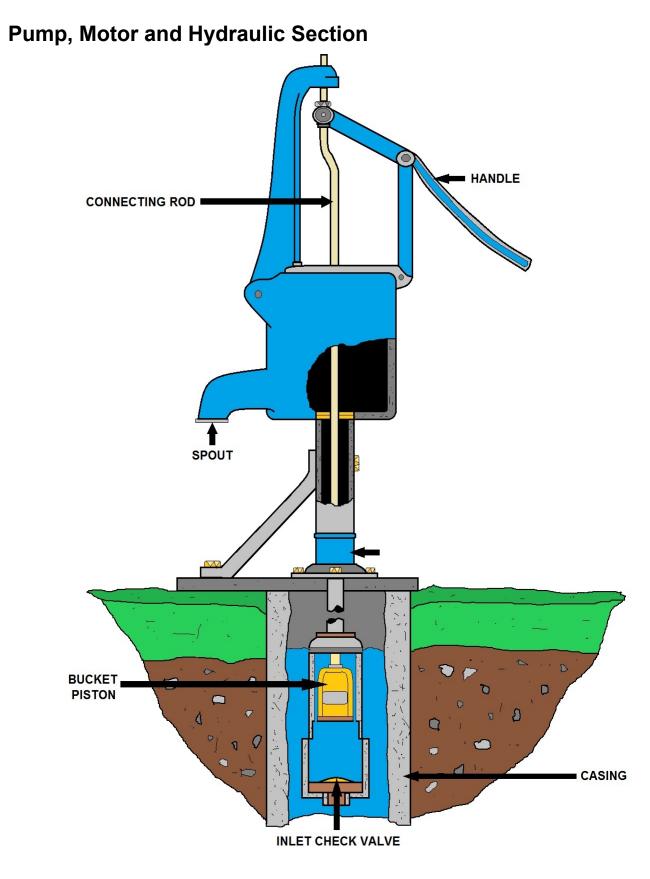

Activated carbon can be used to absorb soluble organics that react with disinfectants to form byproducts.

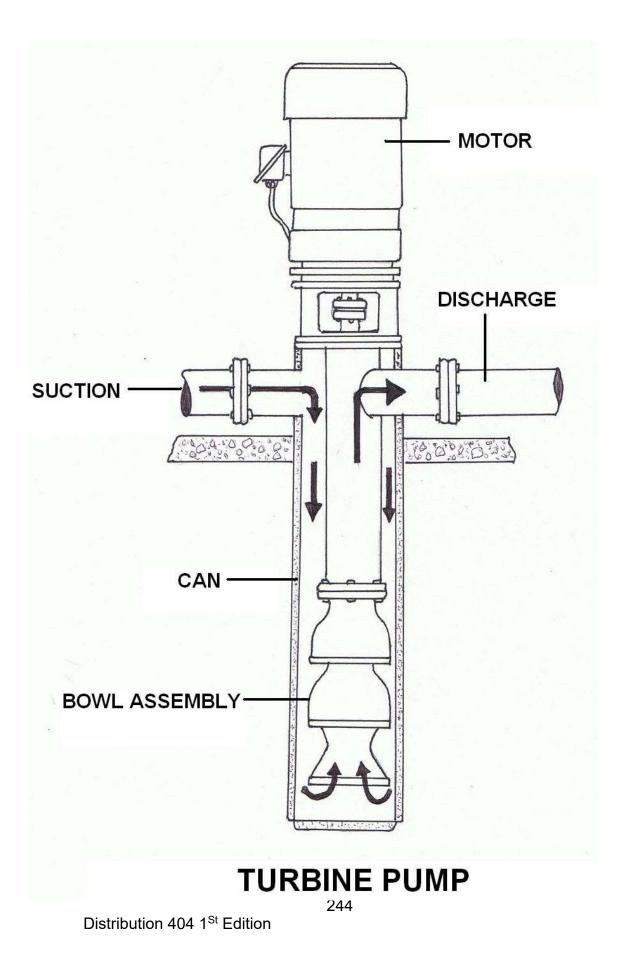
3. Membrane Technology


Membranes, used historically to desalinate brackish waters, have also demonstrated excellent removal of natural organic matter. Membrane processes use hydraulic pressure to force water through a semipermeable membrane that rejects most contaminants. Variations of this technology include reverse osmosis (RO), nanofilitration (low pressure RO), and microfiltration (comparable to conventional sand filtration).

Other conventional methods of reducing DBP formation include changing the point of chlorination and using chloramines for residual disinfection. EPA predicts that most water systems will be able to achieve compliance with new DBP regulations through the use of one or more of these relatively low cost methods (EPA, 1998).

Water system managers may also consider switching from chlorine to alternative disinfectants to reduce formation of THMs and HAAs. However, all chemical disinfectants form some DBPs. Much less is known about the byproducts of these alternatives than is known about chlorination byproducts. Furthermore, each disinfection method has other distinct advantages and disadvantages.


POSITIVE AND NEGATIVE PRESSURE FIT CHECKS



BASIC PARTS OF A HALF-FACEPIECE RESPIRATOR

CONTROL MEASURES

Common Hydraulic Terms

Head

The height of a column or body of fluid above a given point expressed in linear units. Head is often used to indicate gauge pressure. Pressure is equal to the height times the density of the liquid.

Head, Friction

The head required to overcome the friction at the interior surface of a conductor and between fluid particles in motion. It varies with flow, size, type, and conditions of conductors and fittings, and the fluid characteristics.

Head, static

The height of a column or body of fluid above a given point.

Hydraulics

Engineering science pertaining to liquid pressure and flow.

Hydrokinetics

Engineering science pertaining to the energy of liquid flow and pressure.

Pascal's Law

A pressure applied to a confined fluid at rest is transmitted with equal intensity throughout the fluid.

Pressure

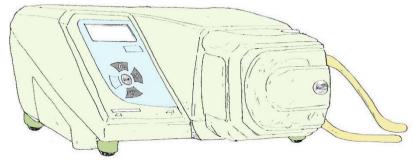
The application of continuous force by one body upon another that it is touching; compression. Force per unit area, usually expressed in pounds per square inch (Pascal or bar).

Pressure, Absolute

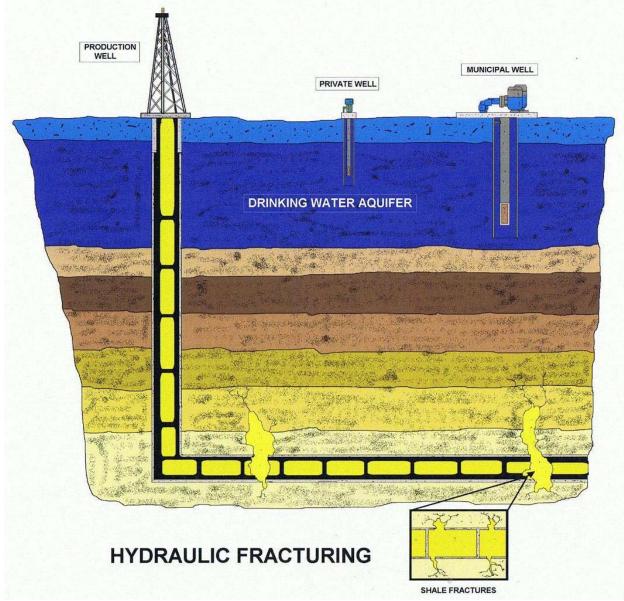
The pressure above zone absolute, i.e. the sum of atmospheric and gauge pressure. In vacuum related work it is usually expressed in millimeters of mercury. (mmHg).

Pressure, Atmospheric

Pressure exported by the atmosphere at any specific location. (Sea level pressure is approximately 14.7 pounds per square inch absolute, 1 bar =


14.5psi.)

Pressure, Gauge


Pressure differential above or below ambient atmospheric pressure.

Pressure, Static

The pressure in a fluid at rest.

PERISTALTIC PUMP

Hydraulic fracturing is the propagation of fractures in a rock layer by a pressurized fluid. Some hydraulic fractures form naturally -- certain veins or dikes are examples -- and can create conduits along which gas and petroleum from source rocks may migrate to reservoir rocks. Induced hydraulic fracturing or hydrofracturing, commonly known as fracing, fraccing, or fracking, is a technique used to release petroleum, natural gas (including shale gas, tight gas, and coal seam gas), or other substances for extraction. This type of fracturing creates fractures from a wellbore drilled into reservoir rock formations.

Proponents of hydraulic fracturing point to the economic benefits from vast amounts of formerly inaccessible hydrocarbons the process can extract. Opponents point to potential environmental impacts, including contamination of ground water, risks to air quality, the migration of gases and hydraulic fracturing chemicals to the surface, surface contamination from spills and flowback and the health effects of these. For these reasons hydraulic fracturing has come under scrutiny internationally, with some countries suspending or banning it.

Hydraulic Principles Section

Definition Hydraulics is a branch of engineering concerned mainly with moving liquids. The term is applied commonly to the study of the mechanical properties of water, other liquids, and even gases when the effects of compressibility are small. Hydraulics can be divided into two areas, hydrostatics and hydrokinetics.

Hydraulics The Engineering science pertaining to liquid pressure and flow.

The word **hydraulics** is based on the Greek word for water, and originally covered the study of the physical behavior of water at rest and in motion. Use has broadened its meaning to include the behavior of all liquids, although it is primarily concerned with the motion of liquids.

Hydraulics includes the manner in which liquids act in tanks and pipes, deals with their properties, and explores ways to take advantage of these properties.

Hydrostatics, the consideration of liquids at rest, involves problems of buoyancy and flotation, pressure on dams and submerged devices, and hydraulic presses. The relative incompressibility of liquids is one of its basic principles. Hydrodynamics, the study of liquids in motion, is concerned with such matters as friction and turbulence generated in pipes by flowing liquids, the flow of water over weirs and through nozzles, and the use of hydraulic pressure in machinery.

Hydrostatics

Hydrostatics is about the pressures exerted by a fluid at rest. Any fluid is meant, not just water. Research and careful study on water yields many useful results of its own, however, such as forces on dams, buoyancy and hydraulic actuation, and is well worth studying for such practical reasons. Hydrostatics is an excellent example of deductive mathematical

physics, one that can be understood easily and completely from a very few fundamentals, and in which the predictions agree closely with experiment.

There are few better illustrations of the use of the integral calculus, as well as the principles of ordinary statics, available to the student. A great deal can be done with only elementary mathematics. Properly adapted, the material can be used from the earliest introduction of school science, giving an excellent example of a quantitative science with many possibilities for hands-on experiences.

The definition of a fluid deserves careful consideration. Although time is not a factor in hydrostatics, it enters in the approach to hydrostatic equilibrium. It is usually stated that a fluid is a substance that cannot resist a shearing stress, so that pressures are normal to confining surfaces. Geology has now shown us clearly that there are substances which can resist shearing forces over short time intervals, and appear to be typical solids, but which flow like liquids over long time intervals. Such materials include wax and pitch, ice, and even rock.

A ball of pitch, which can be shattered by a hammer, will spread out and flow in months. Ice, a typical solid, will flow in a period of years, as shown in glaciers, and rock will flow over hundreds of years, as in convection in the mantle of the earth.

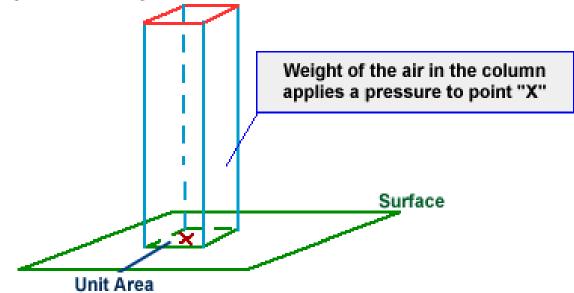
Shear earthquake waves, with periods of seconds, propagate deep in the earth, though the rock there can flow like a liquid when considered over centuries. The rate of shearing may not be strictly proportional to the stress, but exists even with low stress.

Viscosity may be the physical property that varies over the largest numerical range, competing with electrical resistivity. There are several familiar topics in hydrostatics which often appears in expositions of introductory science, and which are also of historical interest and can enliven their presentation. Let's start our study with the principles of our atmosphere.

Atmospheric Pressure

The atmosphere is the entire mass of air that surrounds the earth. While it extends upward for about 500 miles, the section of primary interest is the portion that rests on the earth's surface and extends upward for about 7 1/2 miles. This layer is called the troposphere.

If a column of air 1-inch square extending all the way to the "*top*" of the atmosphere could be weighed, this column of air would weigh approximately 14.7 pounds at sea level. Thus, atmospheric pressure at sea level is approximately 14.7 psi.

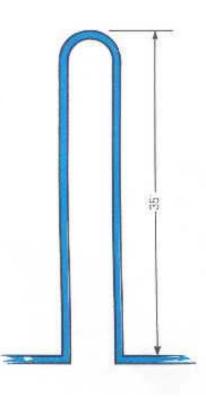

As one ascends, the atmospheric pressure decreases by approximately 1.0 psi for every 2,343 feet. However, below sea level, in excavations and depressions, atmospheric pressure increases. Pressures under water differ from those under air only because the weight of the water must be added to the pressure of the air.

Atmospheric pressure can be measured by any of several methods. The common laboratory method uses the mercury column barometer. The height of the mercury column serves as an indicator of atmospheric pressure. At sea level and at a temperature of 0° Celsius (**C**), the height of the mercury column is approximately 30 inches, or 76 centimeters. This represents a pressure of approximately 14.7 psi. The 30-inch column is used as a reference standard.

Another device used to measure atmospheric pressure is the aneroid barometer. The aneroid barometer uses the change in shape of an evacuated metal cell to measure variations in atmospheric pressure. The thin metal of the aneroid cell moves in or out with the variation of pressure on its external surface. This movement is transmitted through a system of levers to a pointer, which indicates the pressure.

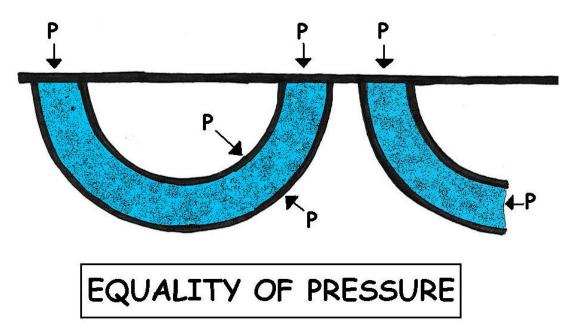
The atmospheric pressure does not vary uniformly with altitude. It changes very rapidly. Atmospheric pressure is defined as the force per unit area exerted against a surface by the weight of the air above that surface. In the diagram on the following page, the pressure at point "X" increases as the weight of the air above it increases. The same can be said about decreasing pressure, where the pressure at point "X" decreases if the weight of the air above it also decreases.

Top of the Atmosphere


Barometric Loop

The barometric loop consists of a continuous section of supply piping that abruptly rises to a height of approximately 35 feet and then returns back down to the originating level. It is a loop in the piping system that effectively protects against backsiphonage. It may not be used to protect against backpressure.

Its operation, in the protection against backsiphonage, is based upon the principle that a water column, at sea level pressure, will not rise above 33.9 feet. In general, barometric loops are locally fabricated, and are 35 feet high.


Pressure may be referred to using an absolute scale, pounds per square inch absolute (**psia**), or gauge scale, (**psiag**). Absolute pressure and gauge pressure are related. Absolute pressure is equal to gauge pressure plus the atmospheric pressure. At sea level, the atmospheric pressure is 14.7 psai.

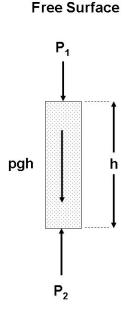
Absolute pressure is the total pressure. Gauge pressure is simply the pressure read on the gauge. If there is no pressure on the gauge other than atmospheric, the gauge will read zero. Then the absolute pressure would be equal to 14.7 psi, which is the atmospheric pressure.

Pressure

By a fluid, we have a material in mind like water or air, two very common and important fluids. Water is incompressible, while air is very compressible, but both are fluids. Water has a definite volume; air does not. Water and air have low viscosity; that is, layers of them slide very easily on one another, and they quickly assume their permanent shapes when disturbed by rapid flows. Other fluids, such as molasses, may have high viscosity and take a long time to come to equilibrium, but they are no less fluids. The coefficient of viscosity is the ratio of the shearing force to the velocity gradient. Hydrostatics deals with permanent, time-independent states of fluids, so viscosity does not appear, except as discussed in the Introduction.

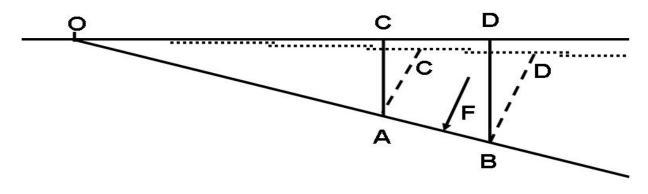
A fluid, therefore, is a substance that cannot exert any permanent forces tangential to a boundary. Any force that it exerts on a boundary must be normal to the boundary. Such a force is proportional to the area on which it is exerted, and is called a pressure. We can imagine any surface in a fluid as dividing the fluid into parts pressing on each other, as if it were a thin material membrane, and so think of the pressure at any point in the fluid, not just at the boundaries. In order for any small element of the fluid to be in equilibrium, the pressure must be the same in all directions (or the element would move in the direction of least pressure), and if no other forces are acting on the body of the fluid, the pressure must be the same at all neighboring points.

Therefore, in this case the pressure will be the same throughout the fluid, and the same in any direction at a point (Pascal's Principle). Pressure is expressed in units of force per unit area such as dyne/cm², N/cm² (pascal), pounds/in² (psi) or pounds/ft² (psf). The axiom that if a certain volume of fluid were somehow made solid, the equilibrium of forces would not be disturbed, is useful in reasoning about forces in fluids.


On earth, fluids are also subject to the force of gravity, which acts vertically downward, and has a magnitude $\gamma = \rho g$ per unit volume, where g is the acceleration of gravity, approximately 981 cm/s² or 32.15 ft/s², ρ is the density, the mass per unit volume, expressed in g/cm³, kg/m³, or slug/ft³, and γ is the specific weight, measured in lb/in³, or lb/ft³ (pcf).

Gravitation is an example of a body force that disturbs the equality of pressure in a fluid. The presence of the gravitational body force causes the pressure to increase with depth, according to the equation dp = ρ g dh, in order to support the water above. We call this relation the barometric equation, for when this equation is integrated, we find the variation of pressure with height or depth. If the fluid is incompressible, the equation can be integrated at once, and the pressure as a function of depth h is p = ρ gh + p0.

The density of water is about 1 g/cm³, or its specific weight is 62.4 pcf. We may ask what depth of water gives the normal sea-level atmospheric pressure of 14.7 psi, or 2117 psf.


This is simply 2117 / 62.4 = 33.9 ft of water. This is the maximum height to which water can be raised by a suction pump, or, more correctly, can be supported by atmospheric pressure. Professor James Thomson (brother of William Thomson, Lord Kelvin) illustrated the equality of pressure by a "curtain-ring" analogy shown in the diagram. A section of the toroid was identified, imagined to be solidified, and its equilibrium was analyzed.

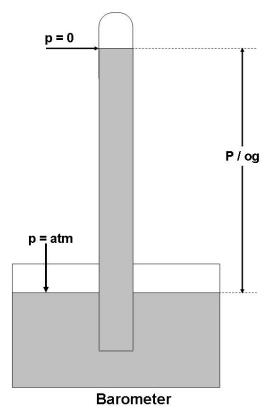
The forces exerted on the curved surfaces have no component along the normal to a plane section, so the pressures at any two points of a plane must be equal, since the fluid represented by the curtain ring was in equilibrium. The right-hand part of the diagram illustrates the equality of pressures in orthogonal directions. This can be extended to

Increase of Pressure with Depth

any direction whatever, so Pascal's Principle is established. This demonstration is similar to the usual one using a triangular prism and considering the forces on the end and lateral faces separately.

Thrust on a Plane

251


Free Surface Perpendicular to Gravity

When gravity acts, the liquid assumes a free surface perpendicular to gravity, which can be proved by Thomson's method. A straight cylinder of unit cross-sectional area (assumed only for ease in the arithmetic) can be used to find the increase of pressure with depth. Indeed, we see that $p2 = p1 + \rho gh$. The upper surface of the cylinder can be placed at the free surface if desired. The pressure is now the same in any direction at a point, but is greater at points that lie deeper. From this same figure, it is easy to prove Archimedes' Principle that the buoyant force is equal to the weight of the displaced fluid, and passes through the center of mass of this displaced fluid.

Geometric Arguments

Ingenious geometric arguments can be used to substitute for easier, but less transparent arguments using calculus. For example, the force acting on one side of an inclined plane surface whose projection is AB can be found as in the diagram on the previous page. O is the point at which the prolonged projection intersects the free surface. The line AC' perpendicular to the plane is made equal to the depth AC of point A, and line BD' is similarly drawn equal to BD. The line OD' also passes through C', by proportionality of triangles OAC' and OAD'. Therefore, the thrust F on the plane is the weight of a prism of fluid of crosssection AC'D'B, passing through its centroid normal to plane AB. Note that the thrust is equal to the density times the area times the depth of the center of the area; its line of action does not pass through the center, but below it, at the center of thrust. The same result can be obtained with calculus by summing the pressures and the moments.

Suppose a vertical pipe is stood in a pool of water, and a vacuum pump applied to the upper end. Before we

start the pump, the water levels outside and inside the pipe are equal, and the pressures on the surfaces are also equal and are equal to the atmospheric pressure.

Now start the pump. When it has sucked all the air out above the water, the pressure on the surface of the water inside the pipe is zero, and the pressure at the level of the water on the outside of the pipe is still the atmospheric pressure. Of course, there is the vapor pressure of the water to worry about if you want to be precise, but we neglect this complication in making our point. We require a column of water 33.9 ft high inside the pipe, with a vacuum above it, to balance the atmospheric pressure. Now do the same thing with liquid mercury, whose density at 0 $^{\circ}$ C is 13.5951 times that of water. The height of the column is 2.494 ft, 29.92 in, or 760.0 mm.

Standard Atmospheric Pressure

This definition of the standard atmospheric pressure was established by Regnault in the mid-19th century. In Britain, 30 in. Hg (inches of mercury) had been used previously. As a practical matter, it is convenient to measure pressure differences by measuring the height of liquid columns, a practice known as manometry. The barometer is a familiar example of this, and atmospheric pressures are traditionally given in terms of the length of a mercury column. To make a barometer, the barometric tube, closed at one end, is filled with mercury and then inverted and placed in a mercury reservoir. Corrections must be made for temperature, because the density of mercury depends on the temperature, and the brass scale expands for capillarity if the tube is less than about 1 cm in diameter, and even slightly for altitude, since the value of g changes with altitude.

The vapor pressure of mercury is only 0.001201 mmHg at 20°C, so a correction from this source is negligible. For the usual case of a mercury column ($\alpha = 0.000181792$ per °C) and a brass scale (&alpha = 0.0000184 per °C) the temperature correction is -2.74 mm at 760 mm and 20°C. Before reading the barometer scale, the mercury reservoir is raised or lowered until the surface of the mercury just touches a reference point, which is mirrored in the surface so it is easy to determine the proper position. An aneroid barometer uses a partially evacuated chamber of thin metal that expands

Siphon

and contracts according to the external pressure. This movement is communicated to a needle that revolves in a dial. The materials and construction are arranged to give a low temperature coefficient. The instrument must be calibrated before use, and is usually arranged to read directly in elevations. An aneroid barometer is much easier to use in field observations, such as in reconnaissance surveys. In a particular case, it would be read at the start of the day at the base camp, at various points in the vicinity, and then finally at the starting point, to determine the change in pressure with time. The height differences can be calculated from $h = 60,360 \log (P/p) [1 + (T + t - 64)/986)$ feet, where P and p are in the same units, and T, t are in °F.

An absolute pressure is referring to a vacuum, while a gauge pressure is referring to the atmospheric pressure at the moment. A negative gauge pressure is a (partial) vacuum. When a vacuum is stated to be so many inches, this means the pressure below the atmospheric pressure of about 30 in. A vacuum of 25 inches is the same thing as an absolute pressure of 5 inches (of mercury).

Vacuum

The term *vacuum* indicates that the absolute pressure is less than the atmospheric pressure and that the gauge pressure is negative. A complete or total vacuum would mean a pressure of 0 psia or –14.7 psig. Since it is impossible to produce a total vacuum, the term vacuum, as used in this document, will mean all degrees of partial vacuum. In a partial vacuum, the pressure would range from slightly less than 14.7 psia (0 psig) to slightly greater than 0 psia (-14.7 psig). Backsiphonage results from atmospheric pressure exerted on a liquid, forcing it toward a supply system that is under a vacuum.

Water Pressure


The weight of a cubic foot of water is 62.4 pounds per square foot. The base can be subdivided into 144-square inches with each subdivision being subjected to a pressure of 0.433 psig. Suppose you placed another cubic foot of water on top of the first cubic foot. The pressure on the top surface of the first cube which was originally atmospheric, or 0 psig, would now be 0.4333 psig as a result of the additional cubic foot of water. The pressure of the base of the first cubic foot would be increased by the same amount of 0.866 psig or two times the original pressure.

Pressures are very frequently stated in terms of the height of a fluid. If it is the same fluid whose pressure is being given, it is usually called "head," and the factor connecting the head and the pressure is the weight density pg. In the English engineer's system, weight density is in pounds per cubic inch or cubic foot. A head of 10 ft is equivalent to a pressure of 624 psf, or 4.33 psi. It can also be considered an energy availability of ft-lb per lb. Water with a pressure head of 10 ft can furnish the same energy as an equal amount of water raised by 10 ft. Water flowing in a pipe is subject to head loss because of friction.

Take a jar and a basin of water. Fill the jar with water and invert it under the water in the basin. Now raise the jar as far as you can without allowing its mouth to come above the water surface. It is always a little surprising to see that the jar does not empty itself, but the water remains with no visible means of support. By blowing through a straw, one can put air into the jar, and as much water leaves as air enters. In fact, this is a famous method of collecting insoluble gases in the chemical laboratory, or for supplying hummingbird

feeders. It is good to remind oneself of exactly the balance of forces involved.

Another application of pressure is the siphon. The name is Greek for the tube that was used for drawing wine from a cask. This is a tube filled with fluid connecting two containers of fluid, normally rising higher than the water levels in the two containers, at least to pass over their rims. In the diagram, the two water levels are the same, so there will be no flow. When a siphon goes below the free water levels, it is called an inverted siphon. If the levels in the two basins are not equal, fluid flows from the basin with the higher level into the one with the lower level, until the levels are equal.

A siphon can be made by filling the tube, closing the

PASCAL'S SIPHON

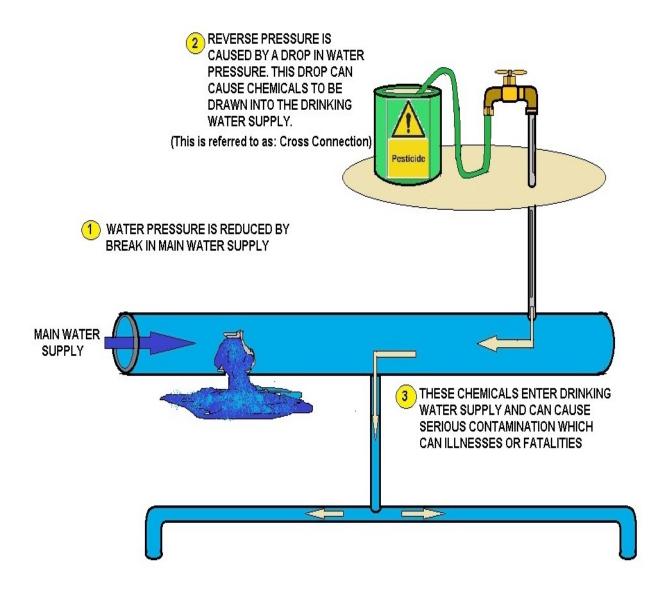
ends, and then putting the ends under the surface on both sides. Alternatively, the tube can be placed in one fluid and filled by sucking on it. When it is full, the other end is put in place. The analysis of the siphon is easy, and should be obvious. The pressure rises or falls as described by the barometric equation through the siphon tube. There is obviously a maximum height for the siphon which is the same as the limit of the suction pump, about 34 feet. Inverted siphons are sometimes used in pipelines to cross valleys. Differences in elevation are usually too great to use regular siphons to cross hills, so the fluids must be pressurized by pumps so the pressure does not fall to zero at the crests.

Liquids at Rest

In studying fluids at rest, we are concerned with the transmission of force and the factors which affect the forces in liquids. Additionally, pressure in and on liquids and factors affecting pressure are of great importance.

Pressure and Force

Pressure is the force that pushes water through pipes. Water pressure determines the flow of water from the tap. If pressure is not sufficient then the flow can reduce to a trickle and it will take a long time to fill a kettle or a cistern.


The terms *force* and *pressure* are used extensively in the study of fluid power. It is essential that we distinguish between the terms.

Force means a total push or pull. It is the push or pull exerted against the total area of a particular surface and is expressed in pounds or grams. Pressure means the amount of push or pull (force) applied to each unit area of the surface and is expressed in pounds per square inch (lb/in²) or grams per square centimeter (gm/cm²). Pressure maybe exerted in one direction, in several directions, or in all directions.

Computing Force, Pressure, and Area

A formula is used in computing force, pressure, and area in fluid power systems. In this formula, P refers to pressure, F indicates force, and A represents area. Force equals pressure times area. Thus, the formula is written:

Development of Hydraulics

Although the modern development of hydraulics is comparatively recent, the ancients were familiar with many hydraulic principles and their applications. The Egyptians and the ancient people of Persia, India, and China conveyed water along channels for irrigation and domestic purposes, using dams and sluice gates to control the flow. The ancient Cretans had an elaborate plumbing system. Archimedes studied the laws of floating and submerged bodies. The Romans constructed aqueducts to carry water to their cities.

After the breakup of the ancient world, there were few new developments for many centuries. Then, over a comparatively short period, beginning near the end of the seventeenth century, Italian physicist, Evangelista Torricelle, French physicist, Edme Mariotte, and later, Daniel Bernoulli conducted experiments to study the elements of force in the discharge of water through small openings in the sides of tanks and through short pipes. During the same period, Blaise Pascal, a French scientist, discovered the fundamental law for the science of hydraulics. Pascal's law states that increase in pressure on the surface of a confined fluid is transmitted undiminished throughout the confining vessel or system.

For Pascal's law to be made effective for practical applications, it was necessary to have a piston that "fit exactly." It was not until the latter part of the eighteenth century that methods were found to make these snugly fitted parts required in hydraulic systems.

This was accomplished by the invention of machines that were used to cut and shape the necessary closely fitted parts and, particularly, by the development of gaskets and packings. Since that time, components such as valves, pumps, actuating cylinders, and motors have been developed and refined to make hydraulics one of the leading methods of transmitting power.

Liquids are almost incompressible. For example, if a pressure of 100 pounds per square inch (**psi**) is applied to a given volume of water that is at atmospheric pressure, the volume will decrease by only 0.03 percent. It would take a force of approximately 32 tons to reduce its volume by 10 percent; however, when this force is removed, the water immediately returns to its original volume. Other liquids behave in about the same manner as water.

Another characteristic of a liquid is the tendency to keep its free surface level. If the surface is not level, liquids will flow in the direction which will tend to *make* the surface level.

Evangelista Torricelli

Evangelista Torricelli (1608-1647), Galileo's student and secretary and a member of the Florentine Academy of Experiments, invented the mercury barometer in 1643, and brought the weight of the atmosphere to light. The mercury column was held up by the pressure of the atmosphere, not by horror vacui as Aristotle had supposed. Torricelli's early death was a blow to science, but his ideas were furthered by Blaise Pascal (1623-1662).

Pascal had a barometer carried up the 1465 m high Puy de Dôme, an extinct volcano in the Auvergne just west of his home of Clermont-Ferrand in 1648 by Périer, his brother-in-law. Pascal's experimentum crucis is one of the triumphs of early modern science. The Puy de Dôme is not the highest peak in the Massif Central--the Puy de Sancy, at 1866 m is, but it was the closest. Clermont is now the center of the French pneumatics industry.

Burgomeister of Magdeburg

The remarkable Otto von Guericke (1602-1686), Burgomeister of Magdeburg, Saxony, took up

the cause, making the first vacuum pump, which he used in vivid demonstrations of the pressure of the atmosphere to the Imperial Diet at Regensburg in 1654. Famously, he evacuated a sphere consisting of two well-fitting hemispheres about a foot in diameter, and showed that 16 horses, 8 on each side, could not pull them apart. An original vacuum pump and hemispheres from 1663 are shown at the right (photo edited from the Deutsches Museum; see on right). He also showed that air had weight, and how much force it did require to separate evacuated hemispheres. Then, in England, Robert Hooke (1635-1703) made a vacuum pump for Robert Boyle (1627-1691). Christian Huygens (1629-1695) became interested in a visit to London in 1661 and had a vacuum pump built for him.

By this time, Torricelli's doctrine had triumphed over the Church's support for horror vacui. This was one of the first victories for rational physics over the illusions of experience, and is well worth consideration.

Pascal demonstrated that the siphon worked by atmospheric pressure, not by horror vacui. The two beakers of mercury are connected by a three-way tube as shown, with the upper branch open to the atmosphere. As the large container is filled with water, pressure on the free surfaces of the mercury in the beakers pushes mercury into the tubes. When the state shown is reached, the beakers are connected by a mercury column, and the siphon starts, emptying the upper beaker and filling the lower. The mercury has been open to the atmosphere all this time, so if there were any horror vacui, it could have flowed in at will to soothe itself.

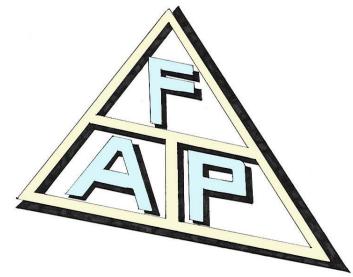
Torr

The mm of mercury is sometimes called a torr after Torricelli, and Pascal also has been honored by a unit of pressure, a newton per square meter or 10 dyne/cm2. A cubic centimeter of air weighs 1.293 mg under standard conditions, and a cubic meter 1.293 kg, so air is by no means even approximately weightless, though it seems so. The weight of a sphere of air as small as 10 cm in diameter is 0.68 g, easily measurable with a chemical balance. The pressure of the atmosphere is also considerable, like being 34 ft under water, but we do not notice it. A bar is 106 dyne/cm2, very close to a standard atmosphere, which is 1.01325 bar. In meteorology, the millibar, mb, is used. 1 mb = 1.333 mmHg = 100 Pa = 1000 dyne/cm2.

A kilogram-force per square centimeter is 981,000 dyne/cm2, also close to one atmosphere. In Europe, it has been considered approximately 1 atm, as in tire pressures and other engineering applications. As we have seen, in English units the atmosphere is about 14.7 psi, and this figure can be used to find other approximate equivalents. For example, 1 psi = 51.7 mmHg. In Britain, tons per square inch has been used for large pressures. The ton in this case is 2240 lb, not the American short ton. 1 tsi = 2240 psi, 1 tsf = 15.5 psi (about an atmosphere!).The fluid in question here is air, which is by no means incompressible. As we rise in the atmosphere and the pressure decreases, the air also expands.

To see what happens in this case, we can make use of the ideal gas equation of state, $p = \rho RT/M$, and assume that the temperature T is constant. Then the change of pressure in a change of altitude dh is dp = -pg dh = - (pM/RT) gdh, or dp/p = - (Mg/RT) dh. This is a little harder to integrate than before, but the result is ln p = -Mgh/RT + C, or ln (p/p0) = - Mgh/RT, or finally p = p0exp (-Mgh/RT).

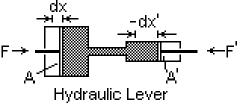
In an isothermal atmosphere, the pressure decreases exponentially. The quantity H = RT/Mg is called the "height of the homogeneous atmosphere" or the scale height, and is about 8 km at T = 273K.


This quantity gives the rough scale of the decrease of pressure with height. Of course, the real atmosphere is by no means isothermal close to the ground, but cools with height nearly linearly at about 6.5°C/km up to an altitude of about 11 km at middle latitudes, called the tropopause.

Above this is a region of nearly constant temperature, the stratosphere, and then at some higher level the atmosphere warms again to near its value at the surface. Of course, there are variations from the average values. When the temperature profile with height is known, we can find the pressure by numerical integration quite easily.

Meteorology

The atmospheric pressure is of great importance in meteorology, since it determines the winds, which generally move at right angles to the direction of the most rapid change of pressure, that is, along the isobars, which are contours of constant pressure. Certain typical weather patterns are associated with relatively high and relatively low pressures, and how they vary with time. The barometric pressure may be given in popular weather forecasts, though few people know what to do with it. If you live at a high altitude, your local weather reporter may report the pressure to be, say, 29.2 inches, but if you have a real barometer, you may well find that it is closer to 25 inches. At an elevation of 1500 m (near Denver, or the top of the Puy de Dôme), the atmospheric pressure is about 635 mm, and water boils at 95 °C.


In fact, altitude is quite a problem in meteorology, since pressures must be measured at a common level to be meaningful. The barometric pressures quoted in the news are reduced to sea level by standard formulas that amount to assuming that there is a column of air from your feet to sea level with a certain temperature distribution, and adding the weight of this column to the actual barometric pressure. This is only an arbitrary 'fix' and leads to some strange conclusions, such as the permanent winter highs above high plateaus that are really imaginary.

The Hydraulic Lever

A cylinder and piston is a chamber of variable volume, a mechanism for transforming pressure to force.

If A is the area of the cylinder, and p the pressure of the fluid in it, then F = pA is the force on the piston. If the piston moves outwards a distance dx, then the change in volume is dV = A dx.

The work done by the fluid in this displacement is dW =

F dx = pA dx = p dV. If the movement is slow enough that inertia and viscosity forces are negligible, then hydrostatics will still be valid. A process for which this is true is called quasi-static. Now consider two cylinders, possibly of different areas A and A', connected with each other and filled with fluid. For simplicity, suppose that there are no gravitational forces.

Then the pressure is the same, p, in both cylinders. If the fluid is incompressible, then dV + dV' = 0, so that dW = p dV + p dV' = F dx + F' dx' = 0. This says the work done on one piston is equal to the work done by the other piston: the conservation of energy. The ratio of the forces on the pistons is F' / F = A' / A, the same as the ratio of the areas, and the ratios of the displacements dx' / dx = F / F' = A / A' is in the inverse ratio of the areas. This mechanism is the hydrostatic analogue of the lever, and is the basis of hydraulic activation.

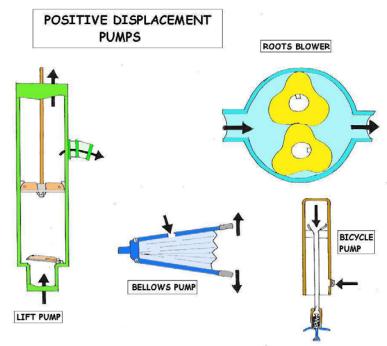
Bramah Hydraulic Press

The most famous application of this principle is the Bramah hydraulic press, invented by Joseph Bramah (1748-1814), who also invented many other useful machines, including a lock and a toilet. Now, it was not very remarkable to see the possibility of a hydraulic press; what was remarkable was to find a way to seal the large cylinder properly.

This was the crucial problem that Bramah solved by his leather seal that was held against the cylinder and the piston by the hydraulic pressure itself. In the presence of gravity, $p' = p + \rho gh$, where h is the difference in elevation of the two cylinders. Now, $p' dV' = -dV (p + \rho gh) = -p dV - (\rho dV) gh$, or the net work done in the process is p' dV' + p dV = -dM gh, where dM is the mass of fluid displaced from the lower cylinder to the upper cylinder. Again, energy is conserved if we take into account the potential energy of the fluid. Pumps are seen to fall within the province of hydrostatics if their operation is quasi-static, which means that dynamic or inertia forces are negligible.

Pumps

Pumps are used to move or raise fluids. They are not only very useful, but are excellent examples of hydrostatics. Pumps are of two general types, hydrostatic or positive displacement pumps, and pumps depending on dynamic forces, such as centrifugal pumps. Here we will only consider positive displacement pumps, which can be understood purely by hydrostatic considerations. They have a piston (or equivalent) moving in a closely-fitting cylinder and forces are exerted on the fluid by motion of the piston. We have already seen an important example of this in the hydraulic lever or hydraulic press, which we have called quasi-static.


The simplest pump is the syringe, filled by withdrawing the piston and emptied by pressing it back in, as its port is immersed in the fluid or removed from it. More complicated pumps have valves allowing them to work repetitively. These are usually check valves that open to allow passage in one direction, and close automatically to prevent reverse flow. There are many kinds of valves, and they are usually the most trouble-prone and complicated part of a pump. The force pump has two check valves in the cylinder, one for supply and the other for delivery. The supply valve opens when the cylinder volume increases, the delivery valve when the cylinder volume decreases.

The lift pump has a supply valve and a valve in the piston that allows the liquid to pass around it when the volume of the cylinder is reduced. The delivery in this case is from the upper part of the cylinder which the piston does not enter. Diaphragm pumps are force pumps in which the oscillating diaphragm takes the place of the piston. The diaphragm may be moved mechanically, or by the pressure of the fluid on one side of the diaphragm.

Some positive displacement pumps are shown below. The force and lift pumps are typically used for water. The force pump has two valves in the cylinder, while the lift pump has a one valve in the cylinder and one in the piston. The maximum lift, or "suction," is determined by the atmospheric pressure, and either cylinder must be within this height of the free surface. The force pump, however, can give an arbitrarily large pressure to the discharged fluid, as in the case of a diesel engine injector. A nozzle can be used to convert the pressure to velocity, to produce a jet, as for firefighting. Fire fighting force pumps usually have two cylinders feeding one receiver alternately. The air space in the receiver helps to make the water pressure uniform.

The three pumps on the right are typically used for air, but would be equally applicable to

liquids. The Roots blower has no valves, their place taken by the sliding contact between the rotors and the housing. The Roots blower can either exhaust a receiver or provide air under moderate pressure, in large volumes. The bellows is a very old device, requiring no accurate machining. The single valve is in one or both sides of the expandable chamber. Another valve can be placed at the nozzle if required. The valve can be a piece of soft leather held close to holes in the chamber. The bicycle pump uses the valve on the valve stem of the tire or inner tube to hold pressure in the tire. The piston, which is attached to the discharge tube, has a flexible seal that seals when the cylinder is moved to compress the air, but allows air to pass when the movement is reversed. Diaphragm and

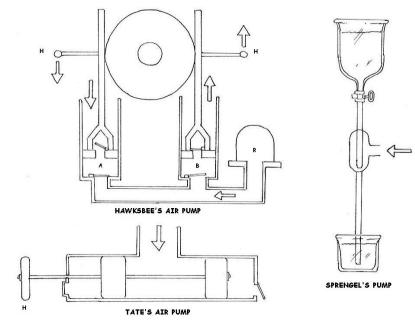
vane pumps are not shown, but they act the same way by varying the volume of a chamber, and directing the flow with check valves. Pumps were applied to the dewatering of mines, a very necessary process as mines become deeper. Newcomen's atmospheric engine was invented to supply the power for pumping.

Dudley Castle Engine

The first engine may have been erected in Cornwall in 1710, but the Dudley Castle engine of 1712 is much better known and thoroughly documented. The first pumps used in Cornwall were called bucket pumps, which we recognize as lift pumps, with the pistons somewhat miscalled buckets. They pumped on the up-stroke, when a clack in the bottom of the pipe opened and allowed water to enter beneath the piston. At the same time, the piston lifted the column of water above it, which could be of any length. The piston could only "suck" water 33 ft, or 28 ft more practically, of course, but this occurred at the bottom of the shaft, so this was only a limit on the piston stroke. On the down stroke, a clack in the bucket opened, allowing it to sink through the water to the bottom, where it would be ready to make another lift. More satisfactory were the plunger pumps, also placed at the bottom of the shaft. A plunger displaced volume in a chamber, forcing the water in it through a check valve up the shaft, when it descended. When it rose, water entered the pump chamber through a clack, as in the bucket pump.

Only the top of the plunger had to be packed; it was not necessary that it fit the cylinder accurately. In this case, the engine at the surface lifted the heavy pump rods on the up-stroke. When the atmospheric engine piston returned, the heavy timber pump rods did the actual pumping, borne down by their weight. A special application for pumps is to produce a vacuum by exhausting a container, called the receiver.

Hawksbee's Dual Cylinder Pump


Hawksbee's dual cylinder

pump, designed in the 18th century, is the final form of the air pump invented by Guericke by 1654. A good pump could probably reach about 5-10 mmHg, the limit set by the valves. The cooperation of the cylinders made the pump much easier to work when the pressure was low. In the diagram, piston A is descending, helped by the partial vacuum remaining below it, while piston B is rising, filling with the low-pressure air from the receiver.

Bell-jar Receiver

The bell-jar receiver, invented by Huygens, is shown; previously, a cumbersome globe was the usual receiver. Tate's air pump is a 19th century pump that would be used for simple vacuum demonstrations and for utility purposes in the lab. It has no valves on the low-pressure side, just exhaust valves V, V', so it could probably reach about 1 mmHg. It is operated by pushing and pulling the handle H. At the present day, motor-driven rotary-seal pumps sealed by running in oil are used for the same purpose. At the right is Sprengel's pump, with the valves replaced by drops of mercury. Small amounts of gas are trapped at the top of the fall tube as the mercury drops, and moves slowly down the fall tube as mercury is steadily added, coming out at the bottom carrying

Distribution 404 1St Edition

VACUUM PUMPS

the air with it. The length of the fall tube must be greater than the barometric height, of course. Theoretically, a vacuum of about 1 µm can be obtained with a Sprengel pump, but it is very slow and can only evacuate small volumes. Later, Langmuir's mercury diffusion pump, which was much faster, replaced Sprengel pumps, and led to oil diffusion pumps that can reach very high vacua. The column of water or hydrostatic engine is the inverse of the force pump, used to turn a large head (pressure) of water into rotary motion. It looks like a steam engine, with valves operated by valve gear, but of course is not a heat engine and can be of high efficiency.

However, it is not of as high efficiency as a turbine, and is much more complicated, but has the advantage that it can be operated at variable speeds, as for lifting. A few very impressive column of water engines were made in the 19th century, but they were never popular and remained rare. Richard Trevithick, famous for high pressure steam engines, also built hydrostatic engines in Cornwall. The photograph at the right shows a column-of-water engine built by Georg von Reichenbach, and placed in service in 1917. This engine was exhibited in the Deutsches Museum in München as late as 1977.

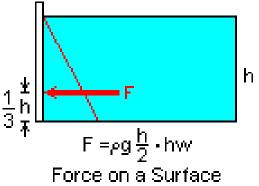
It was used to pump brine for the Bavarian state salt industry. A search of the museum website did not reveal any evidence of it, but a good drawing of another brine pump with four cylinders and driven by a water wheel, also built by von Reichenbach, was found.

Solehebemaschine

This machine, a Solehebemaschine ("brine-lifting machine"), entered service in 1821. It had two pressure-operated poppet valves for each cylinder. These engines are brass to resist corrosion by the salt water. Water pressure engines must be designed taking into account the incompressibility of water, so both valves must not close at the same time, and abrupt changes of rate of flow must not be made. Air chambers can be used to eliminate shocks. Georg von Reichenbach (1771-1826) is much better known as an optical designer than as a mechanical engineer. He was associated with Joseph Fraunhofer, and they died within days of each other in 1826. He was of an aristocratic family, and was Salinenrat, or manager of the state salt works, in southeastern Bavaria, which was centered on the town of Reichenhall, now Bad Reichenhall, near Salzburg.

The name derives from "rich in salt." This famous salt region had salt springs flowing nearly saturated brine, at 24% to 26% (saturated is 27%) salt, that from ancient times had been evaporated over wood fires. A brine pipeline to Traunstein was constructed in 1617-1619, since wood fuel for evaporating the brine was exhausted in Reichenhall. The pipeline was further extended to Rosenheim, where there was turf as well as wood, in 1818-10.

Von Reichenbach is said to have built this pipeline, for which he designed a water-wheel-driven, four-barrel pump. Maximilian I, King of Bavaria, commissioned von Reichenbach to bring brine from Berchtesgaden, elevation 530 m, to Reichenhall, elevation 470 m, over a summit 943 m high. Fresh water was also allowed to flow down to the salt beds, and the brine was then pumped to the surface. This was a much easier way to mine salt than underground mining. The salt industry of Bad Reichenhall still operates, but it is now Japanese-owned.


Forces on Submerged Surfaces

Suppose we want to know the force exerted on a vertical surface of any shape with water on one side, assuming gravity to act, and the pressure on the surface of the water zero. We have already

solved this problem by a geometrical argument, but now we apply calculus, which is easier but not as illuminating.

The force on a small area dA a distance x below the surface of the water is $dF = p dA = \rho gx dA$, and the moment of this force about a point on the surface is $dM = px dA = \rho gx 2 dA$.

By integration, we can find the total force F, and the depth at which it acts, c = M / F. If the surface is not symmetrical, the position of the total force in the transverse direction can be obtained from the

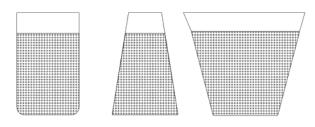
integral of $dM' = \rho gxy dA$, the moment about some vertical line in the plane of the surface. If there happens to be a pressure on the free surface of the water, then the forces due to this pressure can be evaluated separately and added to this result. We must add a force equal to the area of the surface times the additional pressure, and a moment equal to the product of this force and the distance to the centroid of the surface.

The simplest case is a rectangular gate of width w, and height h, whose top is a distance H below the surface of the water.

In this case, the integrations are very easy, and F = $\rho g w [(h + H) 2 - h2]/2 = \rho g H (H + 2h)/2 = \rho g (h + H/2) Hw.$

The total force on the gate is equal to its area times the pressure at its centre. M = $\rho gw [(h + H) 3 - h3]/3 = \rho g (H2/3 + Hh + h2) Hw$, so that c = (H2/3 + Hh + h2)/ (h + H/2).

In the simple case of h = 0, c = 2H/3, or two-thirds of the way from the top to the bottom of the gate. If we take the atmospheric pressure to act not only on the surface of the water, but also the dry side of the gate, there is no change to this result. This is the reason atmospheric pressure often seems to have been neglected in solving sub h problems.


Consider a curious rectangular tank, with one side vertical but the opposite side inclined inwards or outwards. The horizontal forces exerted by the water on the two sides must be equal and opposite, or the tank would scoot off. If the side is inclined outward, then there must be a downward vertical force equal to the weight of the water above it, and passing through the centroid of this water. If the side is inclined inward, there must be an upward vertical force equal to the weight of the 'missing' water above it. In both cases, the result is demanded by ordinary statics.

Hydrostatic Paradox

What we have here has been called the 'hydrostatic paradox.' It was conceived by the celebrated Flemish engineer Simon Stevin (1548-1620) of Brugge, the first modern scientist to investigate the statics of fluids and solids. Consider three tanks with bottoms of equal sizes and equal heights, filled with water. The pressures at the bottoms are equal, so the vertical force on the bottom of each tank is the same. But suppose that one tank has vertical sides, one has sides inclined inward, and third sides inclined outwards. The tanks do not contain the same weight of water, yet the forces on their bottoms are equal! I am sure that you can spot the resolution of this paradox.

Sometimes the forces are required on curved surfaces. The vertical and horizontal components can be found by considering the equilibrium of volumes with a plane surface equal to the projected area of the curved surface in that direction. The general result is usually a force plus a couple, since the horizontal and vertical forces are not necessarily in the same plane. Simple surfaces, such as cylinders, spheres and cones, may often be easy to solve. In general, however, it is

Hydrostatic Paradox

necessary to sum the forces and moments numerically on each element of area, and only in simple cases can this be done analytically.

If a volume of fluid is accelerated uniformly, the acceleration can be added to the acceleration of gravity. A free surface now becomes perpendicular to the total acceleration, and the pressure is proportional to the distance from this surface. The same can be done for a rotating fluid, where the centrifugal acceleration is the important quantity. The earth's atmosphere is an example. When air moves relative to the rotating system, the Coriolis force must also be taken into account. However, these are dynamic effects and are not strictly a part of hydrostatics.

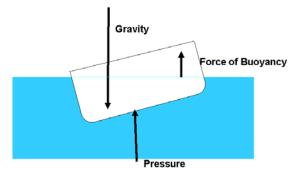
Buoyancy

Archimedes, so the legend runs, was asked to determine if the goldsmith who made a golden crown for Hieron, Tyrant of Syracuse, had substituted cheaper metals for gold. The story is told by Vitruvius. A substitution could not be detected by simply weighing the crown, since it was craftily made to the same weight as the gold supplied for its construction. Archimedes realized that finding the density of the crown, that is, the weight per unit volume, would give the answer.

The weight was known, of course, and Archimedes cunningly measured its volume by the amount of water that ran off when it was immersed in a vessel filled to the brim. By comparing the results for the crown, and for pure gold, it was found that the crown displaced more water than an equal weight of gold, and had, therefore, been adulterated. This story, typical of the charming way science was made more interesting in classical times, may or may not actually have taken place, but whether it did or not, Archimedes taught that a body immersed in a fluid lost apparent weight equal to the weight of the fluid displaced, called Archimedes' Principle. Specific gravity, the ratio of the density of a substance to the density of water, can be determined by weighing the body in air, and then in water. The specific gravity is the weight in air divided by the loss in weight when immersed. This avoids the difficult determination of the exact volume of the sample.

Distribution 404 1St Edition

How Buoyancy Works


To see how buoyancy works, consider a submerged brick, of height h, width w and length I. The difference in pressure on top and bottom of the brick is ρgh , so the difference in total force on top and bottom of the brick is simply (ρgh) (wl) = ρgV ,

where V is the volume of the brick.

The forces on the sides have no vertical components, so they do not matter. The net upward force is the weight of a volume V of the fluid of density ρ . Anybody can be considered made up of brick shapes, as small as desired, so the result applies in general. This is just the integral calculus in action, or the application of Professor Thomson's analogy.

Consider a man in a rowboat on a lake, with a large rock in the boat. He throws the rock into the

Change of Ship Stability

water. What is the effect on the water level of the lake? Suppose you make a drink of ice water with ice cubes floating in it. What happens to the water level in the glass when the ice has melted?

The force exerted by the water on the bottom of a boat acts through the centre of gravity B of the displaced volume, while the force exerted by gravity on the boat acts through its own centre of gravity A. This looks bad for the boat, since the boat's c.g. will naturally be higher than the c.g. of the displaced water, so the boat will tend to capsize. Well, a board floats, and can tell us why. Should the board start to rotate to one side, the displaced volume immediately moves to that side, and the buoyant force tends to correct the rotation. A floating body will be stable provided the line of action of the buoyant force passes through a point M above the c.g. of the body, called the metacenter, so that there is a restoring couple when the boat heels. A ship with an improperly designed hull will not float. It is not as easy to make boats as it might appear.

Montgolfier Brothers' Hot Air Balloon

Archimedes' Principle can also be applied to balloons. The Montgolfier brothers' hot air balloon with a paper envelope ascended first in 1783 (the brothers got Pilâtre de Rozier and Chevalier d'Arlandes to go up in it). Such "fire balloons" were then replaced with hydrogen-filled balloons, and then with balloons filled with coal gas, which was easier to obtain and did not diffuse through the envelope quite as rapidly. Methane would be a good filler, with a density 0.55 that of air. Slack balloons, like most large ones, can be contrasted with taut balloons with an elastic envelope, such as weather balloons. Slack balloons will not be filled full on the ground, and will plump up at altitude. Balloons are naturally stable, since the center of buoyancy is above the center of gravity in all practical balloons. Submarines are yet another application of buoyancy, with their own characteristic problems. Small neoprene or natural rubber balloons have been used for meteorological observations, with hydrogen filling. A 10g ceiling balloon was about 17" in diameter when inflated to have a free lift of 40g. It ascended 480ft the first minute, 670ft in a minute and a half, and 360ft per minute afterwards, to find cloud ceilings by timing, up to 2500ft, when it subtended about 2' of arc, easily seen in binoculars.

Large sounding balloons were used to lift a radiosonde and a parachute for its recovery. An AN/AMT-2 radiosonde of the 1950's weighed 1500g, the paper parachute 100g, and the balloon 350g. The balloon was inflated to give 800g free lift, so it would rise 700-800 ft/min to an altitude of about 50,000 ft (15 km) before it burst. This balloon was about 6 ft in diameter when inflated at the surface, 3 ft in diameter before inflation. The information was returned by radio telemetry, so the balloon did not have to be followed optically. Of intermediate size was the pilot balloon, which was followed with a theodolite to determine wind directions and speeds. At night, a pilot balloon could carry a light for ceiling determinations.

Weather Balloons

The greatest problem with using hydrogen for lift is that it diffuses rapidly through many substances. Weather balloons had to be launched promptly after filling, or the desired free lift would not be obtained. Helium is a little better in this respect, but it also diffuses rapidly. The lift obtained with helium is almost the same as with hydrogen (density 4 compared to 2, where air is 28.97). However, helium is exceedingly rare, and only its unusual occurrence in natural gas from Kansas makes it available. Great care must be taken when filling balloons with hydrogen to avoid sparks and the accumulation of hydrogen in air, since hydrogen is exceedingly flammable and explosive over a wide range of concentrations. Helium has the great advantage that it is not inflammable.

The hydrogen for filling weather balloons came from compressed gas in cylinders, from the reaction of granulated aluminum with sodium hydroxide and water, or from the reaction of calcium hydroxide with water. The chemical reactions are 2AI + 2NaOH + 2H2O \rightarrow 2NaAlO2 + 3H2, or CaH2 + 2H2O \rightarrow Ca (OH) 2 + 2H2. In the first, silicon or zinc could be used instead of aluminum, and in the second, any similar metal hydride. Both are rather expensive sources of hydrogen, but very convenient when only small amounts are required. Most hydrogen is made from the catalytic decomposition of hydrocarbons, or the reaction of hot coke with steam.

Electrolysis of water is an expensive source, since more energy is used than is recovered with the hydrogen. Any enthusiasm for a "hydrogen economy" should be tempered by the fact that there are no hydrogen wells, and all the hydrogen must be made with an input of energy usually greater than that available from the hydrogen, and often with the appearance of carbon.

Although about 60,000 Btu/lb is available from hydrogen, compared to 20,000 Btu/lb from gasoline, hydrogen compressed to 1000 psi requires 140 times as much volume for the same weight as gasoline. For the energy content of a 13-gallon gasoline tank, a 600-gallon hydrogen tank would be required. The critical temperature of hydrogen is 32K, so liquid storage is out of the question for general use.

Measurement of Specific Gravity

The specific gravity of a material is the ratio of the mass (or weight) of a certain sample of it to the mass (or weight) of an equal volume of water, the conventional reference material. In the metric system, the density of water is 1 g/cc, which makes the specific gravity numerically equal to the density. Strictly speaking, density has the dimensions g/cc, while specific gravity is a dimensionless ratio. However, in casual speech the two are often confounded. In English units, however, density, perhaps in lb/cu.ft or pcf, is numerically different from the specific gravity, since the weight of water is 62.5 lb/cu.ft.

Variations

Things are complicated by the variation of the density of water with temperature, and also by the confusion that gave us the distinction between cc and ml. The milliliter is the volume of 1.0 g of water at 4°C, by definition. The actual volume of 1.0 g of water at 4°C is 0.999973 cm3 by measurement. Since most densities are not known, or needed, to more than three significant figures, it is clear that this difference is of no practical importance, and the ml can be taken equal to the cc. The density of water at 0°C is 0.99987 g/ml, at 20° 0.99823, and at 100°C 0.95838. The temperature dependence of the density may have to be taken into consideration in accurate work. Mercury, while we are at it, has a density 13.5955 at 0°C, and 13.5461 at 20°C.

The basic idea in finding specific gravity is to weigh a sample in air, and then immersed in water. Then the specific gravity is W/(W - W'), if W is the weight in air, and W' the weight immersed. The denominator is just the buoyant force, the weight of a volume of water equal to the volume of the sample. This can be carried out with an ordinary balance, but special balances, such as the Jolly balance, have been created specifically for this application. Adding an extra weight to the sample allows measurement of specific gravities less than 1.

Pycnometer

A pycnometer is a flask with a close-fitting ground glass stopper with a fine hole through it, so a given volume can be accurately obtained. The name comes from the Greek word meaning "density." If the flask is weighed empty, full of water, and full of a liquid whose specific gravity is desired, the specific gravity of the liquid can easily be calculated. A sample in the form of a powder, to which the usual method of weighing cannot be used, can be put into the pycnometer. The weight of the powder and the weight of the displaced water can be determined, and from them the specific gravity of the powder.

The specific gravity of a liquid can be found with a collection of small weighted, hollow spheres that will just float in certain specific gravities. The closest spheres that will just float and just sink put limits on the specific gravity of the liquid. This method was once used in Scotland to determine the amount of alcohol in distilled liquors. Since the density of a liquid decreases as the temperature increases, the spheres that float are an indication of the temperature of the liquid. Galileo's thermometer worked this way.

Hydrometer

A better instrument is the hydrometer, which consists of a weighted float and a calibrated stem that protrudes from the liquid when the float is entirely immersed. A higher specific gravity will result in a greater length of the stem above the surface, while a lower specific gravity will cause the hydrometer to float lower.

The small cross-sectional area of the stem makes the instrument very sensitive. Of course, it must be calibrated against standards. In most cases, the graduations ("degrees") are arbitrary and reference is made to a table to determine the specific gravities. Hydrometers are used to determine the specific gravity of lead-acid battery electrolyte, and the concentration of antifreeze compounds in engine coolants, as well as the alcohol content of whiskey.

Pascal's Law

The foundation of modern hydraulics was established when Pascal discovered that pressure in a fluid acts equally in all directions. This pressure acts at right angles to the containing surfaces. If some type of pressure gauge, with an exposed face, is placed beneath the surface of a liquid at a specific depth and pointed in different directions, the pressure will read the same. Thus, we can say that pressure in a liquid is independent of direction.

Pressure due to the weight of a liquid, at any level, depends on the depth of the fluid from the surface. If the exposed face of the pressure gauges are moved closer to the surface of the liquid, the indicated pressure will be less. When the depth is doubled, the indicated pressure is doubled. Thus the pressure in a liquid is directly proportional to the depth. Consider a container with vertical sides that is 1 foot long and 1 foot wide. Let it be filled with water 1 foot deep, providing 1 cubic foot of water weighs 62.4 pounds. Using this information and equation, P = F/A, we can calculate the pressure on the bottom of the container.

Since there are 144 square inches in 1 square foot, this can be stated as follows: the weight of a column of water 1 foot high, having a cross-sectional area of 1 square inch, is 0.433 pound. If the depth of the column is tripled, the weight of the column will be 3 x 0.433, or 1.299 pounds, and the pressure at the bottom will be 1.299 lb/in^2 (psi), since pressure equals the force divided by the area.

Thus, the pressure at any depth in a liquid is equal to the weight of the column of liquid at that depth divided by the cross-sectional area of the column at that depth. The volume of a liquid that produces the pressure is referred to as the fluid head of the liquid. The pressure of a liquid due to its fluid head is also dependent on the density of the liquid.

Gravity

Gravity is one of the four forces of nature. The strength of the gravitational force between two objects depends on their masses. The more massive the objects are, the stronger the gravitational attraction.

When you pour water out of a container, the earth's gravity pulls the water towards the ground. The same thing happens when you put two buckets of water, with a tube between them, at two different heights. You must work to start the flow of water from one bucket to the other, but then gravity takes over and the process will continue on its own.

Gravity, applied forces, and atmospheric pressure are static factors that apply equally to fluids at rest or in motion, while inertia and friction are dynamic factors that apply only to fluids in motion. The mathematical sum of gravity, applied force, and atmospheric pressure is the static pressure obtained at any one point in a fluid at any given time.

Static Pressure

Static pressure exists in addition to any dynamic factors that may also be present at the same time. Pascal's law states that a pressure set up in a fluid acts equally in all directions and at right angles to the containing surfaces. This covers the situation only for fluids at rest or practically at rest. It is true only for the factors making up static head.

Distribution 404 1St Edition

Obviously, when velocity becomes a factor it must have a direction, and as previously explained, the force related to the velocity must also have a direction, so that Pascal's law alone does not apply to the dynamic factors of fluid power.

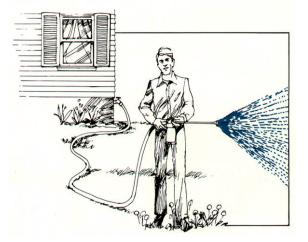
The dynamic factors of inertia and friction are related to the static factors. Velocity head and friction head are obtained at the expense of static head. However, a portion of the velocity head can always be reconverted to static head. Force, which can be produced by pressure or head when dealing with fluids, is necessary to start a body moving if it is at rest, and is present in some form when the motion of the body is arrested; therefore, whenever a fluid is given velocity, some part of its original static head is used to impart this velocity, which then exists as velocity head.

Volume and Velocity of Flow

The volume of a liquid passing a point in a given time is known as its *volume of flow* or flow rate. The volume of flow is usually expressed in gallons per minute (gpm) and is associated with relative pressures of the liquid, such as 5 gpm at 40 psi. The *velocity of flow* or velocity of the fluid is defined as the average speed at which the fluid moves past a given point. It is usually expressed in feet per second (fps) or feet per minute (fpm). Velocity of flow is an important consideration in sizing the hydraulic lines.

Volume and velocity of flow are often considered together. With other conditions unaltered—that is, with volume of input unchanged—the velocity of flow increases as the cross section or size of the pipe decreases, and the velocity of flow decreases as the cross section increases. For example, the velocity of flow is slow at wide parts of a stream and rapid at narrow parts, yet the volume of water passing each part of the stream is the same.

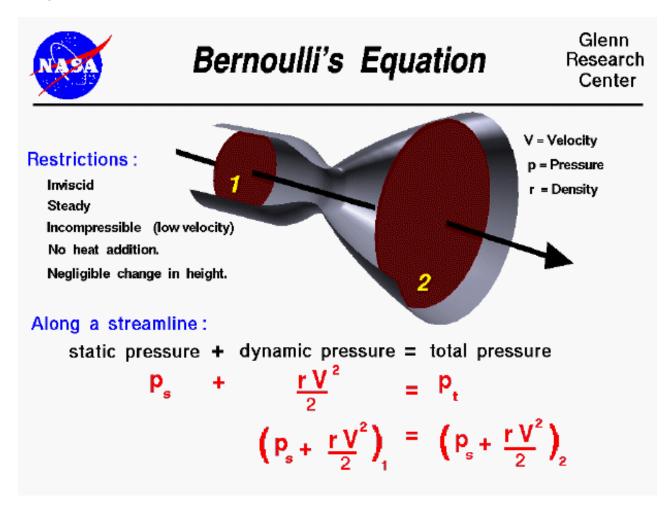
Bernoulli's Principle

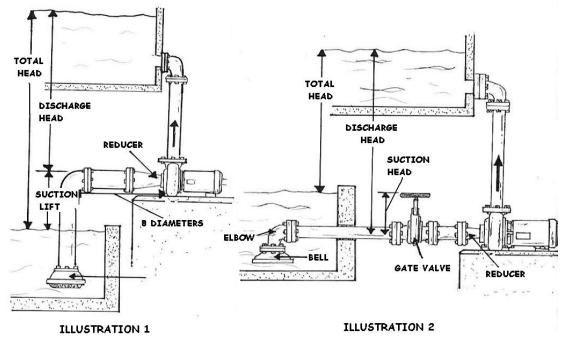

Bernoulli's principle thus says that a rise (fall) in pressure in a flowing fluid must always be accompanied by a decrease (increase) in the speed, and conversely, if an increase (decrease) in, the speed of the fluid results in a decrease (increase) in the pressure.

This is at the heart of a number of everyday phenomena. As a very trivial example, Bernoulli's principle is responsible for the fact that a shower curtain gets "*sucked inwards*" when the water is first turned on. What happens is that the increased water/air velocity inside the curtain (relative to the still air on the other side) equade a

(relative to the still air on the other side) causes a pressure drop.

The pressure difference between the outside and inside causes a net force on the shower curtain which sucks it inward. A more useful example is provided by the functioning of a perfume bottle: squeezing the bulb over the fluid creates a low pressure area due to the higher speed of the air, which subsequently draws the fluid up. This is illustrated in the following figure.


Action of a spray atomizer


Distribution 404 1St Edition

Bernoulli's principle also tells us why windows tend to explode, rather than implode in hurricanes: the very high speed of the air just outside the window causes the pressure just outside to be much less than the pressure inside, where the air is still. The difference in force pushes the windows outward, and hence they explode. If you know that a hurricane is coming it is therefore better to open as many windows as possible, to equalize the pressure inside and out.

Another example of Bernoulli's principle at work is in the lift of aircraft wings and the motion of "*curve balls*" in baseball. In both cases the design is such as to create a speed differential of the flowing air past the object on the top and the bottom - for aircraft wings this comes from the movement of the flaps, and for the baseball it is the presence of ridges. Such a speed differential leads to a pressure difference between the top and bottom of the object, resulting in a net force being exerted, either upwards or downwards.

General Pumping Fundamentals

Here are the important points to consider about suction piping when the liquid being pumped is below the level of the pump:

First, suction lift is when the level of water to be pumped is below the centerline of the pump. Sometimes suction lift is also referred to as 'negative suction head'.

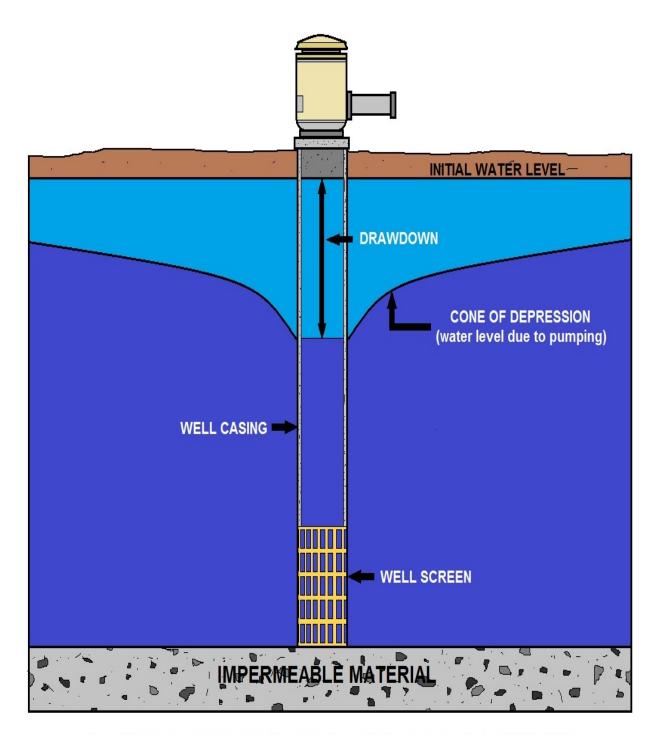
The ability of the pump to lift water is the result of a partial vacuum created at the center of the pump.

This works similar to sucking soda from a straw. As you gently suck on a straw, you are creating a vacuum or a pressure differential. Less pressure is exerted on the liquid inside the straw, so that the greater pressure is exerted on the liquid around the outside of the straw, causing the liquid in the straw to move up. By sucking on the straw, this allows atmospheric pressure to move the liquid.

Look at the diagram illustrated as "1". The foot valve is located at the end of the suction pipe of a pump. It opens to allow water to enter the suction side, but closes to prevent water from passing back out of the bottom end.

The suction side of pipe should be one diameter larger than the pump inlet. The required eccentric reducer should be turned so that the top is flat and the bottom tapered.

Notice in illustration "2" that the liquid is above the level of the pump. Sometimes this is referred to as *'flooded suction'* or *'suction head'* situations.


Points to Note are:

If an elbow and bell are used, they should be at least one pipe diameter from the tank bottom and side. This type of suction piping must have a gate valve which can be used to prevent the reverse flow when the pump has to be removed. In the illustrations you can see in both cases the discharge head is from the centerline of the pump to the level of the discharge water. The total head is the difference between the two liquid levels.

Pump Operation Section

Pump Objectives. In this section we will examine...

- ★ What is a pump?
- ★ Identify different types of pumps and related parts.
- ★ Identify the main purpose of a motor starter.
- ★ Describe the main use of AC and DC motors.
- ★ Describe the operations of level sensor controls.
- ★ Identify and describe the most commonly used pumps.
- ★ Identify the suction and discharge valving.
- ★ Distinguish between discharge head, total head, suction head, and suction lift.
- ★ Describe information to be obtained from pump performance graphs.
- ★ Identify types of couplings, bearings, seals and other pump components.
- ★ Describe the importance of the alignment of couplings.
- ★ Indicate when packing seals need to be replaced.
- \star Describe cavitation.
- ★ Describe water hammer.
- ★ State the basic principles of positive displacement pumps.

CONE OF DEPRESSION CAUSED BY PUMPING

Pump Definitions (Larger Glossary in the rear of this manual)

Fluid: Any substance that can be pumped such as oil, water, refrigerant, or even air.

Gasket: Flat material that is compressed between two flanges to form a seal.

Gland follower: A bushing used to compress the packing in the stuffing box and to control leakoff.

Gland sealing line: A line that directs sealing fluid to the stuffing box.

Horizontal pumps: Pumps in which the center line of the shaft is horizontal.

Impeller: The part of the pump that increases the speed of the fluid being handled.

Inboard: The end of the pump closest to the motor.

Inter-stage diaphragm: A barrier that separates stages of a multi-stage pump.

Key: A rectangular piece of metal that prevents the impeller from rotating on the shaft.

Keyway: The area on the shaft that accepts the key.

Kinetic energy: Energy associated with motion.

Lantern ring: A metal ring located between rings of packing that distributes gland sealing fluid.

Leak-off: Fluid that leaks from the stuffing box.

Mechanical seal: A mechanical device that seals the pump stuffing box.

Mixed flow pump: A pump that uses both axial-flow and radial-flow components in one impeller.

Multi-stage pumps: Pumps with more than one impeller.

Outboard: The end of the pump farthest from the motor.

Packing: Soft, pliable material that seals the stuffing box.

Positive displacement pumps: Pumps that move fluids by physically displacing the fluid inside the pump.

Radial bearings: Bearings that prevent shaft movement in any direction outward from the center line of the pump.

Radial flow: Flow at 90° to the center line of the shaft.

Retaining nut: A nut that keeps the parts in place.

Rotor: The rotating parts, usually including the impeller, shaft, bearing housings, and all other parts included between the bearing housing and the impeller.

Score: To cause lines, grooves or scratches.

Shaft: A cylindrical bar that transmits power from the driver to the pump impeller.

Shaft sleeve: A replaceable tubular covering on the shaft.

Shroud: The metal covering over the vanes of an impeller.

Slop drain: The drain from the area that collects leak-off from the stuffing box.

Slurry: A thick, viscous fluid, usually containing small particles.

Stages: Impellers in a multi-stage pump.

Stethoscope: A metal device that can amplify and pinpoint pump sounds.

Strainer: A device that retains solid pieces while letting liquids through.

Stuffing box: The area of the pump where the shaft penetrates the casing.

Suction: The place where fluid enters the pump.

Suction eye: The place where fluid enters the pump impeller.

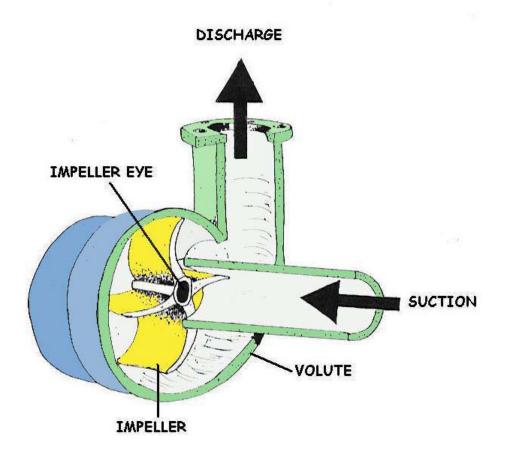
Throat bushing: A bushing at the bottom of the stuffing box that prevents packing from being pushed out of the stuffing box into the suction eye of the impeller.

Thrust: Force, usually along the center line of the pump.

Thrust bearings: Bearings that prevent shaft movement back and forth in the same direction as the center line of the shaft.

Troubleshooting: Locating a problem.

Vanes: The parts of the impeller that push and increase the speed of the fluid in the pump.


Vertical pumps: Pumps in which the center line of the shaft runs vertically.

Volute: The part of the pump that changes the speed of the fluid into pressure.

Wearing rings: Replaceable rings on the impeller or the casing that wear as the pump operates.

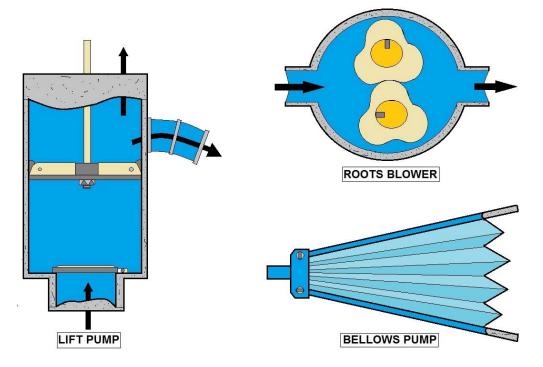
Understanding Pumps

Pumps are used to move or raise fluids. They are not only very useful, but are excellent examples of hydrostatics. Pumps are of two general types, hydrostatic or positive displacement pumps, and pumps depending on dynamic forces, such as centrifugal pumps. Here we will only consider positive displacement pumps, which can be understood purely by hydrostatic considerations. They have a piston (or equivalent) moving in a closely-fitting cylinder, and forces are exerted on the fluid by motion of the piston.

We have already seen an important example of this in the hydraulic lever or hydraulic press, which we have called quasi-static. The simplest pump is the syringe, filled by withdrawing the piston and emptied by pressing it back in, as its port is immersed in the fluid or removed from it.

More complicated pumps have valves allowing them to work repetitively. These are usually check valves that open to allow passage in one direction, and close automatically to prevent reverse flow. There are many kinds of valves, and they are usually the most trouble-prone and complicated part of a pump. The force pump has two check valves in the cylinder, one for supply and the other for delivery. The supply valve opens when the cylinder volume increases, the delivery valve when the cylinder volume decreases.

The lift pump has a supply valve and a valve in the piston that allows the liquid to pass around it when the volume of the cylinder is reduced. The delivery in this case is from the upper part of the cylinder, which the piston does not enter.


Distribution 404 1St Edition

Diaphragm pumps are force pumps in which the oscillating diaphragm takes the place of the piston. The diaphragm may be moved mechanically, or by the pressure of the fluid on one side of the diaphragm.

Some positive displacement pumps are shown below. The force and lift pumps are typically used for water. The force pump has two valves in the cylinder, while the lift pump has one valve in the cylinder and one in the piston. The maximum lift, or "suction," is determined by the atmospheric pressure, and either cylinder must be within this height of the free surface. The force pump, however, can give an arbitrarily large pressure to the discharged fluid, as in the case of a diesel engine injector. A nozzle can be used to convert the pressure to velocity, to produce a jet, as for firefighting. Fire fighting force pumps usually have two cylinders feeding one receiver alternately. The air space in the receiver helps to make the water pressure uniform.

The three pumps below are typically used for air, but would be equally applicable to liquids. The Roots blower has no valves, their place taken by the sliding contact between the rotors and the housing. The Roots blower can either exhaust a receiver or provide air under moderate pressure, in large volumes. The Bellows is a very old device, requiring no accurate machining. The single valve is in one or both sides of the expandable chamber. Another valve can be placed at the nozzle if required. The valve can be a piece of soft leather held close to holes in the chamber. The Bicycle pump uses the valve on the valve stem of the tire or inner tube to hold pressure in the tire. The piston, which is attached to the discharge tube, has a flexible seal that seals when the cylinder is moved to compress the air, but allows air to pass when the movement is reversed.

Diaphragm and vane pumps are not shown, but they act the same way by varying the volume of a chamber, and directing the flow with check valves.

TYPES OF POSITIVE DISPLACEMENT PUMPS

Types of Pumps

The family of pumps comprises a large number of types based on application and capabilities. The two major groups of pumps are dynamic and positive displacement.

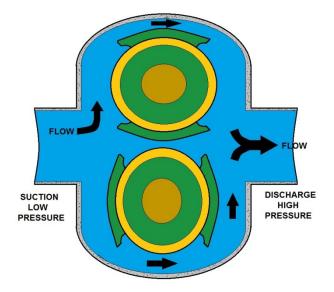
Dynamic Pumps (Centrifugal Pump)

Centrifugal pumps are classified into three general categories:

Radial flow—a centrifugal pump in which the pressure is developed wholly by centrifugal force. **Mixed flow**—a centrifugal pump in which the pressure is developed partly by centrifugal force and partly by the lift of the vanes of the impeller on the liquid.

Axial flow—a centrifugal pump in which the pressure is developed by the propelling or lifting action of the vanes of the impeller on the liquid.

Positive Displacement Pumps


A Positive Displacement Pump has an expanding cavity on the suction side of the pump and a decreasing cavity on the discharge side. Liquid is allowed to flow into the pump as the cavity on the suction side expands and the liquid is forced out of the discharge as the cavity collapses. This principle applies to all types of Positive Displacement Pumps whether the pump is a rotary lobe, gear within a gear, piston, diaphragm, screw, progressing cavity, etc.

A Positive Displacement Pump, unlike a Centrifugal Pump, will produce the same flow at a given RPM no matter what the discharge pressure is. A Positive Displacement Pump cannot be operated against a closed valve on the discharge side of the pump, i.e. it does not have a shut-off head like a Centrifugal Pump does. If a Positive Displacement Pump is allowed to operate against a closed discharge valve it will continue to produce flow which will increase the pressure in the discharge line until either the line bursts or the pump is severely damaged or both.

Single Rotor	Multiple Rotor
Vane	Gear
Piston	Lobe
Flexible Member	Circumferential Piston
Single Screw	Multiple Screw

There are many types of positive displacement pumps. We will look at:

- Plunger pumps
- Diaphragm pumps
- Progressing cavity pumps, and
- Screw pumps

COMMONLY FOUND POSITIVE DISPLACEMENT PUMP

Single Rotator

Component	Description
Vane	The vane(s) may be blades, buckets, rollers, or slippers that cooperate with a dam to draw fluid into and out of the pump chamber.
Piston	Fluid is drawn in and out of the pump chamber by a piston(s) reciprocating within a cylinder(s) and operating port valves.
Flexible Member	Pumping and sealing depends on the elasticity of a flexible member(s) that may be a tube, vane, or a liner.
Single Screw	Fluid is carried between rotor screw threads as they mesh with internal threads on the stator.

Multiple Rotator

Component	Description
Gear	Fluid is carried between gear teeth and is expelled by the meshing of the gears that cooperate to provide continuous sealing between the pump inlet and outlet.
Lobe	Fluid is carried between rotor lobes that cooperate to provide continuous sealing between the pump inlet and outlet.
Circumferential piston	Fluid is carried in spaces between piston surfaces not requiring contacts between rotor surfaces.
Multiple Screw	Fluid is carried between rotor screw threads as they mesh.

What kind of mechanical device do you think is used to provide this positive displacement in the:

Plunger pump?

Diaphragm pump?

In the same way, the progressing cavity and the screw are two other types of mechanical action that can be used to provide movement of the liquid through the pump.

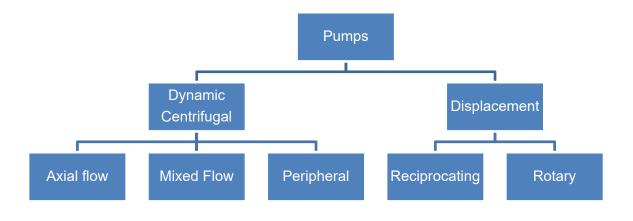
Plunger Pump

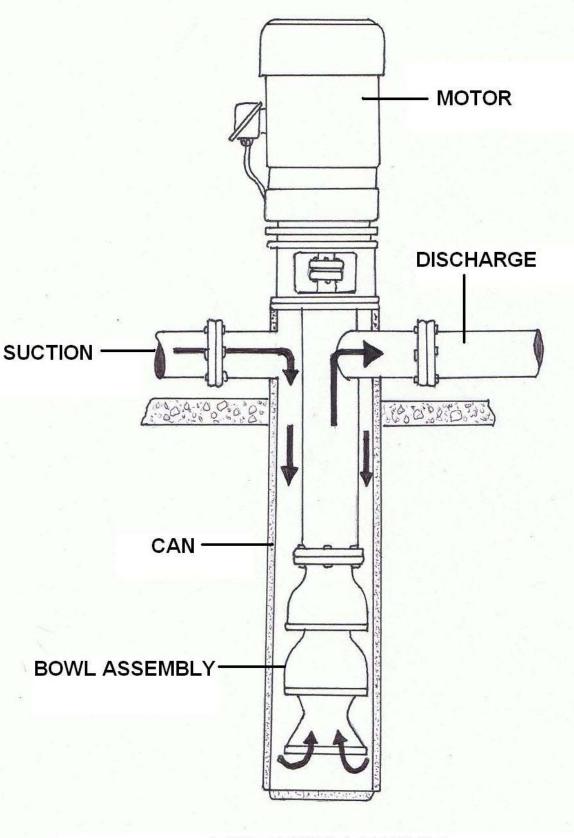
The plunger pump is a positive displacement pump that uses a plunger or piston to force liquid from the suction side to the discharge side of the pump. It is used for heavy sludge. The movement of the plunger or piston inside the pump creates pressure inside the pump, so you have to be careful that this kind of pump is never operated against any closed discharge valve.

All discharge valves must be open before the pump is started, to prevent any fast build-up of pressure that could damage the pump.

Diaphragm Pumps

In this type of pump, a diaphragm provides the mechanical action used to force liquid from the suction to the discharge side of the pump. The advantage the diaphragm has over the plunger is that the diaphragm pump does not come in contact with moving metal. This can be important when pumping abrasive or corrosive materials.

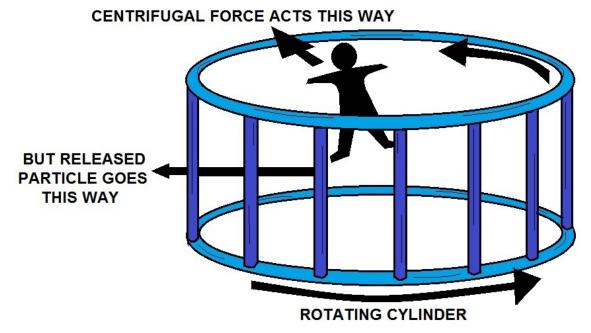

There are three main types of diaphragm pumps available:


- 1. Diaphragm sludge pump
- 2. Chemical metering or proportional pump
- 3. Air-powered double-diaphragm pump

Pump Categories

Let's cover the essentials first. The key to the whole operation is, of course, the *pump*. And regardless of what type it is (reciprocating piston, centrifugal, turbine or jet-ejector, for either shallow or deep well applications), its purpose is to move water and generate the delivery force we call pressure. Sometimes — with centrifugal pumps in particular — pressure is not referred to in pounds per square inch but rather as the equivalent in elevation, called head. No matter; head in feet divided by 2.31 equals pressure, so it's simple enough to establish a common figure.

Pumps may be classified on the basis of the application they serve. All pumps may be divided into two major categories: (1) dynamic, in which energy is continuously added to increase the fluid velocities within the machine, and (2) displacement, in which the energy is periodically added by application of force.



TURBINE PUMP

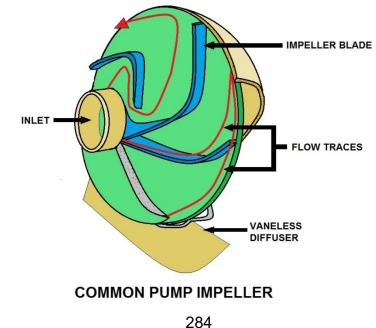
282

Basic Water Pump

The water pump commonly found in our systems is centrifugal pumps. These pumps work by spinning water around in a circle inside a cylindrical pump housing. The pump makes the water spin by pushing it with an impeller. The blades of this impeller project outward from an axle like the arms of a turnstile and, as the impeller spins, the water spins with it. As the water spins, the pressure near the outer edge of the pump housing becomes much higher than near the center of the impeller.



There are many ways to understand this rise in pressure, and here are two:


CENTRIFUGAL WATER EFFECTS

First, you can view the water between the impeller blades as an object traveling in a circle. Objects do not naturally travel in a circle--they need an inward force to cause them to accelerate inward as they spin. Without such an inward force, an object will travel in a straight line and will not complete the circle. In a centrifugal pump, that inward force is provided by high-pressure water near the outer edge of the pump housing. The water at the edge of the pump pushes inward on the water between the impeller blades and makes it possible for that water to travel in a circle. The water pressure at the edge of the turning impeller rises until it is able to keep water circling with the impeller blades.

You can also view the water as an incompressible fluid, one that obeys Bernoulli's equation in the appropriate contexts. As water drifts outward between the impeller blades of the pump, it must move faster and faster because its circular path is getting larger and larger. The impeller blades cause the water to move faster and faster. By the time the water has reached the outer edge of the impeller, it is moving quite fast. However, when the water leaves the impeller and arrives at the outer edge of the cylindrical pump housing, it slows down.

Here is where Bernoulli's equation figures in. As the water slows down and its kinetic energy decreases, that water's pressure potential energy increases (*to conserve energy*). Thus, the slowing is accompanied by a pressure rise. That is why the water pressure at the outer edge of the pump housing is higher than the water pressure near the center of the impeller. When water is actively flowing through the pump, arriving through a hole near the center of the impeller and leaving through a hole near the outer edge of the pump housing, the pressure rise between center and edge of the pump is not as large.

Types of Water Pumps

The most common type of water pumps used for municipal and domestic water supplies are *variable displacement* pumps. A variable displacement pump will produce at different rates relative to the amount of pressure or lift the pump is working against. *Centrifugal* pumps are variable displacement pumps that are by far used the most. The water production well industry almost exclusively uses *Turbine* pumps, which are a type of centrifugal pump.

The turbine pump utilizes *impellers* enclosed in single or multiple *bowls or stages* to lift water by *centrifugal force*. The impellers may be of either a *semi-open or closed type*. Impellers are rotated by the *pump motor*, which provides the horsepower needed to overcome the pumping head. A more thorough discussion of how these and other pumps work is presented later in this section. The size and number of stages, horsepower of the motor and pumping head are the key components relating to the pump's lifting capacity.

Vertical turbine pumps are commonly used in groundwater wells. These pumps are driven by a shaft rotated by a motor on the surface. The shaft turns the impellers within the pump housing while the water moves up the column.

This type of pumping system is also called a *line-shaft turbine*. The rotating shaft in a line shaft turbine is actually housed within the column pipe that delivers the water to the surface. The size of the column, impeller, and bowls are selected based on the desired pumping rate and lift requirements.

Column pipe sections can be threaded or coupled together while the drive shaft is coupled and suspended within the column by *spider bearings*. The spider bearings provide both a seal at the column pipe joints and keep the shaft aligned within the column. The water passing through the column pipe serves as the lubricant for the bearings. Some vertical turbines are lubricated by oil rather than water. These pumps are essentially the same as water lubricated units; only the drive shaft is enclosed within an *oil tube*.

Food grade oil is supplied to the tube through a gravity feed system during operation. The oil tube is suspended within the column by *spider flanges*, while the line shaft is supported within the oil tube by *brass or redwood bearings*. A continuous supply of oil lubricates the drive shaft as it proceeds downward through the oil tube.

A small hole located at the top of the pump bow unit allows excess oil to enter the well. This results in the formation of an oil film on the water surface within oil-lubricated wells. Careful operation of oil lubricated turbines is needed to ensure that the pumping levels do not drop enough to allow oil to enter the pump. Both water and oil lubricated turbine pump units can be driven by electric or fuel powered motors. Most installations use an electric motor that is connected to the drive shaft by a keyway and nut. However, where electricity is not readily available, fuel powered engines may be connected to the drive shaft by a right angle drive gear. Also, both oil and water lubricated systems will have a strainer attached to the intake to prevent sediment from entering the pump.

When the line shaft turbine is turned off, water will flow back down the column, turning the impellers in a reverse direction. A pump and shaft can easily be broken if the motor were to turn on during this process. This is why a *time delay* or *ratchet* assembly is often installed on these motors to either prevent the motor from turning on before reverse rotation stops or simply not allow it to reverse at all.

Distribution 404 1St Edition

There are three main types of diaphragm pumps:

In the first type, the diaphragm is sealed with one side in the fluid to be pumped, and the other in air or hydraulic fluid. The diaphragm is flexed, causing the volume of the pump chamber to increase and decrease. A pair of non-return check valves prevents reverse flow of the fluid.

As described above, the second type of diaphragm pump works with volumetric positive displacement, but differs in that the prime mover of the diaphragm is neither oil nor air; but is electro-mechanical, working through a crank or geared motor drive. This method flexes the diaphragm through simple mechanical action, and one side of the diaphragm is open to air. The third type of diaphragm pump has one or more unsealed diaphragms with the fluid to be pumped on both sides. The diaphragm(s) again are flexed, causing the volume to change.

When the volume of a chamber of either type of pump is increased (the diaphragm moving up), the pressure decreases, and fluid is drawn into the chamber. When the chamber pressure later increases from decreased volume (the diaphragm moving down), the fluid previously drawn in is forced out. Finally, the diaphragm moving up once again draws fluid into the chamber, completing the cycle. This action is similar to that of the cylinder in an internal combustion engine.

Cavitation

Cavitation is defined as the phenomenon of formation of vapor bubbles of a flowing liquid in a region where the pressure of the liquid falls below its vapor pressure. Cavitation is usually divided into two classes of behavior: inertial (or transient) cavitation and non-inertial cavitation. Inertial cavitation is the process where a void or bubble in a liquid rapidly collapses, producing a shock wave. Such cavitation often occurs in pumps, propellers, impellers, and in the vascular tissues of plants. Non-inertial cavitation is the process in which a bubble in a fluid is forced to oscillate in size or shape due to some form of energy input, such as an acoustic field. Such cavitation is often employed in ultrasonic cleaning baths and can also be observed in pumps, propellers etc.

Cavitation is, in many cases, an undesirable occurrence. In devices such as propellers and pumps, cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency. When the cavitation bubbles collapse, they force liquid energy into very small volumes, thereby creating spots of high temperature and emitting shock waves, the latter of which are a source of noise. The noise created by cavitation is a particular problem for military submarines, as it increases the chances of being detected by passive sonar. Although the collapse of a cavity is a relatively low-energy event, highly localized collapses can erode metals, such as steel, over time. The pitting caused by the collapse of cavities produces great wear on components and can dramatically shorten a propeller's or pump's lifetime. After a surface is initially affected by cavitation, it tends to erode at an accelerating pace. The cavitation pits increase the turbulence of the fluid flow and create crevasses that act as nucleation sites for additional cavitation bubbles. The pits also increase the component's surface area and leave behind residual stresses. This makes the surface more prone to stress corrosion.

Impeller

An impeller is a rotating component of a centrifugal pump, usually made of iron, steel, aluminum or plastic, which transfers energy from the motor that drives the pump to the fluid being pumped by accelerating the fluid outwards from the center of rotation. The velocity achieved by the impeller transfers into pressure when the outward movement of the fluid is confined by the pump casing. Impellers are usually short cylinders with an open inlet (called an eye) to accept incoming fluid, vanes to push the fluid radically, and a splined center to accept a driveshaft.

Submersible Pumps

Submersible pumps are in essence very similar to turbine pumps. They both use impellers rotated by a shaft within the bowls to pump water. However, the pump portion is directly connected to the motor.

The pump shaft has a keyway in which the splined motor end shaft inserts. The motor is bolted to the pump housing. The pump's intake is located between the motor and the pump and is normally screened to prevent sediment from entering the pump and damaging the impellers.

The efficient cooling of submersible motors is very important, so these types of pumps are often installed such that flow through the well screen can occur upwards past the motor and into the intake. If the motor end is inserted below the screened interval or below all productive portions of the aquifer, it will not be cooled, resulting in premature motor failure.

Some pumps may have *pump shrouds* installed on them to force all the water to move past the motor to prevent overheating.

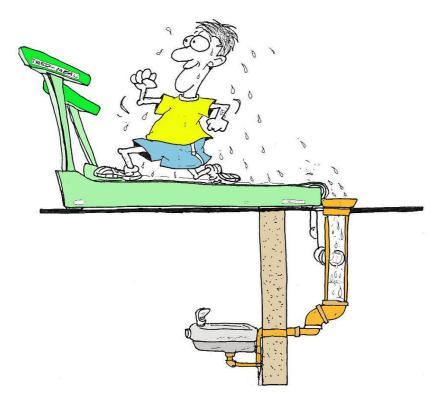
The shroud is a piece of pipe that attaches to the pump housing with an open end below the motor. As with turbine pumps, the size of the bowls and impellers, number of stages, and horsepower of the motor are adjusted to achieve the desired production rate within the limitations of the pumping head.

Insertion of motor spline into the pump keyway.

Cut away of a small submersible pump.

Key Pump Words

NPSH: Net positive suction head - related to how much suction lift a pump can achieve by creating a partial vacuum. Atmospheric pressure then pushes liquid into the pump. A method of calculating if the pump will work or not.


S.G.: Specific gravity. The weight of liquid in comparison to water at approx. 20 degrees C (SG = 1).

Specific Speed: A number which is the function of pump flow, head, efficiency etc. Not used in day to day pump selection, but very useful, as pumps with similar specific speed will have similar shaped curves, similar efficiency / NPSH / solids handling characteristics.

Vapor Pressure: If the vapor pressure of a liquid is greater than the surrounding air pressure, the liquid will boil.

Viscosity: A measure of a liquid's resistance to flow. i.e.: how thick it is. The viscosity determines the type of pump used, the speed it can run at, and with gear pumps, the internal clearances required.

Friction Loss: The amount of pressure / head required to 'force' liquid through pipe and fittings.

Understanding the Operation of a Vertical Turbine Pump

Vertical turbine pumps are available in deep well, shallow well, or canned configurations. VHS or VSS motors will be provided to fulfill environmental requirements. Submersible motors are also available. These pumps are also suitable industrial, municipal, commercial and agricultural applications.

Deep well turbine pumps are adapted for use in cased wells or where the water surface is below the practical limits of a centrifugal pump. Turbine pumps are also used with surface water systems. Since the intake for the turbine pump is continuously under water, priming is not a concern. Turbine pump efficiencies are comparable to, or greater than most centrifugal pumps. They are usually more expensive than centrifugal pumps and more difficult to inspect and repair. The turbine pump has three main parts: (1) the head assembly, (2) the shaft and column assembly and (3) the pump bowl assembly. The head is normally cast iron and designed to be installed on a foundation. It supports the column, shaft, and bowl assemblies, and provides a discharge for the water. It also will support an electric motor, a right angle gear drive or a belt drive.

Bowl Assembly

The bowl assembly is the heart of the vertical turbine pump. The impeller and diffuser type casing is designed to deliver the head and capacity that the system requires in the most efficient way. Vertical turbine pumps can be multi-staged, allowing maximum flexibility both in the initial pump selection and in the event that future system modifications require a change in the pump rating. The submerged impellers allow the pump to be started without priming. The discharge head changes the direction of flow from vertical to horizontal, and couples the pump to the system piping, in addition to supporting and aligning the driver.

Drivers

A variety of drivers may be used; however, electric motors are most common. For the purposes of this manual, all types of drivers can be grouped into two categories:

1. Hollow shaft drivers where the pump shaft extends through a tube in the center of the rotor and is connected to the driver by a clutch assembly at the top of the driver.

2. Solid shaft drivers where the rotor shaft is solid and projects below the driver mounting base. This type of driver requires an adjustable flanged coupling for connecting to the pump.

Discharge Head Assembly

The discharge head supports the driver and bowl assembly as well as supplying a discharge connection (the "**NUF**" type discharge connection which will be located on one of the column pipe sections below the discharge head). A shaft sealing arrangement is located in the discharge head to seal the shaft where it leaves the liquid chamber. The shaft seal will usually be either a mechanical seal assembly or stuffing box.

Column Assembly

The shaft and column assembly provides a connection between the head and pump bowls. The line shaft transfers the power from the motor to the impellers and the column carries the water to the surface. The line shaft on a turbine pump may be either water lubricated or oil lubricated.

The oil-lubricated pump has an enclosed shaft into which oil drips, lubricating the bearings. The water-lubricated pump has an open shaft. The bearings are lubricated by the pumped water. If there is a possibility of fine sand being pumped, select the oil lubricated pump because it will keep the sand out of the bearings. If the water is for domestic or livestock use, it must be free of oil and a water-lubricated pump must be used.

Line shaft bearings are commonly placed on 10-foot centers for water-lubricated pumps operating at speeds under 2,200 RPM and at 5-foot centers for pumps operating at higher speeds. Oil-lubricated bearings are commonly placed on 5-foot centers.

A pump bowl encloses the impeller. Due to its limited diameter, each impeller develops a relatively low head. In most deep well turbine installations, several bowls are stacked in series one above the other. This is called staging. A four-stage bowl assembly contains four impellers, all attached to a common shaft and will operate at four times the discharge head of a single-stage pump.

Impellers used in turbine pumps may be either semi-open or enclosed. The vanes on semi-open impellers are open on the bottom and they rotate with a close tolerance to the bottom of the pump bowl. The tolerance is critical and must be adjusted when the pump is new. During the initial break-in period the line shaft couplings will tighten, therefore, after about 100 hours of operation, the impeller adjustments should be checked. After break-in, the tolerance must be checked and adjusted every three to five years or more often if pumping sand.

Column assembly is of two basic types, either of which may be used:

1. Open lineshaft construction utilizes the fluid being pumped to lubricate the lineshaft bearings.

2. Enclosed lineshaft construction has an enclosing tube around the lineshaft and utilizes oil, grease or injected liquid (usually clean water) to lubricate the lineshaft bearings.

Column assembly will consist of:

1) column pipe, which connects the bowl assembly to the discharge head,

2) shaft, connecting the bowl shaft to the driver and,

3) may contain bearings, if required, for the particular unit. Column pipe may be either threaded or flanged.

Note: Some units will not require column assembly, having the bowl assembly connected directly to the discharge head instead.

Bowl Assemblies

The bowl consists of:

1) impellers rigidly mounted on the bowl shaft, which rotate and impart energy to the fluid,

2) bowls to contain the increased pressure and direct the fluid,

3) suction bell or case which directs the fluid into the first impeller, and

4) bearings located in the suction bell (or case) and in each bowl.

Both types of impellers may cause inefficient pump operation if they are not properly adjusted. Mechanical damage will result if the semi-open impellers are set too low and the vanes rub against the bottom of the bowls. The adjustment of enclosed impellers is not as critical; however, they must still be checked and adjusted.

Impeller adjustments are made by tightening or loosening a nut on the top of the head assembly. Impeller adjustments are normally made by lowering the impellers to the bottom of the bowls and adjusting them upward. The amount of upward adjustment is determined by how much the line shaft will stretch during pumping. The adjustment must be made based on the lowest possible pumping level in the well. The proper adjustment procedure if often provided by the pump manufacturer.

Basic Operation of a Vertical Turbine

Pre-start

Before starting the pump, the following checks should be made:

1. Rotate the pump shaft by hand to make sure the pump is free and the impellers are correctly positioned.

2. Is the head shaft adjusting nut properly locked into position?

3. Has the driver been properly lubricated in accordance with the instructions furnished with the driver?

4. Has the driver been checked for proper rotation? If not, the pump must be disconnected from the driver before checking. The driver must rotate COUNTER CLOCKWISE when looking down at the top of the driver.

5. Check all connections to the driver and control equipment.

6. Check that all piping connections are tight.

7. Check all anchor bolts for tightness.

8. Check all bolting and tubing connections for tightness (driver mounting bolts, flanged coupling bolts, glad plate bolts, seal piping, etc.).

9. On pumps equipped with stuffing box, make sure the gland nuts are only finger tight — DO NOT TIGHTEN packing gland before starting.

10. On pumps equipped with mechanical seals, clean fluid should be put into the seal chamber. With pumps under suction pressure this can be accomplished by bleeding all air and vapor out of the seal chamber and allowing the fluid to enter. With pumps not under suction pressure, the seal chamber should be flushed liberally with clean fluid to provide initial lubrication. Make sure the mechanical seal is properly adjusted and locked into place.

into place.

NOTE: After initial start-up, pre-lubrication of the mechanical seal will usually not be required, as enough liquid will remain in the seal chamber for subsequent start-up lubrication.

11. On pumps equipped with enclosed lineshaft, lubricating liquid must be available and should be allowed to run into the enclosing tube in sufficient quantity to thoroughly lubricate all lineshaft bearings.

Initial Start-Up

If the discharge line has a valve in it, it should be partially open for initial starting — Min. 10%.
 Start lubrication liquid flow on enclosed lineshaft units.

3. Start the pump and observe the operation. If there is any difficulty, excess noise or vibration, stop the pump immediately.

4. Open the discharge valve as desired.

5. Check complete pump and driver for leaks, loose connections or improper operation.

6. If possible, the pump should be left running for approximately ½ hour on the initial start-up. This will allow the bearings, packing or seals, and other parts to "run-in" and reduce the possibility of trouble on future starts.

NOTE: If abrasives or debris are present upon startup, the pump should be allowed to run until the pumpage is clean. Stopping the pump when handling large amounts of abrasives (as sometimes present on initial starting) may lock the pump and cause more damage than if the pump is allowed to continue operation.

CAUTION: Every effort should be made to keep abrasives out of lines, sumps, etc. so that abrasives will not enter the pump.

Stuffing Box Adjustment

On the initial starting it is very important that the packing gland not be tightened too much. New packing must be "run in" properly to prevent damage to the shaft and shortening of the packing life. The stuffing box must be allowed to leak for proper operation. The proper amount of leakage can be determined by checking the temperature of the leakage; this should be cool or just lukewarm — NOT HOT. When adjusting the packing gland, bring both nuts down evenly and in small steps until the leakage is reduced as required. The nuts should only be tightened about ½ turn at a time at 20 to 30 minute intervals to allow the packing to "run in". Under proper operation, a set of packing will last a long time. Occasionally a new ring of packing will need to be added to keep the box full. After adding two or three rings of packing, or when proper adjustment cannot be achieved, the stuffing box should be cleaned completely of all old packing and re-packed.

Lineshaft Lubrication

Open lineshaft bearings are lubricated by the pumped fluid and on close coupled units (less than 30' long), will usually not require pre or post lubrication. Enclosed lineshaft bearings are lubricated by extraneous liquid (usually oil or clean water), which is fed to the tension nut by either a gravity flow system or pressure injection system. The gravity flow system utilizing oil is the most common arrangement. The oil reservoir must be kept filled with a good quality light turbine oil (about 150 SSU at operating temperature) and adjusted to feed 10 to 12 drops per minute plus one (1) drop per 100' of setting. Injection systems are designed for each installation — injection pressure and quantity of lubricating liquid will vary. Refer to packing slip or separate instruction sheet for requirements when unit is designed for injection lubrication.

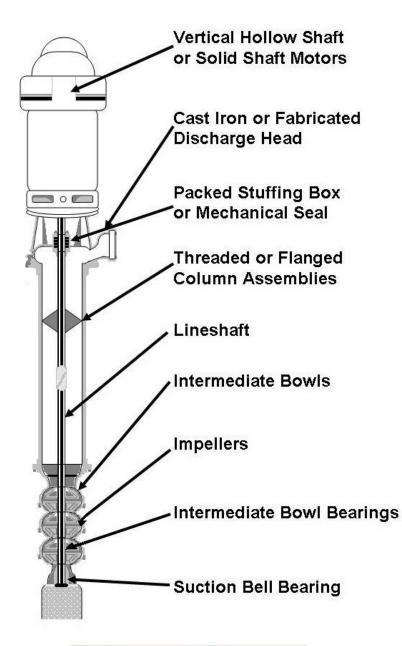
General Maintenance Section

A periodic inspection is recommended as the best means of preventing breakdown and keeping maintenance costs to a minimum. Maintenance personnel should look over the whole installation with a critical eye each time the pump is inspected — a change in noise level, amplitude or vibration, or performance can be an indication of impending trouble. Any deviation in performance or operation from what is expected can be traced to some specific cause. Determination of the cause of any misperformance or improper operation is essential to the correction of the trouble — whether the correction is done by the user, the dealer or reported back to the factory. Variances from initial performance will indicate changing system conditions or wear or impending breakdown of unit.

Deep well turbine pumps must have correct alignment between the pump and the power unit. Correct alignment is made easy by using a head assembly that matches the motor and column/pump assembly. It is very important that the well is straight and plumb. The pump column assembly must be vertically aligned so that no part touches the well casing. Spacers are usually attached to the pump column to prevent the pump assembly from touching the well casing. If the pump column does touch the well casing, vibration will wear holes in the casing. A pump column out of vertical alignment may also cause excessive bearing wear.

The head assembly must be mounted on a good foundation at least 12 inches above the ground surface. A foundation of concrete provides a permanent and trouble-free installation. The foundation must be large enough to allow the head assembly to be securely fastened. The foundation should have at least 12 inches of bearing surface on all sides of the well. In the case of a gravel-packed well, the 12-inch clearance is measured from the outside edge of the gravel packing.

Vertical Turbine Pump



Large Diameter Submersible Pump, Motor, and Column Pipe

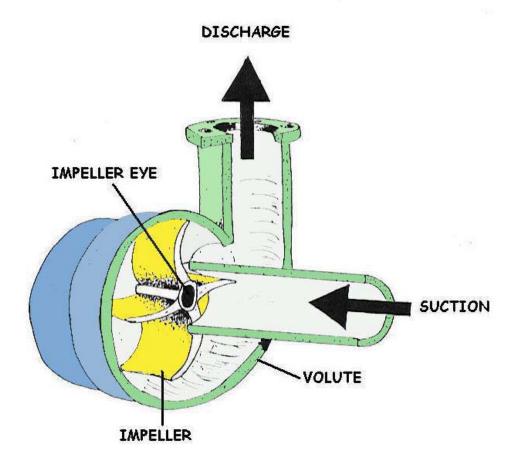
Larger check valve installed on submersible pump to prevent water hammer (notice motor shaft splines.)

Common Elements of Vertical Turbines

Above, Vertical Turbine Pump Being Removed (Notice line shaft)

Below Closed Pump Impeller

Distribution 404 1St Edition


Centrifugal Pump

By definition, a centrifugal pump is a machine. More specifically, it is a machine that imparts energy to a fluid. This energy infusion can cause a liquid to flow, rise to a higher level, or both.

The centrifugal pump is an extremely simple machine. It is a member of a family known as rotary machines and consists of two basic parts: 1) the rotary element or impeller and 2) the stationary element or casing (volute). The figure at the bottom of the page is a cross section of a centrifugal pump and shows the two basic parts.

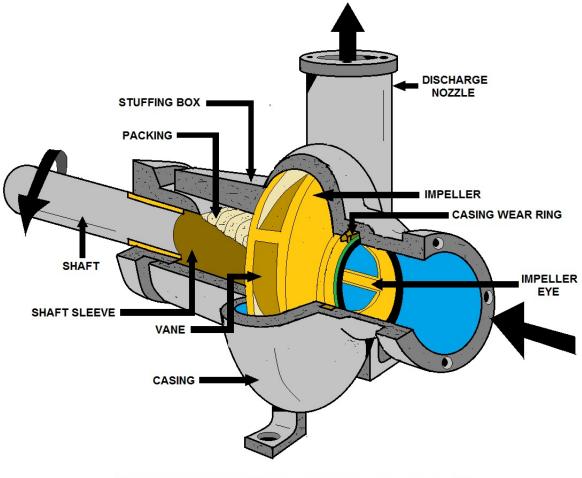
In operation, a centrifugal pump "slings" liquid out of the impeller via centrifugal force. One fact that must always be remembered: A pump does not create pressure, it only provides flow. Pressure is just an indication of the amount of resistance to flow.

Centrifugal pumps may be classified in several ways. For example, they may be either SINGLE STAGE or MULTI-STAGE. A single-stage pump has only one impeller. A multi-stage pump has two or more impellers housed together in one casing.

As a rule, each impeller acts separately, discharging to the suction of the next stage impeller. This arrangement is called series staging. Centrifugal pumps are also classified as HORIZONTAL or VERTICAL, depending upon the position of the pump shaft.

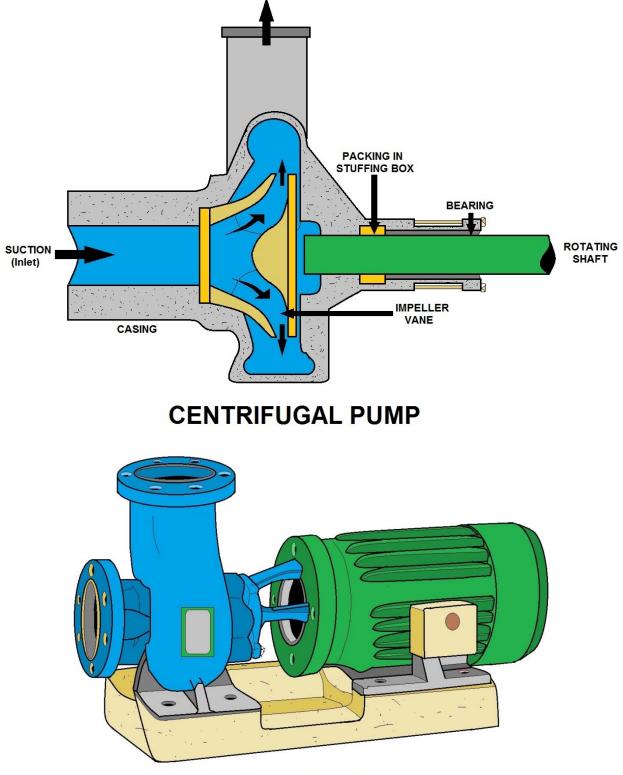
The impellers used on centrifugal pumps may be classified as SINGLE SUCTION or DOUBLE SUCTION. The single-suction impeller allows liquid to enter the eye from one side only. The double-suction impeller allows liquid to enter the eye from two directions.

Impellers are also classified as CLOSED or OPEN. Closed impellers have side walls that extend from the eye to the outer edge of the vane tips. Open impellers do not have these side walls. Some small pumps with single-suction impellers have only a casing wearing ring and no impeller ring. In this type of pump, the casing wearing ring is fitted into the end plate.

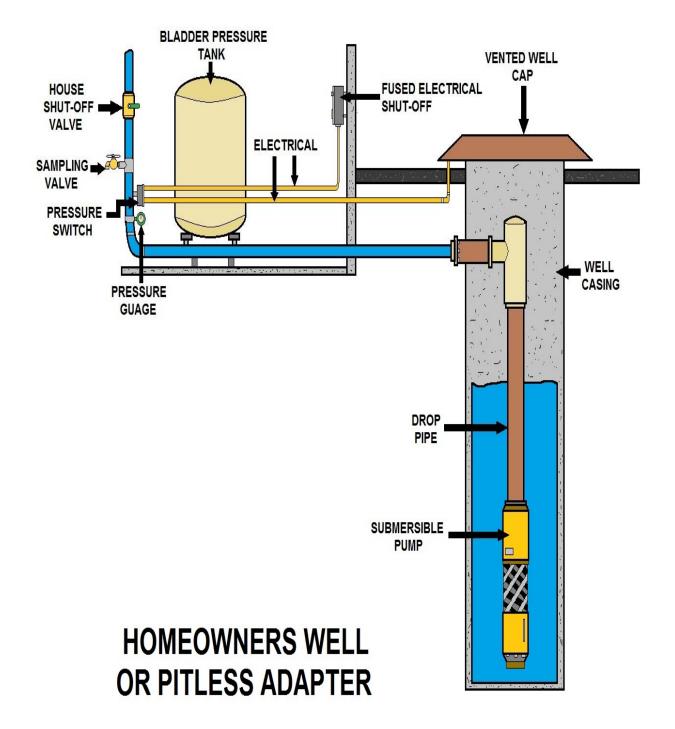

Recirculation lines are installed on some centrifugal pumps to prevent the pumps from overheating and becoming vapor bound, in case the discharge is entirely shut off or the flow of fluid is stopped for extended periods.

Seal piping is installed to cool the shaft and the packing, to lubricate the packing, and to seal the rotating joint between the shaft and the packing against air leakage. A lantern ring spacer is inserted between the rings of the packing in the stuffing box.

Seal piping leads the liquid from the discharge side of the pump to the annular space formed by the lantern ring. The web of the ring is perforated so that the water can flow in either direction along the shaft (between the shaft and the packing).


Water flinger rings are fitted on the shaft between the packing gland and the pump bearing housing. These flingers prevent water in the stuffing box from flowing along the shaft and entering the bearing housing.

Look at the components of the centrifugal pump.


CENTRIFUGAL PUMP PARTS

As the impeller rotates, it sucks the liquid into the center of the pump and throws it out under pressure through the outlet. The casing that houses the impeller is referred to as the volute, the impeller fits on the shaft inside. The volute has an inlet and outlet that carries the water as shown below.

END SUCTION CENTRIFUGAL PUMP

Distribution 404 1St Edition

NPSH - Net Positive Suction Head

If you accept that a pump creates a partial vacuum and atmospheric pressure forces water into the suction of the pump, then you will find NPSH a simple concept.

NPSH (a) is the Net Positive Suction Head Available, which is calculated as follows:

NPSH (a) = p + s - v - f

Where: 'p'= atmospheric pressure, 's'= static suction (If liquid is below pump, it is shown as a negative value) 'v'= liquid vapor pressure 'f'= friction loss

NPSH (a) must exceed NPSH(r) to allow pump operation without cavitation. (It is advisable to allow approximately 1 meter difference for most installations.) The other important fact to remember is that water will boil at much less than 100 deg C° if the pressure acting on it is less than its vapor pressure, i.e. water at 95 deg C is just hot water at sea level, but at 1500m above sea level it is boiling water and vapor.

The vapor pressure of water at 95 deg C is 84.53 kPa, there was enough atmospheric pressure at sea level to contain the vapor, but once the atmospheric pressure dropped at the higher elevation, the vapor was able to escape. This is why vapor pressure is always considered in NPSH calculations when temperatures exceed 30 to 40 degrees C.

NPSH(r) is the Net Positive Suction Head Required by the pump, which is read from the pump performance curve. (Think of NPSH(r) as friction loss caused by the entry to the pump suction.)

Affinity Laws

The Centrifugal Pump is a very capable and flexible machine. Because of this it is unnecessary to design a separate pump for each job. The performance of a centrifugal pump can be varied by changing the impeller diameter or its rotational speed. Either change produces approximately the same results. Reducing impeller diameter is probably the most common change and is usually the most economical. The speed can be altered by changing pulley diameters or by changing the speed of the driver. In some cases both speed and impeller diameter are changed to obtain the desired results.

When the driven speed or impeller diameter of a centrifugal pump changes, operation of the pump changes in accordance with three fundamental laws. These laws are known as the "Laws of Affinity". They state that:

- 1) Capacity varies directly as the change in speed
- 2) Head varies as the square of the change in speed

3) Brake horsepower varies as the cube of the change in speed

If, for example, the pump speed were doubled:

1) Capacity will double

- 2) Head will increase by a factor of 4 (2 to the second power)
- 3) Brake horsepower will increase by a factor of 8 (2 to the third power)

These principles apply regardless of the direction (up or down) of the speed or change in diameter.

Consider the following example. A pump operating at 1750 RPM, delivers 210 GPM at 75' TDH, and requires 5.2 brake horsepower. What will happen if the speed is increased to 2000 RPM? First we find the speed ratio.

Speed Ratio = 2000/1750 = 1.14

From the laws of Affinity:

Capacity varies directly or:
 1.14 X 210 GPM = 240 GPM
 Head varies as the square or:

1.14 X 1.14 X 75 = 97.5' TDH 3) BHP varies as the cube or:

1.14 X 1.14 X 1.14 X 5.2 = 7.72 BHP

Theoretically the efficiency is the same for both conditions. By calculating several points a new curve can be drawn.

Whether it be a speed change or change in impeller diameter, the Laws of Affinity give results that are approximate. The discrepancy between the calculated values and the actual values obtained in test are due to hydraulic efficiency changes that result from the modification. The Laws of Affinity give reasonably close results when the changes are not more than 50% of the original speed or 15% of the original diameter.

Suction conditions are some of the most important factors affecting centrifugal pump operation. If they are ignored during the design or installation stages of an application, they will probably come back to haunt you.

Suction Lift

A pump cannot pull or "suck" a liquid up its suction pipe because liquids do not exhibit tensile strength. Therefore, they cannot transmit tension or be pulled. When a pump creates a suction, it is simply reducing local pressure by creating a partial vacuum. Atmospheric or some other external pressure acting on the surface of the liquid pushes the liquid up the suction pipe into the pump.

Atmospheric pressure at sea level is called absolute pressure (PSIA) because it is a measurement using absolute zero (a perfect vacuum) as a base. If pressure is measured using atmospheric pressure as a base it is called gauge pressure (PSIG or simply PSI).

Atmospheric pressure, as measured at sea level, is 14.7 PSIA. In feet of head it is: Head = PSI X 2.31 / Specific Gravity

For Water it is: Head = 14.7 X 2.31 / 1.0 = 34 Ft

Thus, 34 feet is the theoretical maximum suction lift for a pump pumping cold water at sea level. No pump can attain a suction lift of 34 ft; however, well designed ones can reach 25 ft quite easily. You will note, from the equation above, that specific gravity can have a major effect on suction lift. For example, the theoretical maximum lift for brine (Specific Gravity = 1.2) at sea level is 28 ft. The realistic maximum is around 20ft. Remember to always factor in specific gravity if the liquid being pumped is anything but clear, cold (68 degrees F) water.

Distribution 404 1St Edition

In addition to pump design and suction piping, there are two physical properties of the liquid being pumped that affect suction lift.

1) Maximum suction lift is dependent upon the pressure applied to the surface of the liquid at the suction source. Maximum suction lift decreases as pressure decreases.

2) 2) Maximum suction lift is dependent upon the vapor pressure of the liquid being pumped. The vapor pressure of a liquid is the pressure necessary to keep the liquid from vaporizing (boiling) at a given temperature. Vapor pressure increases as liquid temperature increases. Maximum suction lift decreases as vapor pressure rises.

It follows then, that the maximum suction lift of a centrifugal pump varies inversely with altitude. Conversely, maximum suction lift will increase as the external pressure on its source increases (for example: a closed pressure vessel).

Cavitation - Two Main Causes:

A. NPSH (r) EXCEEDS NPSH (a)

Due to low pressure the water vaporizes (boils), and higher pressure implodes into the vapor bubbles as they pass through the pump, causing reduced performance and potentially major damage.

B. Suction or discharge recirculation. The pump is designed for a certain flow range, if there is not enough or too much flow going through the pump, the resulting turbulence and vortexes can reduce performance and damage the pump.

Affinity Laws - Centrifugal Pumps

If the speed or impeller diameter of a pump changes, we can calculate the resulting performance change using:

Affinity laws

a. The flow changes proportionally to speed

i.e.: double the speed / double the flow

b. The pressure changes by the square of the difference

i.e.: double the speed / multiply the pressure by 4

c. The power changes by the cube of the difference

i.e.: double the speed / multiply the power by 8

Notes:

1. These laws apply to operating points at the same efficiency.

2. Variations in impeller diameter greater than 10% are hard to predict due to the change in relationship between the impeller and the casing. For rough calculations you can adjust a duty point or performance curve to suit a different speed. NPSH (r) is affected by speed / impeller diameter change = **DANGER** !

Pump Casing

There are many variations of centrifugal pumps. The most common type is an end suction pump. Another type of pump used is the split case. There are many variations of split case, such as; two-stage, single suction, and double suction. Most of these pumps are horizontal.

There are variations of vertical centrifugal pumps. The line shaft turbine is really a multistage centrifugal pump.


Impeller

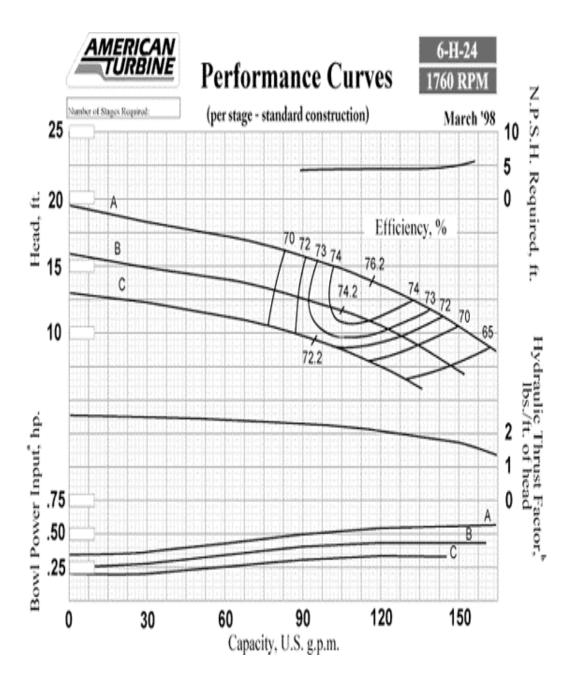
In most centrifugal pumps, the impeller looks like a number of cupped vanes on blades mounted on a disc or shaft. Notice in the picture below how the vanes of the impeller force the water into the outlet of the pipe.

The shape of the vanes of the impeller is important. As the water is being thrown out of the pump, this means you can run centrifugal pumps with the discharged valve closed for a **SHORT** period of time. Remember the motor sends energy along the shaft, and if the water is in the volute too long it will heat up and create steam. Not good!

Impellers are designed in various ways. We will look at.

- Closed impellers
- Semi-open impellers
- Opened impellers, and
- Recessed impellers

The impellers all cause a flow from the eye of the impeller to the outside of the impeller. These impellers cause what is called radial flow, and they can be referred to as radial flow impellers.


The critical distance of the impeller and how it is installed in the casing will determine if it is high volume / low pressure or the type of liquid that could be pumped.

Axial flow impellers look like a propeller and create a flow that is parallel to the shaft.

Pump Performance and Curves

Let's looks at the big picture. Before you make that purchase of the pump and motor you need to know the basics such as:

- Total dynamic head, the travel distance
- Capacity, how much water you need to provide
- Efficiency, help determine the impeller size
- HP, how many squirrels you need
- RPM, how fast the squirrels run

Motor and Pump Calculations

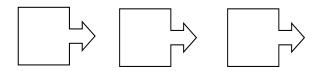
The centrifugal pump pumps the difference between the suction and the discharge heads. There are three kinds of discharge head:

- **Static head.** The height we are pumping to or the height to the discharge piping outlet that is filling the tank from the top. Note: that if you are filling the tank from the bottom, the static head will be constantly changing.
- **Pressure head.** If we are pumping to a pressurized vessel (like a boiler) we must convert the pressure units (psi. or Kg.) to head units (feet or meters).
- **System or dynamic head.** Caused by friction in the pipes, fittings, and system components. We get this number by making the calculations from published charts.

Suction head is measured the same way.

- If the liquid level is above the pump center line, that level is a positive suction head. If the pump is lifting a liquid level from below its center line, it is a negative suction head.
- If the pump is pumping liquid from a pressurized vessel, you must convert this pressure to a positive suction head. A vacuum in the tank would be converted to a negative suction head.
- Friction in the pipes, fittings, and associated hardware is a negative suction head.
- Negative suction heads are added to the pump discharge head, positive suctions heads are subtracted from the pump discharge head.

Total Dynamic Head (TDH) is the total height that a fluid is to be pumped, taking into account friction losses in the pipe.


TDH = Static Lift + Static Height + Friction Loss

where:

Static Lift is the height the water will rise before arriving at the pump (also known as the 'suction head').

Static Height is the maximum height reached by the pipe after the pump (also known as the 'discharge head').

Friction Loss is the head equivalent to the energy losses due to viscose drag of fluid flowing in the pipe (both on the suction and discharge sides of the pump). It is calculated via a formula or a chart, taking into account the pipe diameter and roughness and the fluid flow rate, density, and viscosity.

Motor hp

Brake hp Water hp

Horsepower

Work involves the operation of force over a specific distance. The rate of doing work is called power.

The rate in which a horse could work was determined to be about 550 ft-lbs/sec or 33,000 ft-lbs/min.

1 hp = 33,000 ft-lbs/min

Motor Horsepower (mhp)

1 hp = 746 watts or .746 Kilowatts

MHP refers to the horsepower supplied in the form of electrical current. The efficiency of most motors range from 80-95%. (Manufactures will list efficiency %)

Brake Horsepower (bhp)

Water hp Brake hp = -----Pump Efficiency

BHP refers to the horsepower supplied to the pump from the motor. As the power moves through the pump, additional horsepower is lost, resulting from slippage and friction of the shaft and other factors.

Water Horsepower

(flow gpm)(total hd) Water hp = ------3960

Water horsepower refers to the actual horse power available to pump the water.

Horsepower and Specific Gravity

The specific gravity of a liquid is an indication of its density or weight compared to water. The difference in specific gravity, include it when calculating ft-lbs/min pumping requirements.

(ft)(lbs/min)(sp.gr.) -----= whp 33,000 ft-lbs/min/hp

MHP and Kilowatt requirements

1 hp = 0.746 kW or (hp) (746 watts/hp)

1000 watts/kW

Well Calculations

1. Well drawdown

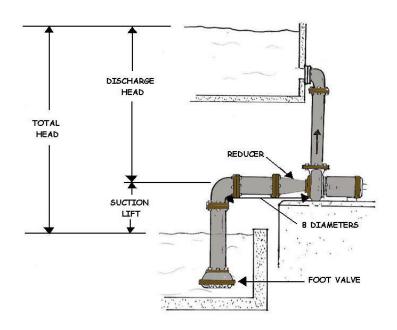
Drawdown ft = Pumping water level, ft - Static water level, ft

2. Well yield

Flow, gallons Well yield, gpm = ------Duration of test, min

3. Specific yield

Well yield, gpm Specific yield, gpm/ft = ------Drawdown, ft


4. Deep well turbine pump calculations.

Discharge head, ft = (pressure measured) (2.31 ft/psi)

Field head, ft = pumping water + discharge head, ft

Bowl head, ft = field head + column friction

1 psi = 2.31 feet of head 1 foot of head = .433 psi

Example 1

A centrifugal pump is located at an elevation of 722 ft. This pump is used to move water from reservoir **A** to reservoir **B**. The water level in reservoir **A** is 742 ft and the water level in reservoir **B** is 927 ft. Based on these conditions answer the following questions:

1. If the pump is not running and pressure gauges are installed on the suction and discharge lines, what pressures would the gauges read?

Suction side:

Discharge side:

- 2. How can you tell if this is a suction head condition?
- 3. Calculate the following head measurements:

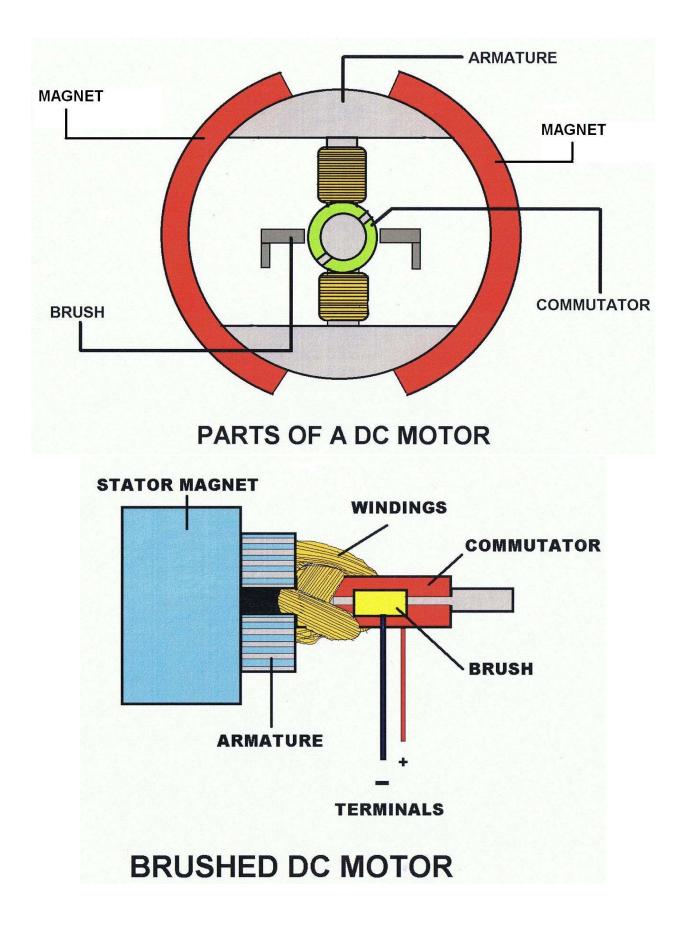
SSH:

SDH:

TSH:

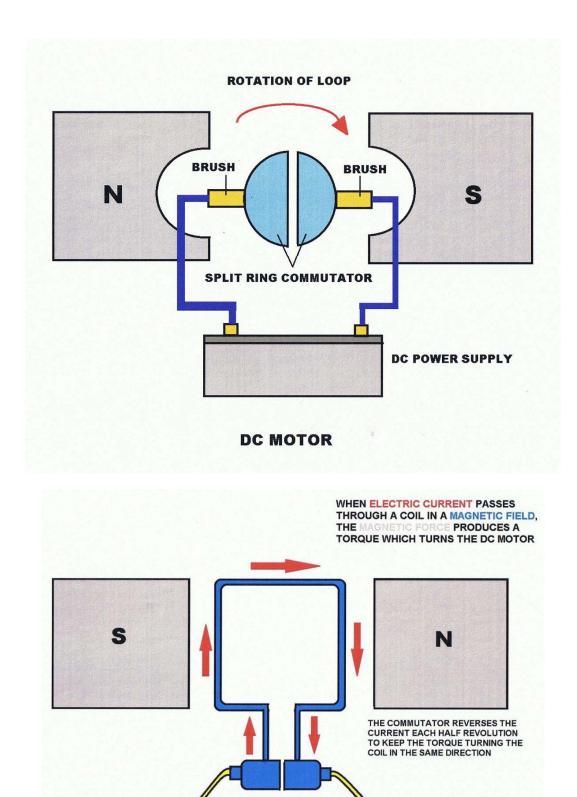
- 4. Convert the pressure gauge readings to feet:
- 6 psi:

48 psi:


110 psi:

5. Calculate the following head in feet to psi:

20 ft:


205 ft:

185 ft:

Distribution 404 1St Edition

309

310

ELECTRIC CURRENT SUPPLIED EXTERNALLY THROUGH A COMMUTATOR

Motor Section

We will now refer to the motor, coupling, and bearings. The power source of the pump is usually an electric motor. The motor is connected by a coupling to the pump shaft. The purpose of the bearings is to hold the shaft firmly in place, yet allow it to rotate. The bearing house supports the bearings and provides a reservoir for the lubricant. An impeller is connected to the shaft. The pump assembly can be a vertical or horizontal set-up; the components for both are basically the same.

Motors

The purpose of this discussion on pump motors is to identify and describe the main types of motors, starters, enclosures, and motor controls, as well as to provide you with some basic maintenance and troubleshooting information. Although pumps could be driven by diesel or gasoline engines, pumps driven by electric motors are commonly used in our industry.

There are two general categories of electric motors:

- D-C motors, or direct current
- A-C motors, or alternating current

You can expect most motors at facilities to be A-C type.

D-C Motors

The important characteristic of the D-C motor is that its speed will vary with the amount of current used. There are many different kinds of D-C motors, depending on how they are wound and their speed/torque characteristics.

A-C Motors

There are a number of different types of

alternating current motors, such as Synchronous, Induction, wound rotor, and squirrel cage. The synchronous type of A-C motor requires complex control equipment, since they use a combination of A-C and D-C. This also means that the synchronous type of A-C motor is used in large horsepower sizes, usually above 250 HP. The induction type motor uses only alternating current. The squirrel cage motor provides a relatively constant speed. The wound rotor type could be used as a variable speed motor.

Define the Following Terms:

Voltage:

EMF:

Power:

Current:

Resistance:

Conductor:

Phase:

Single Phase:

Three Phase:

Hertz:

Motor Starters

All electric motors, except very small ones such as chemical feed pumps, are equipped with starters, either full voltage or reduced voltage. This is because motors draw a much higher current when they are starting and gaining speed. The purpose of the reduced voltage starter is to prevent the load from coming on until the amperage is low enough.

How do you think keeping the discharge valve closed on a centrifugal pump could reduce the start-up load?

Motor Enclosures

Depending on the application, motors may need special protection. Some motors are referred to as open motors. They allow air to pass through to remove heat generated when current passes through the windings. Other motors use specific enclosures for special environments or safety protection.

Can you think of any locations within your facility that requires special enclosures?

Two Types of Totally Enclosed Motors Commonly Used are:

- **TENV**, or totally enclosed non-ventilated motor
- **TEFC**, or totally enclosed fan cooled motor

Totally enclosed motors include dust-proof, water-proof and explosion-proof motors. An explosion proof enclosure must be provided on any motor where dangerous gases might accumulate.

Motor Controls

All pump motors are provided with some method of control, typically a combination of manual and automatic. Manual pump controls can be located at the central control panel at the pump or at the suction or discharge points of the liquid being pumped.

There are a number of ways in which automatic control of a pump motor can be regulated:

- Pressure and vacuum sensors
- Preset time intervals
- Flow sensors
- Level sensors

Two typical level sensors are the float sensor and the bubble regulator. The float sensor is pear-shaped and hangs in the wet well. As the height increases, the float tilts, and the mercury in the glass tube flows toward the end of the tube that has two wires attached to it. When the mercury covers the wires, it closes the circuit.

A low pressure air supply is allowed to

escape from a bubbler pipe in the wet well. The back-pressure on the air supply will vary with the liquid level over the pipe. Sensitive air pressure switches will detect this change and use this information to control pump operation.

Motor Maintenance

Motors should be kept clean, free of moisture, and lubricated properly. Dirt, dust, and grime will plug the ventilating spaces and can actually form an insulating layer over the metal surface of the motor.

What condition would occur if the ventilation becomes blocked?

Moisture

Moisture harms the insulation on the windings to the point where they may no longer provide the required insulation for the voltage applied to the motor. In addition, moisture on windings tend to absorb acid and alkali fumes, causing damage to both insulation and metals. To reduce problems caused by moisture, the most suitable motor enclosure for the existing environment will normally be used. It is recommended to run stand by motors to dry up any condensation which accumulates in the motor.

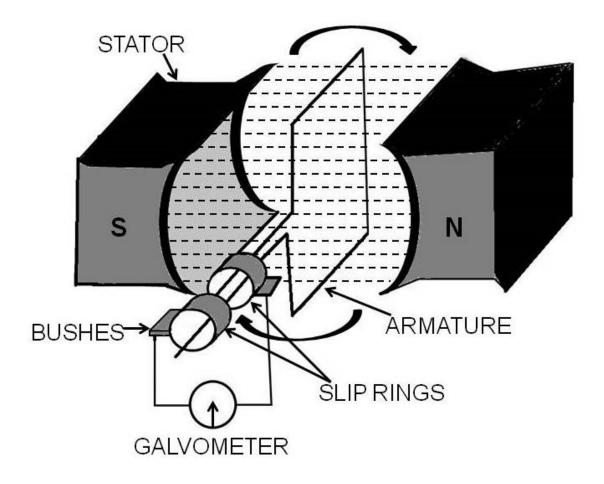
Motor Lubrication

Friction will cause wear in all moving parts, and lubrication is needed to reduce this friction. It is very important that all your manufacturer's recommended lubrication procedures are strictly followed. You have to be careful not to add too much grease or oil, as this could cause more friction and generate heat.

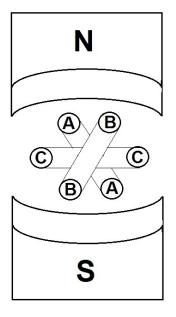
To grease the motor bearings, this is the usual approach:

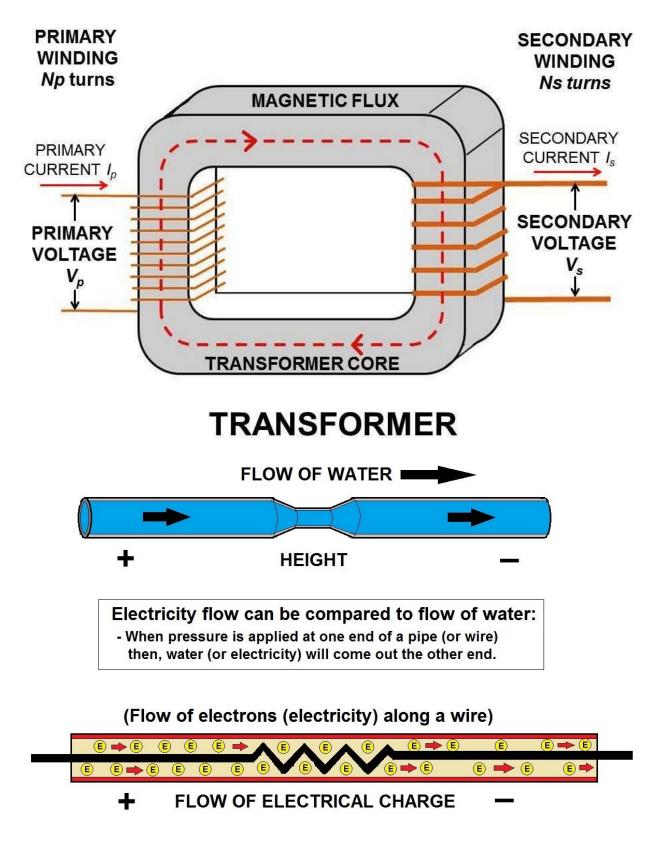
- 1. Remove the protective plugs and caps from the grease inlet and relief holes.
- 2. Pump grease in until fresh starts coming from the relief hole.

If fresh grease does not come out of the relief hole, this could mean that the grease has been pumped into the motor windings. The motor must then be taken apart and cleaned by a qualified service representative.


To change the oil in an oil lubricated motor, this is the usual approach:

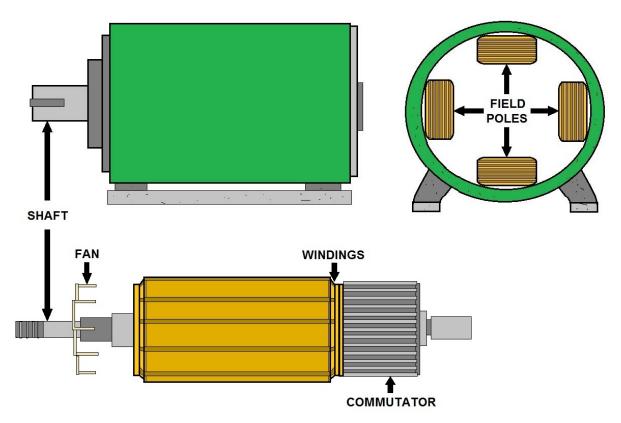
- 1. Remove all plugs and let the oil drain.
- 2. Check for metal shearing.
- 3. Replace the oil drain.
- 4. Add new oil until it is up to the oil level plug.
- 5. Replace the oil level and filter plug.


Never mix oils, since the additives of different oils when combined can cause breakdown of the oil.



314

PRODUCTION OF AC CURRENT



BASIC ELECTRICITY CONCEPT

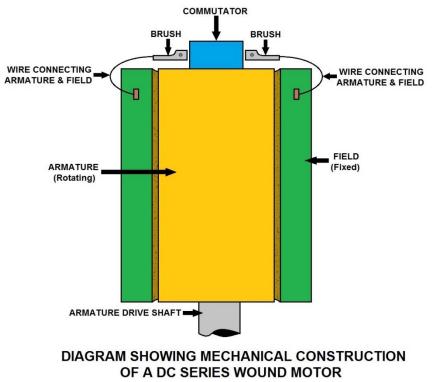
Distribution 404 1St Edition

More Detailed Information on Motors

DC ELECTRIC MOTOR DIAGRAM

The classic division of electric motors has been that of Direct Current (DC) types vs. Alternating Current (AC) types. This is more a de facto convention, rather than a rigid distinction. For example, many classic DC motors run happily on AC power.

The ongoing trend toward electronic control further muddles the distinction, as modern drivers have moved the commutator out of the motor shell. For this new breed of motor, driver circuits are relied upon to generate sinusoidal AC drive currents, or some approximation of. The two best examples are: the brushless DC motor and the stepping motor, both being polyphase AC motors requiring external electronic control.


There is a clearer distinction between a synchronous motor and asynchronous types. In the synchronous types, the rotor rotates in synchrony with the oscillating field or current (e.g. permanent magnet motors). In contrast, an asynchronous motor is designed to slip; the most ubiquitous example being the common AC induction motor which must slip in order to generate torque.

A DC motor is designed to run on DC electric power. Two examples of pure DC designs are Michael Faraday's homopolar motor (which is uncommon), and the ball bearing motor, which is (so far) a novelty. By far the most common DC motor types are the brushed and brushless types, which use internal and external commutation respectively to create an oscillating AC current from the DC source -- so they are not purely DC machines in a strict sense.

Brushed DC motors

The classic DC motor design generates an oscillating current in a wound rotor with a split ring commutator, and either a wound or permanent magnet stator. A rotor consists of a coil wound around a rotor, which is then powered by any type of battery. Many of the limitations of the classic commutator DC motor are due to the need for brushes to press against the commutator. This creates friction. At higher speeds, brushes have increasing difficulty in maintaining contact. Brushes may bounce off the irregularities in the commutator surface, creating sparks. This limits the maximum speed of the machine.

The current density per unit area of the brushes limits the output of the motor. The imperfect electric contact also causes electrical noise. Brushes eventually wear out and require replacement, and the commutator itself is subject to wear and maintenance. The commutator assembly on a large machine is a costly element, requiring precision assembly of many parts.

Brushless DC motors

Some of the problems of the brushed DC motor are eliminated in the brushless design. In this motor, the mechanical "rotating switch" or commutator/brush gear assembly is replaced by an external electronic switch synchronized to the rotor's position. Brushless motors are typically 85-90% efficient, whereas DC motors with brush gear are typically 75-80% efficient.

Midway between ordinary DC motors and stepper motors lies the realm of the brushless DC motor. Built in a fashion very similar to stepper motors, these often use a permanent magnet external rotor, three phases of driving coils, one or more Hall Effect sensors to sense the position of the rotor, and the associated drive electronics.

The coils are activated one phase after the other by the drive electronics, as cued by the signals from the Hall Effect sensors. In effect, they act as three-phase synchronous motors containing their own variable-frequency drive electronics. Brushless DC motors are commonly used where precise speed control is necessary, as in computer disk drives or in video cassette recorders, the

spindles within CD, CD-ROM (etc.) drives, and mechanisms within office products such as fans, laser printers ,and photocopiers.

They have several advantages over conventional motors:

* Compared to AC fans using shaded-pole motors, they are very efficient, running much cooler than the equivalent AC motors. This cool operation leads to much-improved life of the fan's bearings.

* Without a commutator to wear out, the life of a DC brushless motor can be significantly longer compared to a DC motor using brushes and a commutator. Commutation also tends to cause a great deal of electrical and RF noise; without a commutator or brushes, a brushless motor may be used in electrically sensitive devices like audio equipment or computers.

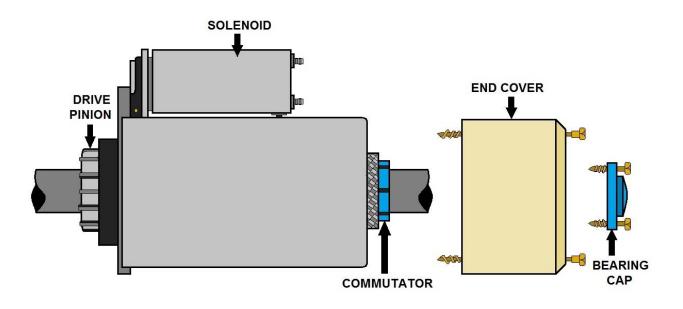
* The same Hall Effect sensors that provide the commutation can also provide a convenient tachometer signal for closed-loop control (servo-controlled) applications. In fans, the tachometer signal can be used to derive a "fan OK" signal.

* The motor can be easily synchronized to an internal or external clock, leading to precise speed control.

* Brushless motors have no chance of sparking, unlike brushed motors, making them better suited to environments with volatile chemicals and fuels.

* Brushless motors are usually used in small equipment such as computers, and are generally used to get rid of unwanted heat.

* They are also very quiet motors, which is an advantage if being used in equipment that is affected by vibrations.


Modern DC brushless motors range in power from a fraction of a watt to many kilowatts. Larger brushless motors up to about 100 kW rating are used in electric vehicles. They also find significant use in high-performance electric model aircraft.

Coreless DC Motors

Nothing in the design of any of the motors described above requires that the iron (steel) portions of the rotor actually rotate; torque is exerted only on the windings of the electromagnets. Taking advantage of this fact is the coreless DC motor, a specialized form of a brush or brushless DC motor. Optimized for rapid acceleration, these motors have a rotor that is constructed without any iron core. The rotor can take the form of a winding-filled cylinder inside the stator magnets, a basket surrounding the stator magnets, or a flat pancake (possibly formed on a printed wiring board) running between upper and lower stator magnets. The windings are typically stabilized by being impregnated with electrical epoxy potting systems. Filled epoxies that have moderate mixed viscosity and a long gel time. These systems are highlighted by low shrinkage and low exotherm.

Because the rotor is much lighter in weight (mass) than a conventional rotor formed from copper windings on steel laminations, the rotor can accelerate much more rapidly, often achieving a mechanical time constant under 1 ms. This is especially true if the windings use aluminum rather than the heavier copper. But because there is no metal mass in the rotor to act as a heat sink, even small coreless motors must often be cooled by forced air.

These motors were commonly used to drive the capstan(s) of magnetic tape drives and are still widely used in high-performance servo-controlled systems, like radio-controlled vehicles/aircraft, humanoid robotic systems, industrial automation, medical devices, etc.

STARTER MOTOR

Universal Motors

A variant of the wound field DC motor is the universal motor. The name derives from the fact that it may use AC or DC supply current, although in practice they are nearly always used with AC supplies. The principle is that in a wound field DC motor the current in both the field and the armature (and hence the resultant magnetic fields) will alternate (reverse polarity) at the same time, and hence the mechanical force generated is always in the same direction. In practice, the motor must be specially designed to cope with the AC current (impedance must be taken into account, as must the pulsating force), and the resultant motor is generally less efficient than an equivalent pure DC motor. Operating at normal power line frequencies, the maximum output of universal motors is limited and motors exceeding one kilowatt are rare. But universal motors also form the basis of the traditional railway traction motor in electric railways. In this application, to keep their electrical efficiency high, they were operated from very low frequency AC supplies, with 25 Hz and 16 2/3 hertz operation being common. Because they are universal motors, locomotives using this design were also commonly capable of operating from a third rail powered by DC.

The advantage of the universal motor is that AC supplies may be used on motors which have the typical characteristics of DC motors, specifically high starting torque and very compact design if high running speeds are used. The negative aspect is the maintenance and short life problems caused by the commutator. As a result, such motors are usually used in AC devices such as food mixers and power tools, which are used only intermittently.

Continuous speed control of a universal motor running on AC is very easily accomplished using a thyristor circuit, while stepped speed control can be accomplished using multiple taps on the field coil. Household blenders that advertise many speeds frequently combine a field coil with several taps and a diode that can be inserted in series with the motor (causing the motor to run on half-wave rectified AC).

Universal motors can rotate at relatively high revolutions per minute (rpm). This makes them useful for appliances such as blenders, vacuum cleaners, and hair dryers where high-speed operation is desired. Many vacuum cleaner and weed trimmer motors exceed 10,000 rpm; Dremel and other similar miniature grinders will often exceed 30,000 rpm. Motor damage may occur due to overspeed (rpm in excess of design specifications) if the unit is operated with no significant load. On larger motors, sudden loss of load is to be avoided, and the possibility of such an occurrence is incorporated into the motor's protection and control schemes. Often, a small fan blade attached to the armature acts as an artificial load to limit the motor speed to a safe value, as well as provide cooling airflow to the armature and field windings.

With the very low cost of semiconductor rectifiers, some applications that would have previously used a universal motor now use a pure DC motor, sometimes with a permanent magnet field.

AC Motors

In 1882, Nicola Tesla identified the rotating magnetic field principle, and pioneered the use of a rotary field of force to operate machines. He exploited the principle to design a unique two-phase induction motor in 1883. In 1885, Galileo Ferraris independently researched the concept. In 1888, Ferraris published his research in a paper to the Royal Academy of Sciences in Turin.

Introduction of Tesla's motor from 1888 onwards initiated what is sometimes referred to as the Second Industrial Revolution, making possible the efficient generation and long distance distribution of electrical energy using the alternating current transmission system, also of Tesla's invention (1888). Before the invention of the rotating magnetic field, motors operated by continually passing a conductor through a stationary magnetic field (as in homopolar motors). Tesla had suggested that the commutators from a machine could be removed and the device could operate on a rotary field of force. Professor Poeschel, his teacher, stated that would be akin to building a perpetual motion machine.

Components

A typical AC motor consists of two parts:

1. An outside stationary stator having coils supplied with AC current to produce a rotating magnetic field, and;

2. An inside rotor attached to the output shaft that is given a torque by the rotating field.

Torque Motors

A torque motor is a specialized form of induction motor which is capable of operating indefinitely at stall (with the rotor blocked from turning) without damage. In this mode, the motor will apply a steady stall torque to the load (hence the name). A common application of a torque motor would be the supply- and take-up reel motors in a tape drive. In this application, driven from a low voltage, the characteristics of these motors allow a relatively-constant light tension to be applied to the tape whether or not the capstan is feeding tape past the tape heads. Driven from a higher voltage, (and so delivering a higher torque), the torque motors can also achieve fast-forward and rewind operation without requiring any additional mechanics such as gears or clutches. In the computer world, torque motors are used with force feedback steering wheels.

Slip Ring

The slip ring or wound rotor motor is an induction machine where the rotor comprises a set of coils that are terminated in slip rings to which external impedances can be connected. The stator is the same as is used with a standard squirrel cage motor. By changing the impedance connected to the rotor circuit, the speed/current and speed/torque curves can be altered.

The slip ring motor is used primarily to start a high inertia load or a load that requires a very high starting torque across the full speed range. By correctly selecting the resistors used in the secondary resistance or slip ring starter, the motor is able to produce maximum torque at a relatively low current from zero speed to full speed. A secondary use of the slip ring motor is to provide a means of speed control.

Because the torque curve of the motor is effectively modified by the resistance connected to the rotor circuit, the speed of the motor can be altered. Increasing the value of resistance on the rotor circuit will move the speed of maximum torque down. If the resistance connected to the rotor is increased beyond the point where the maximum torque occurs at zero speed, the torque will be further reduced. When used with a load that has a torque curve that increases with speed, the motor will operate at the speed where the torque developed by the motor is equal to the load torque. Reducing the load will cause the motor to speed up, and increasing the load will cause the motor to slow down until the load and motor torque are equal. Operated in this manner, the slip losses are dissipated in the secondary resistors and can be very significant. The speed regulation is also very poor.

Stepper Motors

Closely related in design to three-phase AC synchronous motors are stepper motors, where an internal rotor containing permanent magnets or a large iron core with salient poles is controlled by a set of external magnets that are switched electronically. A stepper motor may also be thought of as a cross between a DC electric motor and a solenoid. As each coil is energized in turn, the rotor aligns itself with the magnetic field produced by the energized field winding. Unlike a synchronous motor, in its application, the motor may not rotate continuously; instead, it "steps" from one position to the next as field windings are energized and de-energized in sequence. Depending on the sequence, the rotor may turn forwards or backwards.

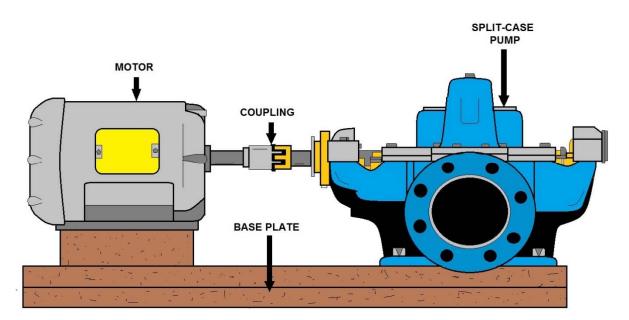
Simple stepper motor drivers entirely energize or entirely de-energize the field windings, leading the rotor to "cog" to a limited number of positions; more sophisticated drivers can proportionally control the power to the field windings, allowing the rotors to position between the cog points and thereby rotate extremely smoothly. Computer controlled stepper motors are one of the most versatile forms of positioning systems, particularly when part of a digital servo-controlled system.

Stepper motors can be rotated to a specific angle with ease, and hence stepper motors are used in pre-gigabyte era computer disk drives, where the precision they offered was adequate for the correct positioning of the read/write head of a hard disk drive. As drive density increased, the precision limitations of stepper motors made them obsolete for hard drives, thus newer hard disk drives use read/write head control systems based on voice coils. Stepper motors were up-scaled to be used in electric vehicles under the term SRM (switched reluctance machine).

Coupling Section

The pump coupling serves two main purposes:

- It couples or joins the two shafts together to transfer the rotation from motor to impeller.
- It compensates for small amounts of misalignment between the pump and the motor.


Remember that any coupling is a device in motion. If you have a 4-inch diameter coupling rotating at 1800 rpm, its outer surface is traveling about 20 mph. With that in mind, can you think of safety considerations?

There are three commonly used types of couplings: *Rigid, Flexible and V-belts.*

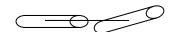
Rigid Coupling

Rigid couplings are most commonly used on vertically mounted pumps. The rigid coupling is usually specially keyed or constructed for joining the coupling to the motor shaft and the pump shaft. There are two types of rigid couplings: the flanged coupling, and the split coupling.

Flexible Coupling. The flexible coupling provides the ability to compensate for small shaft misalignments. Shafts should be aligned as close as possible, regardless. The greater the misalignment, the shorter the life of the coupling. Bearing wear and life are also affected by misalignment.

CLOSED COUPLED PUMP

323


Distribution 404 1St Edition

Alignment of Flexible and Rigid Couplings

Both flexible and rigid couplings must be carefully aligned before they are connected. Misalignment will cause excessive heat and vibration, as well as bearing wear. Usually, the noise from the coupling will warn you of shaft misalignment problems.

Three types of shaft alignment problems are shown in the pictures below:

ANGULAR MISALIGNMENT

ANGULAR AND PARALLEL PARALLEL MISALIGNMENT

Different couplings will require different alignment procedures. We will look at the general procedures for aligning shafts.

- 1. Place the coupling on each shaft.
- 2. Arrange the units so they appear to be aligned. (Place shims under the legs of one of the units to raise it.)
- 3. Check the run-out, or difference between the driver and driven unit, by rotating the shafts by hand.
- 4. Turn both units so that the maximum run-out is on top.

Now you can check the units for both parallel and angular alignment. Many techniques are used, such as: straight edge, needle deflection (dial indicators), calipers, tapered wedges, and laser alignment.

V-Belt Drive Couplings

V-belt drives connect the pump to the motor. A pulley is mounted on the pump and motor shaft. One or more belts are used to connect the two pulleys. Sometimes a separately mounted third pulley is used. This idler pulley is located off centerline between the two pulleys, just enough to allow tensioning of the belts by moving the idler pulley. An advantage of driving a pump with belts is that various speed ratios can be achieved between the motor and the pump.

Shaft Bearings

There are three types of bearings commonly used: ball bearings, roller bearings, and sleeve bearings. Regardless of the particular type of bearings used within a system--whether it is ball bearings, a sleeve bearing, or a roller bearing--the bearings are designed to carry the loads imposed on the shaft.

Bearings must be lubricated. Without proper lubrication, bearings will overheat and seize. Proper lubrication means using the correct type and the correct amount of lubrication. Similar to motor bearings, shaft bearings can be lubricated either by oil or by grease.

How can we prevent the water from leaking along the shaft?

A special seal is used to prevent liquid leaking out along the shaft. There are two types of seals commonly used:

- Packing seal
- Mechanical seal

Packing Seals

Should packing have leakage?

Leakage

During pump operation, a certain amount of leakage around the shafts and casings normally takes place.

This leakage must be controlled for two

reasons: (1) to prevent excessive fluid loss from the pump, and (2) to prevent air from entering the area where the pump suction pressure is below atmospheric pressure.

The amount of leakage that can occur without limiting pump efficiency determines the type of shaft sealing selected. Shaft sealing systems are found in every pump. They can vary from simple packing to complicated sealing systems.

Packing is the most common and oldest method of sealing. Leakage is checked by the compression of packing rings that causes the rings to deform and seal around the pump shaft and casing. The packing is lubricated by liquid moving through a lantern ring in the center of the packing. The sealing slows down the rate of leakage. It does not stop it completely, since a certain amount of leakage is necessary during operation. Mechanical seals are rapidly replacing conventional packing on centrifugal pumps.

Some of the reasons for the use of mechanical seals are as follows:

1. Leaking causes bearing failure by contaminating the oil with water. This is a major problem in engine-mounted water pumps.

2. Properly installed mechanical seals eliminate leakoff on idle (vertical) pumps. This design prevents the leak (water) from bypassing the water flinger and entering the lower bearings.

Leakoff causes two types of seal leakage:

- a. Water contamination of the engine lubrication oil.
- b. Loss of treated fresh water that causes scale buildup in the cooling system.

Centrifugal pumps are versatile and have many uses. This type of pump is commonly used to pump all types of water and wastewater flows, including thin sludge.

Lantern Rings

Lantern rings are used to supply clean water along the shaft. This helps to prevent grit and air from reaching the area. Another component is the slinger ring. The slinger ring is an important part of the pump because it is used to protect the bearings. Other materials can be used to prevent this burier.

Mechanical Seals

Mechanical seals are commonly used to reduce leakage around the pump shaft. There are many types of mechanical seals. The photograph below illustrates the basic components of a mechanical seal. Similar to the packing seal, clean water is fed at a pressure greater than that of the liquid being pumped. There is little or no leakage through the mechanical seal. The wearing surface must be kept extremely clean. Even fingerprints on the wearing surface can introduce enough dirt to cause problems.

What care should be taken when storing mechanical seals?

Mechanical Seals

Wear Rings

Not all pumps have wear rings. However, when they are included, they are usually replaceable. Wear rings can be located on the suctions side and head side of the volute. Wear rings could be made of the same metal but of different alloys. The wear ring on the head side is usually a harder alloy.

It's called a "WEAR RING" and what would be the purpose?

Distribution 404 1St Edition

Mechanical Seals

Mechanical seals are rapidly replacing conventional packing as the means of controlling leakage on rotary and positive-displacement pumps. Mechanical seals eliminate the problem of excessive stuffing box leakage, which causes failure of pump and motor bearings and motor windings.

Mechanical seals are ideal for pumps that operate in closed systems (such as fuel service and air-conditioning, chilled-water, and various cooling systems). They not only conserve the fluid being pumped, but also improve system operation.

The type of material used for the seal faces will depend upon the service of the pump. Most water service pumps use a carbon material for one of the seal faces and ceramic (tungsten carbide) for the other. When the seals wear out, they are simply replaced.

You should replace a mechanical seal whenever the seal is removed from the shaft for any reason, or whenever leakage causes undesirable effects on equipment or surrounding spaces. Do not touch a new seal on the sealing face because body acid and grease or dirt will cause the seal to pit prematurely and leak.

Mechanical shaft seals are positioned on the shaft by stub or step sleeves. Mechanical shaft seals must not be positioned by setscrews. Shaft sleeves are chamfered (beveled) on the outboard ends for easy mechanical seal mounting. Mechanical shaft seals serve to ensure that position liquid pressure is supplied to the seal faces under all conditions of operation. They also ensure adequate circulation of the liquid at the seal faces to minimize the deposit of foreign matter on the seal parts.

Finger is shown pointing to a Lantern Ring. This old school method of sealing a pump is still out there. Notice the packing on both sides of the ring. The packing joints need to be staggered and the purpose of this device is to allow air to the Stuffing Box.

Pump Troubleshooting Section

Some of the operating problems you may encounter with centrifugal pumps as an Operator, together with the probable causes, are discussed in the following paragraphs.

If a centrifugal pump **DOES NOT DELIVER ANY LIQUID**, the trouble may be caused by (1) insufficient priming; (2) insufficient speed of the pump; (3) excessive discharge pressure, such as might be caused by a partially closed valve or some other obstruction in the discharge line; (4) excessive suction lift; (5) clogged impeller passages; (6) the wrong direction of rotation (this may occur after motor overhaul); (7) clogged suction screen (if used); (8) ruptured suction line; or (9) loss of suction pressure.

If a centrifugal pump delivers some liquid but operates at **INSUFFICIENT CAPACITY**, the trouble may be caused by (1) air leakage into the suction line; (2) air leakage into the stuffing boxes in pumps operating at less than atmospheric pressure; (3) insufficient pump speed; (4) excessive suction lift; (5) insufficient liquid on the suction side; (6) clogged impeller passages; (7) excessive discharge pressure; or (8) mechanical defects, such as worn wearing rings, impellers, stuffing box packing, or sleeves.

If a pump **DOES NOT DEVELOP DESIGN DISCHARGE PRESSURE**, the trouble may be caused by (1) insufficient pump speed; (2) air or gas in the liquid being pumped; (3) mechanical defects, such as worn wearing rings, impellers, stuffing box packing, or sleeves; or (4) reversed rotation of the impeller (3-phase electric motor-driven pumps). If a pump **WORKS FOR A WHILE AND THEN FAILS TO DELIVER LIQUID**, the trouble may be caused by (1) air leakage into the suction line; (2) air leakage in the stuffing boxes; (3) clogged water seal passages; (4) insufficient liquid on the suction side; or (5) excessive heat in the liquid being pumped.

If a motor-driven centrifugal pump **DRAWS TOO MUCH POWER**, the trouble will probably be indicated by overheating of the motor. The basic causes may be (1) operation of the pump to excess capacity and insufficient discharge pressure; (2) too high viscosity or specific gravity of the liquid being pumped; or (3) misalignment, a bent shaft, excessively tight stuffing box packing, worn wearing rings, or other mechanical defects.

VIBRATION of a centrifugal pump is often caused by (1) misalignment; (2) a bent shaft; (3) a clogged, eroded, or otherwise unbalanced impeller; or (4) lack of rigidity in the foundation. Insufficient suction pressure may also cause vibration, as well as noisy operation and fluctuating discharge pressure, particularly in pumps that handle hot or volatile liquids. If the pump fails to build up pressure when the discharge valve is opened and the pump comes up to normal operating speed, proceed as follows:

1. Shut the pump discharge valve.

- 2. Secure the pump.
- 3. Open all valves in the pump suction line.

4. Prime the pump (*fill casing with the liquid being pumped*) and be sure that all air is expelled through the air cocks on the pump casing.

5. Restart the pump. If the pump is electrically driven, be sure the pump is rotating in the correct direction.

6. Open the discharge valve to "**load**" the pump. If the discharge pressure is not normal when the pump is up to its proper speed, the suction line may be clogged, or an impeller may be broken. It is also possible that air is being drawn into the suction line or into the casing. If any of these conditions exist, stop the pump and continue troubleshooting according to the technical manual for that unit.

Maintenance of Centrifugal Pumps

When properly installed, maintained and operated, centrifugal pumps are usually trouble-free. Some of the most common corrective maintenance actions that you may be required to perform are discussed in the following sections.

Repacking - Lubrication of the pump packing is extremely important. The quickest way to wear out the packing is to forget to open the water piping to the seals or stuffing boxes. If the packing is allowed to dry out, it will score the shaft. When operating a centrifugal pump, be sure there is always a slight trickle of water coming out of the stuffing box or seal. How often the packing in a centrifugal pump should be renewed depends on several factors, such as the type of pump, condition of the shaft sleeve, and hours in use.

To ensure the longest possible service from pump packing, make certain the shaft or sleeve is smooth when the packing is removed from a gland. Rapid wear of the packing will be caused by roughness of the shaft sleeve (or shaft where no sleeve is installed). If the shaft is rough, it should be sent to the machine shop for a finishing cut to smooth the surface. If it is very rough, or has deep ridges in it, it will

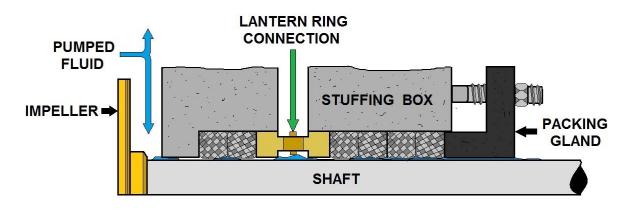
have to be renewed. It is absolutely necessary to use the correct packing. When replacing packing, be sure the packing fits uniformly around the stuffing box. If you have to flatten the packing with a hammer to make it fit, **YOU ARE NOT USING THE RIGHT SIZE.** Pack the box loosely, and set up the packing gland lightly. Allow a liberal leak-off for stuffing boxes that operate above atmospheric pressure.

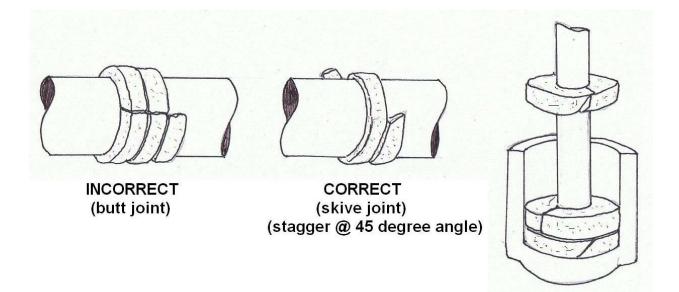
Next, start the pump. Let it operate for about 30 minutes before you adjust the packing gland for the desired amount of leak-off. This gives the packing time to run-in and swell. You may then begin to adjust the packing gland. Tighten the adjusting nuts one flat at a time. Wait about 30 minutes between adjustments. Be sure to tighten the same amount on both adjusting nuts. If you pull up the packing gland unevenly (or cocked), it will cause the packing to overheat and score the shaft sleeves. Once you have the desired leak-off, check it regularly to make certain that sufficient flow is maintained.

Mechanical Seals

Mechanical seals are rapidly replacing conventional packing as the means of controlling leakage on rotary and positive-displacement pumps. Mechanical seals eliminate the problem of excessive stuffing box leakage, which causes failure of pump and motor bearings and motor windings. Mechanical seals are ideal for pumps that operate in closed systems (such as fuel service and air-conditioning, chilled-water, and various cooling systems). They not only conserve the fluid being pumped, but also improve system operation. The type of material used for the seal faces will depend upon the service of the pump. Most water service pumps use a carbon material for one of the seal faces and ceramic (tungsten carbide) for the other. When the seals wear out, they are simply replaced.

You should replace a mechanical seal whenever the seal is removed from the shaft for any reason, or whenever leakage causes undesirable effects on equipment or surrounding spaces.




Do not touch a new seal on the sealing face because body acid and grease or dirt will cause the seal to pit prematurely and leak.

Mechanical shaft seals are positioned on the shaft by stub or step sleeves. Mechanical shaft seals must not be positioned by setscrews. Shaft sleeves are chamfered (beveled) on outboard ends for easy mechanical seal mounting.

Mechanical shaft seals serve to ensure that liquid pressure is supplied to the seal faces under all conditions of operation. They also ensure adequate circulation of the liquid at the seal faces to minimize the deposit of foreign matter on the seal parts.

LANTERN RING BETWEEN PACKING FOR COOL / CLEAN FLUID BARRIER

Troubleshooting Table for Well/Pump Problems

- 1. Well pump will not start.
- 2. Well pump will not shut off.
- 3. Well pump starts and stops too frequently (excessive cycle rate).
- 4. Sand sediment is present in the water.
- 5. Well pump operates with reduced flow.
- 6. Well house flooded without recent precipitation.
- 7. Red or black water complaints.
- 8. Raw water appears turbid or a light tan color following rainfall.
- 9. Coliform tests are positive.


Possible Causes

- 1A. Circuit breaker or overload relay tripped.
- 1B. Fuse(s) burned out.
- 1C. No power to switch box.
- 1D. Short, broken or loose wire.
- 1E. Low voltage.
- 1F. Defective motor.
- 1G. Defective pressure switch.
- 2A. Defective pressure switch.
- 2B. Cut-off pressure setting too high.
- 2C. Float switch or pressure transducer not functioning.
- 3A. Pressure switch settings too close.
- 3B. Pump foot valve leaking.
- 3C. Water-logged hydropneumatic tank.
- 4A. Problems with well screen or gravel envelope.
- 5A. Valve on discharge partially closed or line clogged.
- 5B. Well is over-pumped.
- 5C. Well screen clogged.
- 6A. Check valve not operating properly.
- 6B. Leakage occurring in discharge piping or valves.
- 7A. Water contains excessive iron (red brown) and/or manganese (black water).
- 7B. Complainant's hot water needs maintenance.
- 8A. Surface water entering or influencing well.
- 9A. Sample is invalid.
- 9B. Sanitary protection of well has been breached.

Possible Solutions

- 1A. Reset breaker or manual overload relay.
- 1B. Check for cause and correct, replace fuse(s).
- 1C. Check incoming power supply. Contact power company.
- 1D. Check for shorts and correct, tighten terminals, replace broken wires.
- 1E. Check incoming line voltage. Contact power company if low.
- 1F. Contact electrical contractor.
- 1G. Check voltage of incoming electric supply with pressure switch closed. Contact power company if voltage low. Perform maintenance on switch if voltage normal.

- 2A. Check switch for proper operation. Replace switch.
- 2B. Adjust setting.
- 2C. Check and replace components or cable as needed.
- 3A. Adjust settings.

3B. Check for backflow. Contact well contractor.

3C. Check air volume. Add air if needed. If persistent, check air compressor, relief valve, air lines and connections, and repair if needed.

4A. Contact well contractor.

5A. Open valve, unclog discharge line.

5B. Check static water level and compare to past readings. If significantly lower, notify well contractor.

5C. Contact well contractor.

6A. Repair or replace check valve.

6B. Inspect and repair/replace as necessary.

7A. Test for iron and manganese at well. If levels exceed 0.3 mg/L iron or 0.005mg/L

manganese, contact regulatory agency, TA provider or water treatment contractor.

7B. Check hot water heater and flush if needed.

8A. Check well for openings that allow surface water to enter. Check area for sinkholes, fractures, or other physical evidence of surface water intrusion. Check water turbidity. Notify regulatory agency if >0.5 NTU. Check raw water for coliform bacteria. Notify regulatory agency immediately if positive.

9A. Check sampling technique, sampling container, and sampling location and tap.

9B. Notify regulatory agency immediately and re-sample for re-testing.

This brush is used to dislodge debris inside well casing. Just a big toilet cleaning brush.

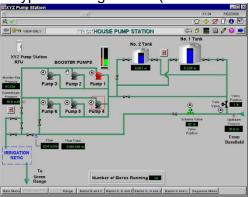
SCADA

What is SCADA?

SCADA stands for Supervisory Control and Data Acquisition. As the name indicates, it is not a full control system, but rather focuses on the supervisory level. As such, it is a purely software package that is positioned on top of hardware to which it is interfaced, in general via Programmable Logic Controllers (PLCs), or other commercial hardware modules. Contemporary SCADA systems exhibit predominantly open-loop control characteristics and utilize predominantly long distance communications, although some elements of closed-loop control and/or short distance communications may also be present. Systems similar to SCADA systems are routinely seen in treatment plants and distribution systems. These are often referred to as Distributed Control Systems (DCS). They have similar functions to SCADA systems, but the field data gathering or control units are usually located within a more confined area. Communications may be via a local area network (LAN), and will normally be reliable and high speed. A DCS system usually employs significant amounts of closed loop control.

What is Data Acquisition?

Data acquisition refers to the method used to access and control information or data from the equipment being controlled and monitored. The data accessed are then forwarded onto a telemetry system ready for transfer to the different sites. They can be analog and digital information gathered by sensors, such as flowmeter, ammeter, etc. It can also be data to control equipment such as actuators, relays, valves, motors, etc.


So Why or Where Would You Use SCADA?

SCADA can be used to monitor and control plant or equipment. The control may be automatic, or initiated by operator commands. The data acquisition is accomplished firstly by the RTU's (remote Terminal Units) scanning the field inputs connected to the RTU (RTU may also be called a PLC - programmable logic controller). This is usually at a fast rate. The central host will scan the RTU's (usually at a slower rate.)

The data is processed to detect alarm conditions, and if an alarm is present, it will be displayed on special alarm lists. Data can be of three main types. Analogue data (i.e. real

numbers) will be trended (i.e. placed in graphs). Digital data (on/off) may have alarms attached to one state or the other. Pulse data (e.g. counting revolutions of a meter) is normally accumulated or counted.

The primary interface to the operator is a graphical display (mimic) usually via a PC Screen which shows a representation of the plant or equipment in graphical form. Live data is shown as graphical shapes (foreground) over a static background. As the data changes in the field, the foreground is updated. A

valve may be shown as open or closed. Analog data can be shown either as a number, or graphically. The system may have many such displays, and the operator can select from the relevant ones at any time.

Backflow/Cross-Connection Section

A Certified Backflow Tester examining a Double Check Detector Check fire line assembly. Notice the water meter which will detect any unauthorized water usage that is being used in the fire line. Yes, people can steal water through a fireline. I personally would never drink water out of a fireline but some people will do just about anything just to save a small amount of money.

Recent Backflow Situations

Oregon 1993

Water from a drainage pond, used for lawn irrigation, is pumped into the potable water supply of a housing development.

California 1994

A defective backflow device in the water system of the County Courthouse apparently caused sodium nitrate contamination that sent 19 people to the hospital.

New York 1994

A 8-inch reduced pressure principle backflow prevention assembly in the basement of a hospital discharged under backpressure conditions, dumping 100,000 gallons of water into the basement.

Nebraska 1994

While working on a chiller unit of an air conditioning system at a nursing home, a hole in the coil apparently allowed Freon to enter the circulating water and from there into the city water system.

California 1994

The blue tinted water in a pond at an amusement park backflowed into the city water system and caused colored water to flow from homeowner's faucets.

California 1994

A film company shooting a commercial for television accidentally introduced a chemical into the potable water system.

lowa 1994

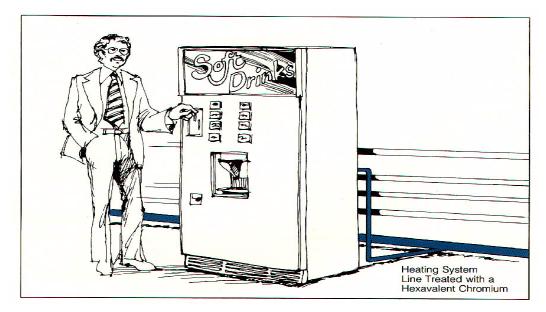
A backflow of water from the Capitol Building chilled water system contaminated potable water with Freon.

Indiana 1994

A water main break caused a drop in water pressure, allowing anti-freeze from an air conditioning unit to backsiphon into the potable water supply.

Washington 1994

An Ethylene Glycol cooling system was illegally connected to the domestic water supply at a veterinarian hospital.


Ohio 1994

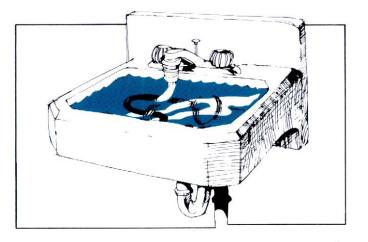
An ice machine connected to a sewer sickened dozens of people attending a convention.

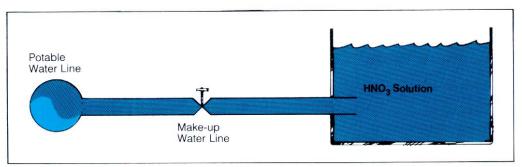
Cross-Connection Terms

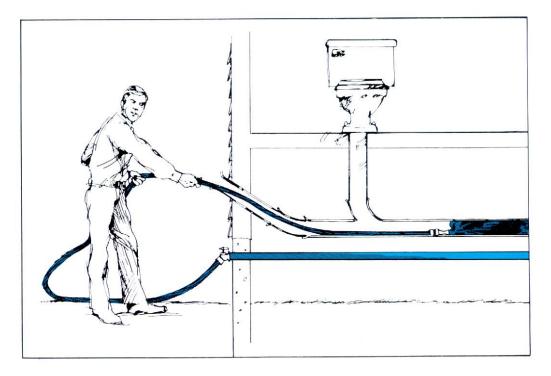
Cross-connection

A cross-connection is any temporary or permanent connection between a public water system or consumer's potable (i.e., drinking) water system and any source or system containing nonpotable water or other substances. An example is the piping between a public water system or consumer's potable water system and an auxiliary water system, cooling system, or irrigation system.

CONTAMINANT: Any natural or man-made physical, chemical, biological, or radiological substance or matter in water, which is at a level that may have an adverse effect on public health, and which is known or anticipated to occur in public water systems.

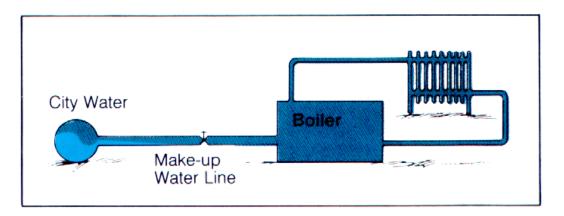

CONTAMINATION: To make something bad. To pollute or infect something. To reduce the quality of the potable (drinking) water and create an actual hazard to the water supply by poisoning or through spread of diseases.


CORROSION: The removal of metal from copper, other metal surfaces and concrete surfaces in a destructive manner. Corrosion is caused by improperly balanced water or excessive water velocity through piping or heat exchangers.


CROSS-CONNECTION: A physical connection between a public water system and any source of water or other substance that may lead to contamination of the water provided by the public water system through backflow. This also might be the source of an organic substance causing taste and odor problems in a water distribution system.

CROSS-CONTAMINATION: The mixing of two unlike qualities of water. For example, the mixing of good water with a polluting substance like a chemical substance.

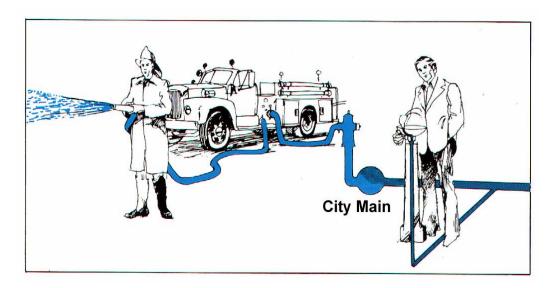
Common Cross-Connections


Distribution 404 1St Edition

Backflow

Backflow is the undesirable reversal of flow of nonpotable water or other substances through a cross-connection and into the piping of a public water system or consumer's potable water system. There are two types of backflow--**backpressure** and **backsiphonage**.

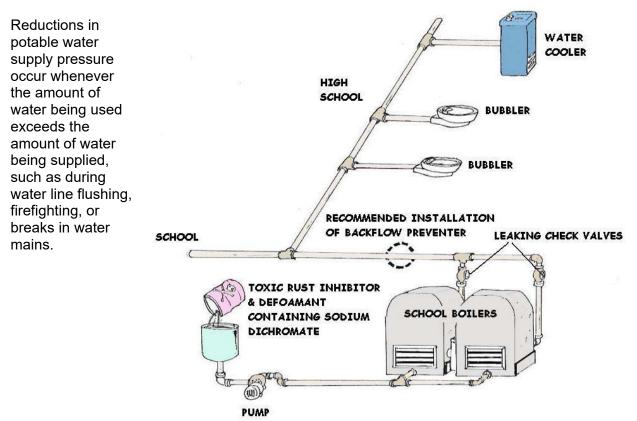
Backsiphonage

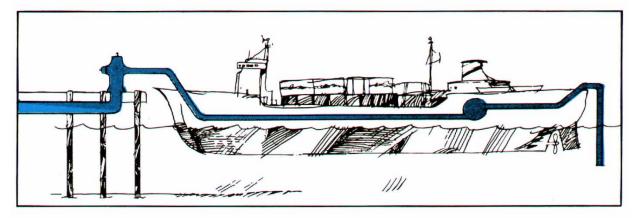


Backpressure Example

Distribution 404 1St Edition

Backsiphonage


Backsiphonage is backflow caused by a negative pressure (i.e., a vacuum or partial vacuum) in a public water system or consumer's potable water system. The effect is similar to drinking water through a straw. Backsiphonage can occur when there is a stoppage of water supply due to nearby firefighting, a break in a water main, etc. Hoses are the greatest source of backsiphonage problems.


Backpressure

Backpressure is backflow caused by a downstream pressure that is greater than the upstream or supply pressure in a public water system or consumer's potable water system. Backpressure (i.e., downstream pressure that is greater than the potable water supply pressure) can result from an increase in downstream pressure, a reduction in the potable water supply pressure, or a combination of both. Increases in downstream pressure can be created by pumps, temperature increases in boilers, elevation, etc.

Backpressure example:

Booster pumps, pressure vessels

Backflow Review Statements

Backflow Condition: A continuous positive pressure in a distribution system is essential for preventing a backflow condition or event.

Backflow or Cross-connection Failure: What might be the source of an organic substance causing taste and odor problems in a water distribution system?

Backflow Prevention: To stop or prevent the occurrence of, the unnatural act of reversing the normal direction of the flow of liquid, gases, or solid substances back in to the public potable (drinking) water supply. See Cross-connection control.

Backflow: Minimum water pressure must be maintained to ensure adequate customer service during peak flow periods. However minimum positive pressure must be maintained in mains to protect against backflow or backsiphonage from cross-connections.

Backflow: Name the most common *CAUSE* for public water supply contamination. Backflow or cross-connection. To reverse the natural and normal directional flow of a liquid, gases, or solid substances back into the public potable (drinking) water supply. This is normally an undesirable effect.

Backsiphonage Backflow: What does a backsiphonage condition usually cause? Reduced pressure or negative pressure on the service or supply side.

Backflow: What does a double check valve backflow assembly provide effective protection from? Both backpressure and backsiphonage of pollution only.

Backflow: What is equipment that utilizes water for cooling, lubrication, washing or as a solvent always susceptible to? A cross-connection.

Backflow: What is the definition of '*backflow*'? A reverse flow condition that causes water or mixtures of water and other liquids, gases, or substances to flow back into the distribution system.

Backflow: What is the difference between a reduced pressure principle backflow device and a double check backflow device? The RP has a relief valve.

Backflow: What is the maximum time period between having a backflow device tested by a certified backflow tester? 1 year.

Backflow: What must an operator ensure when installing a pressure vacuum breaker backflow device? It must be at least 12 inches above the highest downstream outlet.

Backflow Responsibility

The Public Water Purveyor

The primary responsibility of the water purveyor is to develop and maintain a program to prevent or control contamination from water sources of lesser quality or other contamination sources from entering into the public water system. Under the provisions of the Safe Drinking Water Act of 1974 (SDWA) and current Groundwater Protection rules, the Federal Government, through the EPA, (Environmental Protection Agency), set national standards of safe drinking water. The separate states are responsible for the enforcement of these standards as well as the supervision of public water systems and the sources of drinking water. The water purveyor or supplier is held responsible for compliance to the provisions of the Safe Drinking Water Act, to provide a warranty that water quality by their operation is in conformance with EPA standards at the source, and is delivered to the customer without the quality being compromised as its delivery through the distribution system.

This is specified in the Code of Federal Regulations (Volume 40, Paragraph141.2 Section c)": Maximum contaminant level means the permissible level of a contaminant in water which is delivered to the free flowing outlet of the ultimate user of a public water system, except in the case of turbidity where the maximum permissible level is measured at the point of entry (**POE**) to the distribution system. Contaminants added to the water under circumstances controlled by the user, except those resulting from corrosion of piping and plumbing caused by water quality, are excluded from this definition.

The Water Consumer

Has the responsibility to prevent contaminants from entering into the public water system by way of their individual plumbing system, and retain the expenses of installation, maintenance, and testing of the approved backflow prevention assemblies installed on their individual water service line.

The Certified General Backflow Tester

Has the responsibility to test, maintain, inspect, repair, and report/notify on approved backflow prevention assemblies as authorized by the persons that have jurisdiction over those assemblies.

Why do water suppliers need to control cross-connections and protect their public water systems against backflow?

Backflow into a public water system can pollute or contaminate the water in that system (i.e., backflow into a public water system can make the water in that system unusable or unsafe to drink), and each water supplier has a responsibility to provide water that is usable and safe to drink under all foreseeable circumstances.

Furthermore, consumers generally have absolute faith that water delivered to them through a public water system is always safe to drink. For these reasons, each water supplier must take reasonable precautions to protect its public water system against backflow.

What should water suppliers do to control cross-connections and protect their public water systems against backflow?

Water suppliers usually do not have the authority or capability to repeatedly inspect every consumer's premises for cross-connections and backflow protection. Alternatively, each water supplier should ensure that a proper backflow preventer is installed and maintained at the water service connection to each system or premises that poses a significant hazard to the public water system.

Generally, this would include the water service connection to each dedicated fire protection system or irrigation piping system and the water service connection to each of the following types of premises: (1) premises with an auxiliary or reclaimed water system; (2) industrial, medical, laboratory, marine or other facilities where objectionable substances are handled in a way that could cause pollution or contamination of the public water system; (3) premises exempt from the State Plumbing Code and premises where an internal backflow preventer required under the State Plumbing Code is not properly installed or maintained; (4) classified or restricted facilities; and (5) tall buildings. Each water supplier should also ensure that a proper backflow preventer is installed and maintained at each water loading station owned or operated by the water supplier.

Degrees of Hazards (HAZARD RATINGS) High or Contaminant and Low or Pollutional

Two Classification of Protection

Containment Protection or Secondary protection

This approach utilizes a minimum of backflow devices and isolates the customer from the water main. It virtually insulates the customer from potentially contaminating or polluting the public water supply system. Containment protection does not protect the customer within his own building; it does effectively remove him from the possibility public water supply contamination. Containment protection is usually a backflow prevention device as close as possible to the customer's water meter and is often referred to as "Secondary Protection". This type of backflow protection is excellent for water purveyors and is the least expense to the water customer but does not protect the occupants of the building.

Internal Protection or Primary protection

The water purveyor may elect to protect his customers on a domestic internal protective basis and/or "*fixture outlet protective basis*." In this case, cross-connection-control devices (backflow preventors) are placed at internal hazard locations and at all locations where cross-connections may exist including the *"last free flowing outlet."* This type of protection entails extensive cross-connection survey work usually performed by a plumbing inspector or a Cross-Connection Specialist. In a large water supply system, internal protection in itself is virtually impossible to achieve and police due to the quantity of systems involved, the complexity of the plumbing systems inherent in many industrial sites, and the fact that many plumbing changes are made within commercial establishments that do not get the plumbing department's approval or require that the water department inspects when the work is completed. Internal protection is the most expensive and best type of backflow protection for both the water purveyor and the customer alike, but it is very difficult to maintain. In order for the purveyor to provide maximum protection of the water distribution system, consideration should be given to requiring the owner of the premises to provide, at his own expense, adequate proof that his internal water supply system complies with the local or state plumbing code(s).

Types of Backflow Prevention Methods and Assemblies

Approved Air Gap Separation (AG)

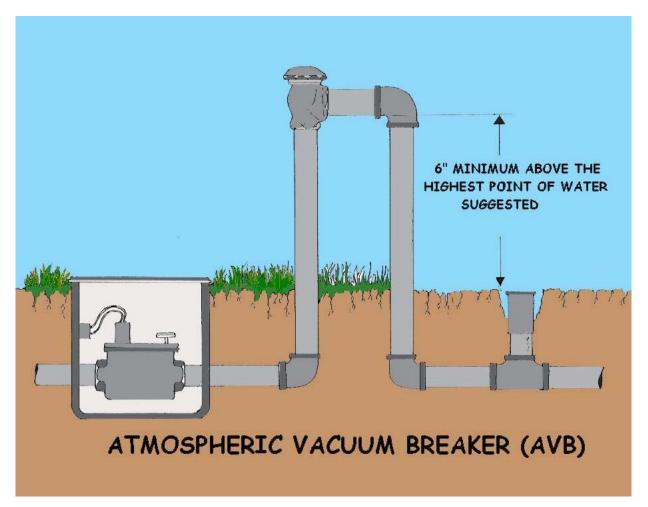
An approved air gap is a physical separation between the free flowing discharge end of a potable water supply pipeline, and the overflow rim of an open or non-pressure receiving vessel. These separations must be vertically orientated a distance of at least twice the inside diameter of the inlet pipe, but never less than one inch. An obstruction around or near an air gap may restrict the flow of air into the outlet pipe and nullify the effectiveness of the air gap to prevent backsiphonage.

When the air flow is restricted, such as the case of an air gap located near a wall, the air gap separation must be increased. Also, within a building where the air pressure is artificially increased above atmospheric, such as a sports stadium with a flexible roof kept in place by air blowers, the air gap separation must be increased.

What should a potable water line be equipped with when connected to a chemical feeder for fluoride? *Air gap or vacuum breaker.*

AIR GAP SUPPLY VALVE TANK

Air Gap Separation: A physical separation space that is present between the discharge vessel and the receiving vessel, for an example, a kitchen faucet.

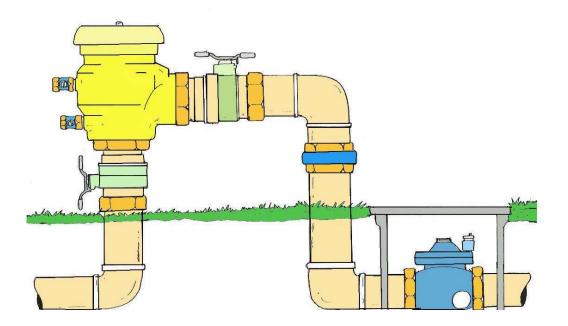

Which of these ice machine drains are approved air gaps?

Atmospheric Vacuum Breaker (AVB)

The Atmospheric Vacuum Breaker contains a float check (poppet), a check seat, and an air inlet port. The device allows air to enter the water line when the line pressure is reduced to a gauge pressure of zero or below. The air inlet valve is not internally loaded. To prevent the air inlet from sticking closed, the device must not be installed on the pressure side of a shutoff valve, or wherever it may be under constant pressure more than 12 hours during a 24 hour period.

Atmospheric vacuum breakers are designed to prevent backflow caused by backsiphonage only from low health hazards. Atmospheric Vacuum Breaker Uses: Irrigation systems, commercial dishwasher and laundry equipment, chemical tanks and laboratory sinks (backsiphonage only, non-pressurized connections)

(Note: hazard relates to the water purveyor's risk assessment; plumbing codes may allow AVB for high hazard fixture isolation).



Pressure Vacuum Breaker Assembly (PVB)

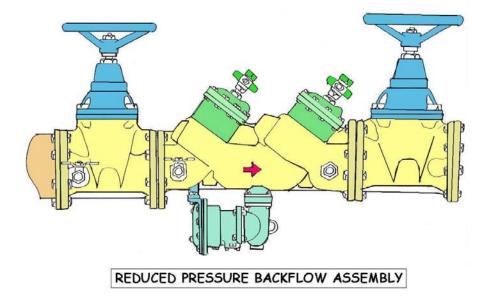
The Pressure Vacuum Breaker Assembly consists of a spring loaded check valve, an independently operating air inlet valve, two resilient seated shutoff valves, and two properly located resilient seated test cocks. It shall be installed as a unit as shipped by the manufacturer. The air inlet valve is internally loaded to the open position, normally by means of a spring, allowing installation of the assembly on the pressure side of a shutoff valve.

PRESSSURE VACUUM BREAKER ASSEMBLY

Distribution 404 1St Edition

Double Check Valve Assembly (DC)

The Double Check Valve Assembly consists of two internally loaded check valves, either spring loaded or internally weighted, two resilient seated full ported shutoff valves, and four properly located resilient seated test cocks. This assembly shall be installed as a unit as shipped by the manufacturer. The double check valve assembly is designed to prevent backflow caused by backpressure and backsiphonage from low health hazards.



Reduced Pressure Backflow Assembly (RP)

The reduced pressure principle backflow assembly consists of two independently acting spring loaded check valves separated by a spring loaded differential pressure relief valve, two resilient seated full ported shutoff valves, and four properly located resilient seated test cocks. This assembly shall be installed as a unit shipped by the manufacturer. During normal operation, the pressure between the two check valves, referred to as the zone of reduced pressure, is maintained at a lower pressure than the supply pressure. If either check valve leaks, the differential pressure relief valve maintains a differential pressure of at least two (2) psi between the supply pressure, and the zone between the two check valves, by discharging water to atmosphere. The reduced pressure backflow assembly is designed to prevent backflow caused by backpressure and backsiphonage from low to high health hazards.

Why do Backflow Preventers Have to be Tested Periodically?

Mechanical backflow preventers have internal seals, springs, and moving parts that are subject to fouling, wear, or fatigue. Also, mechanical backflow preventers and air gaps can be bypassed. Therefore, all backflow preventers have to be tested periodically to ensure that they are functioning properly. A visual check of air gaps is sufficient, but mechanical backflow preventers have to be tested with properly calibrated gauge equipment.

Backflow prevention devices must be tested annually to ensure that they work properly. It is usually the responsibility of the property owner to have this test done and to make sure that a copy of the test report is sent to the Public Works Department or Water Purveyor.

If a device is not tested annually, Public Works or the Water Purveyor will usually notify the property owner, asking them to comply. If the property owner does not voluntarily test their device, the City may be forced to turn off water service to that property.

State law requires the City or water provider to discontinue water service until testing is complete.

Troubleshooting Table for Cross-Connection Problems

- 1. Sudsy or soapy water.
- 3. Positive Coliform.
- 3. Coloring in the water (unusual colors such as bright blue).
- 4. Organic odors.

Possible Causes

1A. Hose connected to an unprotected hose bib with the other end in a bucket or sink of soapy water.

2A. Hose connected to an unprotected hose bib with the other end lying on the floor of the pump house, on the ground in the car wash area, in the wading or swimming pool or other nonpotable liquid.

2B. Unprotected potable water line feeding a lawn irrigation system.

2C. Submerged inlet, e.g. faucet submerged.

3A. Backflow from toilet.

4A. Handheld pesticide/herbicide applicator attached to unprotected hose.

Possible Solutions

1A. Equip all hose bibs with an AVB.

- 2A. Equip all hose bibs with an AVB.
- 2B. Install a backflow preventer on the potable water line feeding the irrigation system.
- 2C. Relocate faucet above flood level.

3A. Get help. Bring in someone who understands cross connections to evaluate the system.

4A. Don't use these devices.

BACKFLOW AWARENESS EXERCISE

Define the term BACKFLOW?

Define the term BACKPRESSURE?

Define the term BACKSIPHONAGE?

Why is backflow a concern?

5. Do you believe backflow is a reasonable concern to you? Why?

When should a water supplier cause a backflow-prevention assembly to be installed?

Define the following abbreviations:

AG

RP

PVB

DC

What does your State use for a reference or standard for determining what type of backflow assembly can be used? Please provide the name/title or reference of this Rule or Regulation.

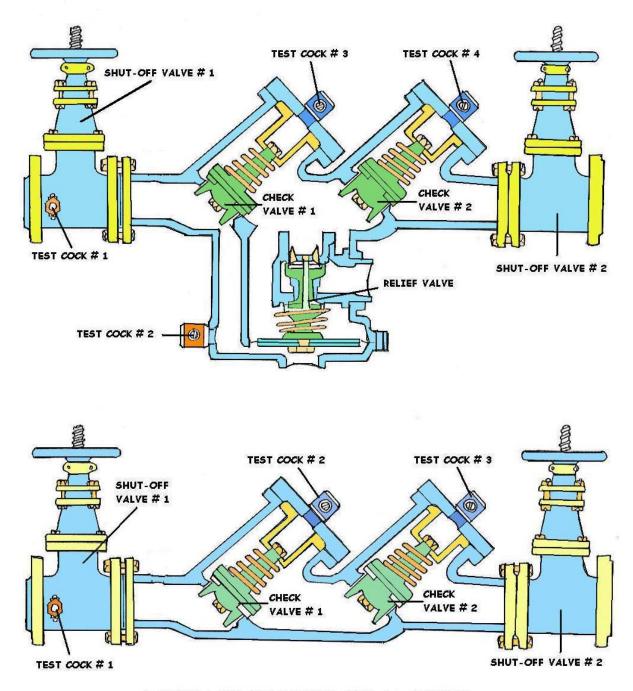
What State agency is responsible for backflow protection?

Are single family residences in your State required to have a backflow assembly?

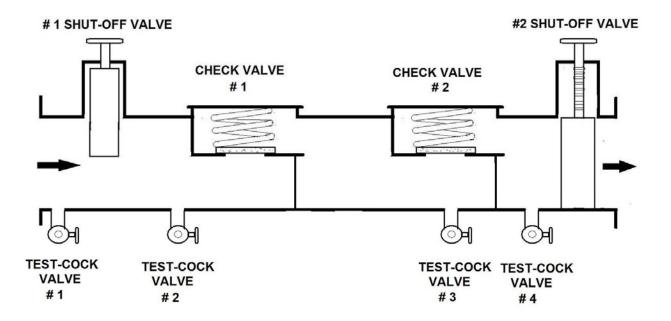
What is the standard or description for an Air Gap?

Give one example of an Air Gap that you have seen?

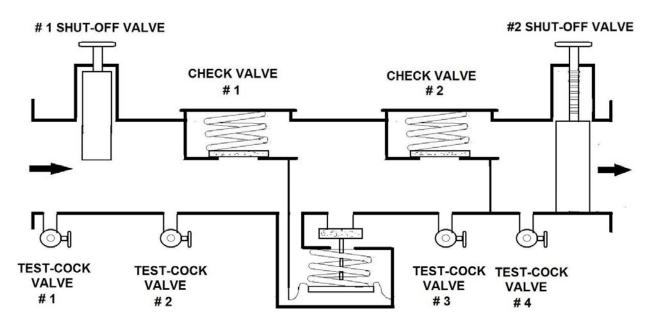
Give two examples of how a PVB can be used?

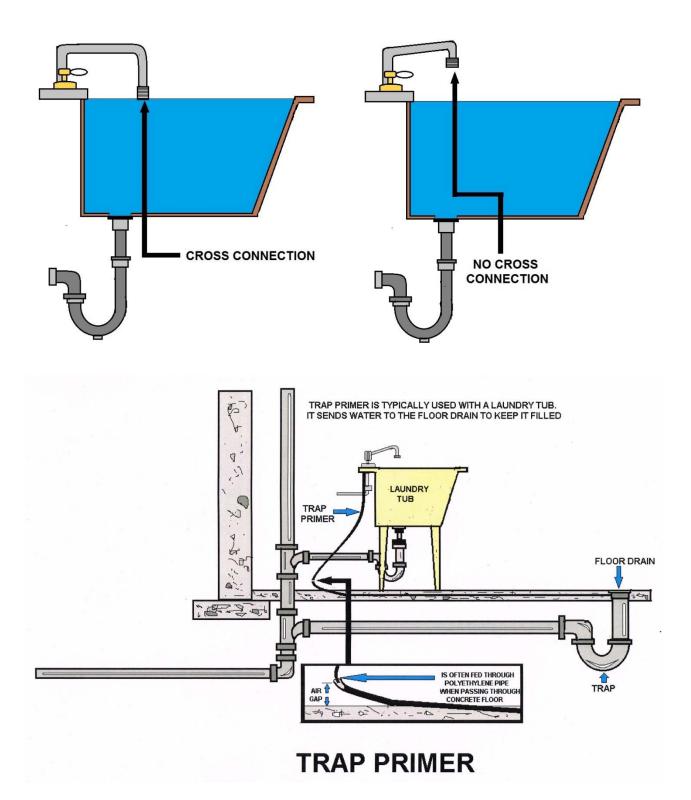

Give one example of a backflow prevention assembly, manufactures name, model number, and type of assembly.

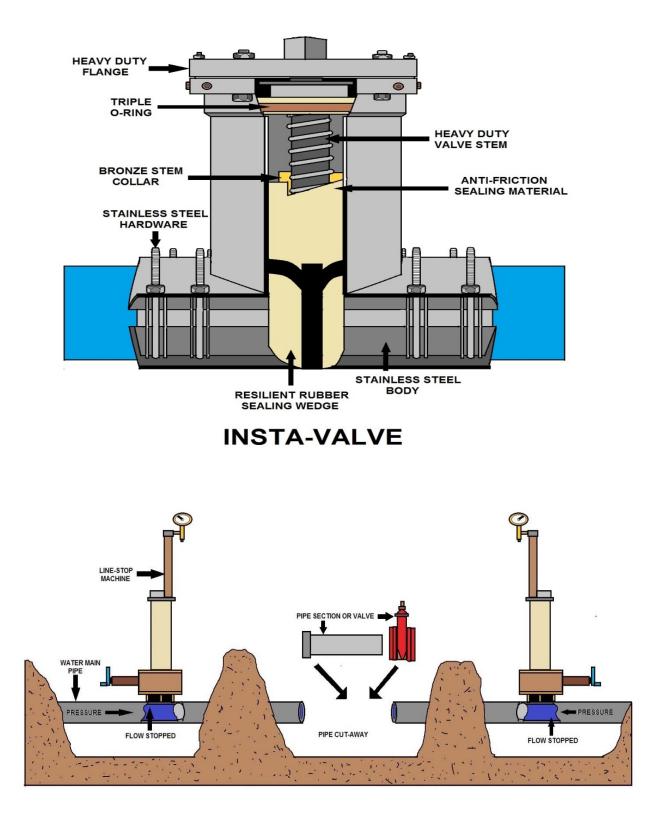
18. Explain Pascal's Law?


19. Explain Bernoulli's Principle?

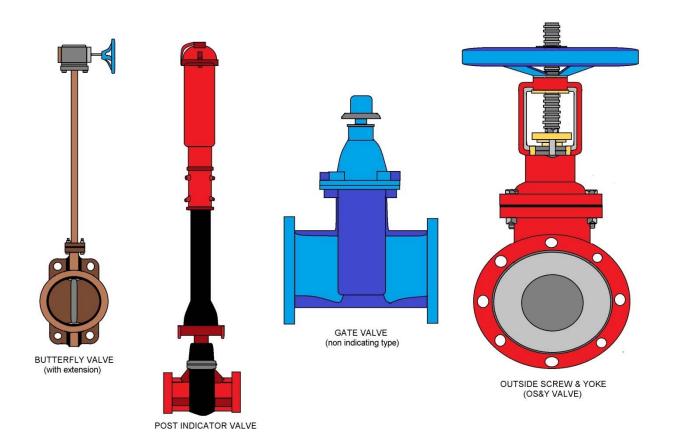
20. Explain in detail a backflow/cross-connection occurrence. If you are unfamiliar with a backflow/cross-connection occurrence, please use the library or the Internet and you will be able to find several occurrences. We would prefer an actual report of a backflow occurrence that you know of or have seen.



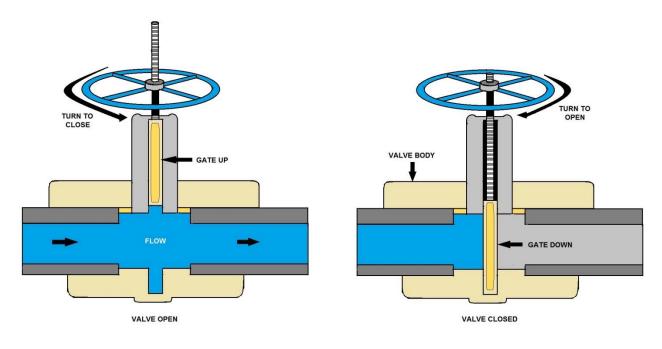

DOUBLE-CHECK BACKFLOW ASSEMBLY

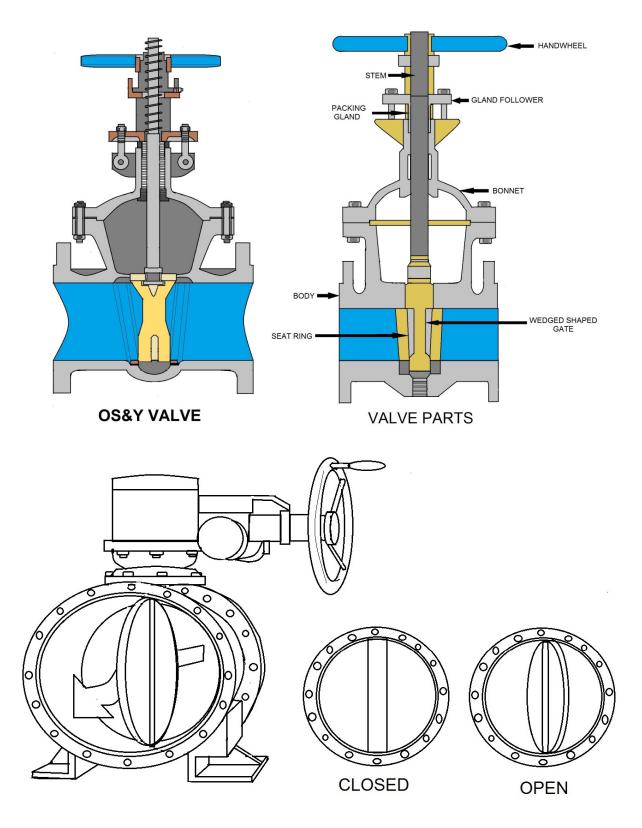


DOUBLE - CHECK VALVE

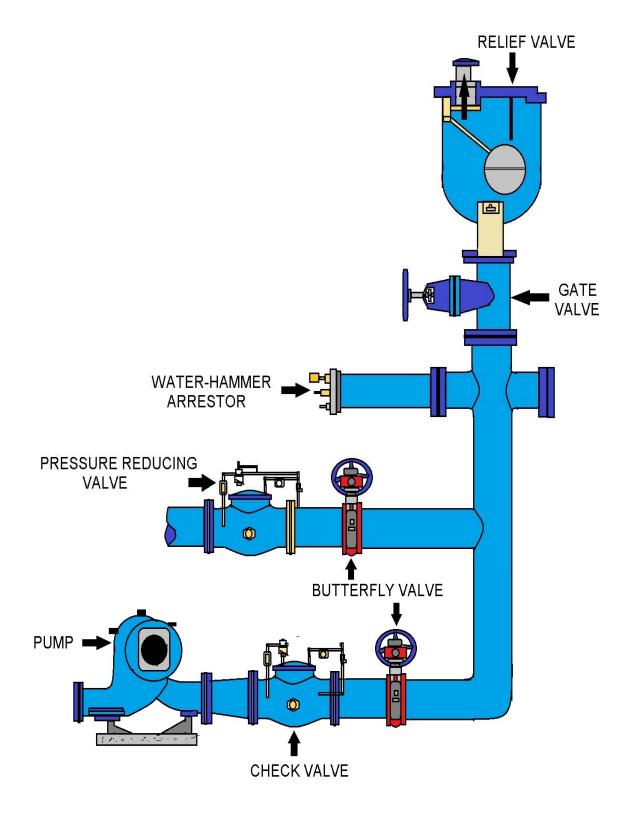


REDUCED PRESSURE ASSEMBLY

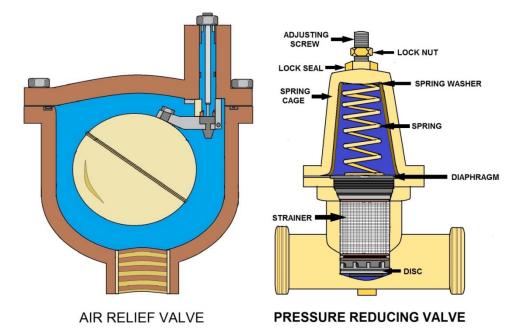


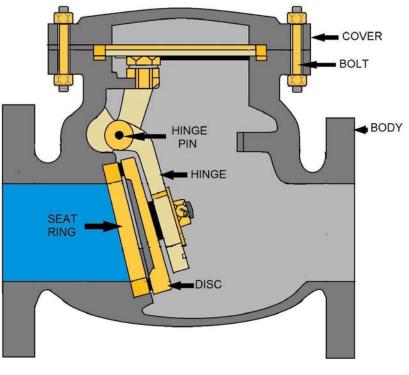

INSERTION VALVE

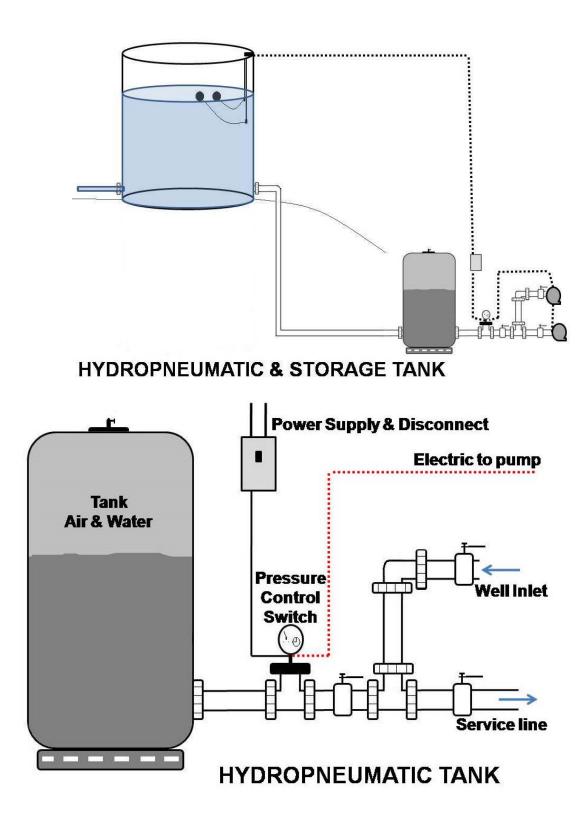
TYPES OF VALVES

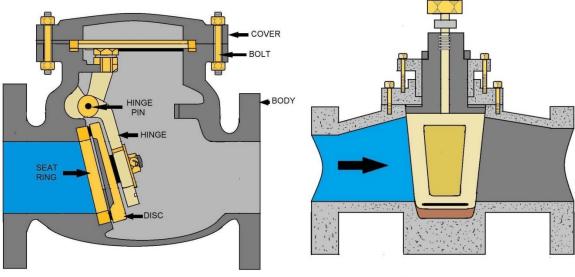


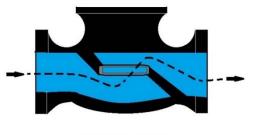
OS&Y VALVE

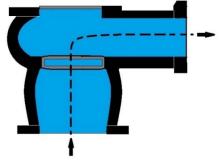

BUTTERFLY VALVE


Distribution 404 1St Edition

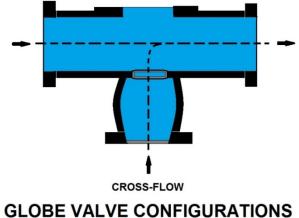

AIR RELIEF VALVE INSTALLATION

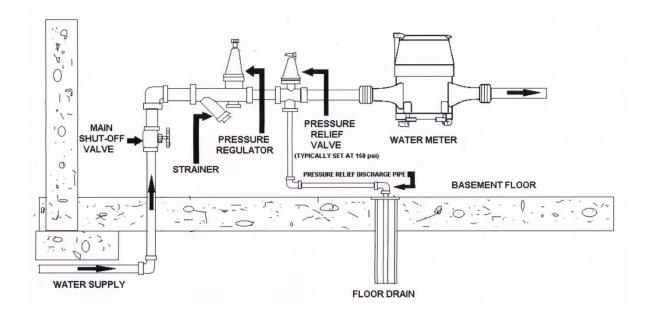

Distribution 404 1St Edition

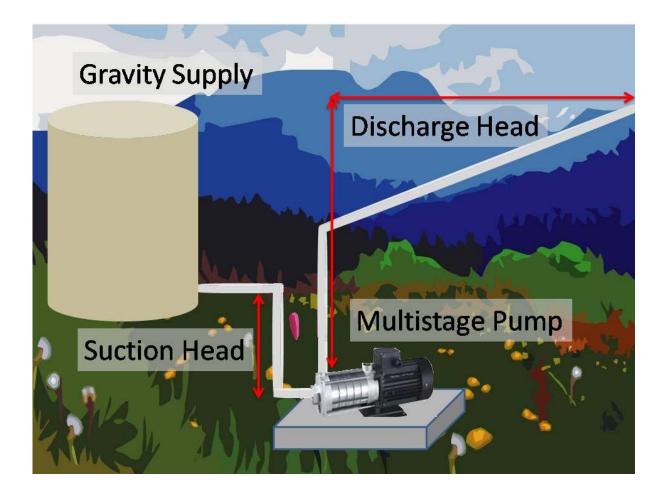

CHECK VALVE



CHECK VALVE


PLUG VALVE




STRAIGHT-FLOW

ANGLE-FLOW

Water Distribution Section

A water service worker installing a new copper water service line on an asbestos cement water main. Notice the bronze saddle with a corporation stop, a compression type fitting and a locking nut to secure the copper pipe to the corp. Bottom photo, the saw blade hole saw type tapping machine which was used to tap the main for the new service. This was completed with the water main under pressure so that other customers on the main did not have their water service disrupted due to the new service.

Distribution 404 1St Edition

Notice the corrosion inside this cast iron main.

This corrosion is caused by chemical changes produced by electricity or electrolysis. We call this type of corrosion "tuberculation". It is a protective crust of corrosion products that have built up over a pit caused by the loss of metal due to corrosion or electrolysis. This type of corrosion will decrease the C-Factor (friction loss) and the carrying capacity in a pipe. Crenothrix bacteria or Red-Iron bacteria will live and thrive in the bioslime in this type of tuberculation. Now, for dealing with this bacterium, there are two methods: 1) the fast method, super chlorinate and flush forever. Or, 2) replace the line with a nice and new plastic water main. It is up to your supervisor, but remember the nasty bacteria in the water. No one that knows about it would ever drink water from the house service. Biofilms are the result of a complex interaction among microorganisms. The organisms form microcolonies and secrete extracellular material that makes them highly resistant to biocides. Nasty for sure!

Water System Design and Valves

System design depends on the area where you live. You may be a flatlander, like in Texas, and the services could be spread out for miles. You may live in the Rocky Mountain area and have many fluctuating elevations. Some areas may only serve residents on a part-time basis and water will sit for long periods of time, while other areas may have a combination of peaks and valleys with short and long distances of service. Before you design the system you need to ask yourself some basic questions.

What is the source of water? What is the population? What kind of storage will I need for high demand and emergencies? How will the pressure be maintained?

System Elements

The elements of a water distribution system include: distribution mains, arterial mains, storage reservoirs, and system accessories. These elements and accessories are described as follows:

DISTRIBUTION MAINS Distribution mains are the pipelines that make up the distribution system. Their function is to carry water from the water source or treatment works to users.

ARTERIAL MAINS Arterial mains are distribution mains of large size. They are interconnected with smaller distribution mains to form a complete gridiron system.

STORAGE RESERVOIRS Storage reservoirs are structures used to store water. They also equalize the supply or pressure in the distribution system. A common example of a storage reservoir is an aboveground water storage tank. The purpose of a hydropneumatic tank is to provide air for the water system.

Looking inside of a booster pump station, notice the PRV and air relief valve.

Distribution 404 1St Edition

Commonly found system accessories include the following:

Booster stations are used to increase water pressure from storage tanks for low-pressure mains.

Valves control the flow of water in the distribution system by isolating areas for repair or by regulating system flow or pressure.

Two different styles of Gate Valves.

Top photograph is valve ready for a gate valve replacement. Bottom photograph is OS&Y commonly found on fire lines. (Outside Screw and Yoke) As the gate is lifted or opened, the stem will rise.

Gate valves should be only used in the distribution system for main line isolation.

Distribution Valves

The purpose of installing shutoff valves in water mains at various locations within the distribution system is to allow sections of the system to be taken out of service for repairs or maintenance, without significantly curtailing service over large areas.

Valves should be installed at intervals not greater than 5,000 feet in long supply lines and 1,500 feet in main distribution loops or feeders. All branch mains connecting to feeder mains or feeder loops should have valves installed as close to the feeders as practical. In this way, branch mains can be taken out of service without interrupting the supply to other locations.

In the areas of greatest water demand, or when the dependability of the distribution system is particularly important, valve spacing of 500 feet may be appropriate.

At intersections of distribution mains, the number of valves required is normally one less than the number of radiating mains. The valve omitted from the line is usually the one that principally supplies flow to the intersection. Shutoff valves should be installed in standardized locations (that is, the northeast comer of intersections or a certain distance from the center line of streets), so they can be easily found in emergencies. All buried small- and medium-sized valves should be installed in valve boxes. For large shutoff valves (about 30 inches in diameter and larger), it may be necessary to surround the valve operator or entire valve within a vault or manhole to allow repair or replacement.

Classification of Valves

There are two major classifications of water valves: **Rotary and Linear**. Linear is a fancy word for up and down or blade movement.

Gate Valve Linear Valve Our primary Linear valve

The most common valve in the distribution system. Primarily used for main line shut downs. Should be exercised on annual basis.

Gate valves are used when a straight-line flow of fluid and minimum flow restriction are needed. Gate valves are so-named because the part that either stops or allows flow through the valve acts somewhat like a gate. The gate is usually wedge-shaped. When the valve is wide open the gate is fully drawn up into the valve bonnet. This leaves an opening for flow

through the valve the same size as the pipe in which the valve is installed.

Therefore, there is little pressure drop or flow restriction through the valve. Gate valves are not suitable for throttling purposes. The control of flow is difficult because of the valve's design, and the flow of fluid slapping against a partially open gate can cause extensive damage to the valve. Except as specifically authorized, gate valves should not be used for throttling.

I always liked to listen to the Valve Key when shutting down a Gate valve. You will easily hear it sing as you shut the water off or leak by. It is very easy to create a water hammer with opening or closing a Gate valve. Always take your time when operating a Gate valve or any valve. I know that most of you will not listen to me and you will end up breaking plastic water services and customer's water lines at first. Next, you'll move up to water main breaks. We like to blame the Fire Department or Street Sweepers for water hammers, and they should be blamed, but most water hammers are created by water personnel. Yes, I said it. A great example is watching a rookie shut down or open a fire hydrant. These young rookies like to turn the hydrant on or off as fast as possible, like the Firemen do. Pretty soon, the hydrant starts chattering and pumping. The ground feels like an earthquake and the rookie pretends that nothing is happening. We've all done this and if you haven't, you've probably never worked in the field.

Problems

Valve Jammed Open

Dr. Rusty recommends that opened valves should not be jammed-tight on the backseat.

Always back the valve-off a quarter turn from the fully opened position.

Note that motor operated valves coast inevitably to the backseat by tripping on a limit switch. Valve should not be back seated on torque.

Valve Jammed Closed

Variations in the temperature and/or pressure of the working fluid are often the cause of a valve failing to open.

Thermal binding can occur in high temperature situations depending on the seat and wedge material, length of exposure and closing torque applied. Thermal binding can cause galling on the valve sealing surfaces as well as on the guides.

A valve can lock in the closed position when high pressure enters the cavity and has no way to escape. This is known as over-pressurization.

If Excessive Torque is Needed to Work the Valve

Variations in the temperature and/or pressure of the working fluid are often the cause of a valve failing to open.

Thermal binding can occur in high temperature situations depending on the seat and wedge material, length of exposure and closing torque applied. Thermal binding can cause galling on the valve sealing surfaces as well as on the guides.

A valve can lock in the closed position when high pressure enters the cavity and has no way to escape. This is known as over-pressurization. We will cover this in a later section.

Single direction sealing gate valves have a nameplate on the side of the valve that has a relief hole or pressure equalizer. This should be the high pressure side when the valve is closed.

Here is a nasty 4-inch broken gate valve with serious tuberculation. The valve is broken in the closed position. The rust particles are sharp and can easily cut the water service worker. The flange bolts or Tee bolts were cut off to replace this valve. The rubber gasket will leave a black ink-like stain on your clothes and in the water line as well. You will see lots of nasty stuff in the top portion of a valve. Some engineers or big shots refer to this area of the valve as the "Angular space". If they really knew that this space contained nasty particles or debris and sediment they would never visit your Yard or facility again.

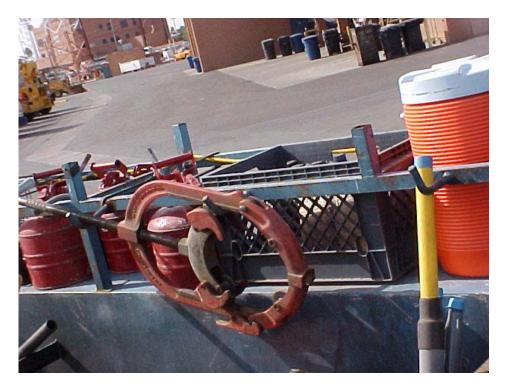
One practice that I am not sure about is the common procedure of only removing the bonnet or removing the guts of a closed valve. I guess that sometimes this practice is necessary, but I don't like removing the guts and packing of cement and a redwood plug in the stem hole but it happens.

Dr. Rusty's advice, "This is a difficult job because of mud and water lines under pressure, be super careful of rust particles cutting your skin. Get in line at the Doctors or Health Provider's facility and get all of your shots, especially Tetanus and Hepatitis. I know some of you will fight this but the facts are that you will probably be infected with something nasty. Best advice, obtain your water treatment certs or get a job promotion and get out of the hole."

Gate valve storage procedures: Always store a gate valve with the gate up or opened. Not like in this picture. Sunlight will give these rubber components a good shot of Vitamin D and sunburn, destroying the rubber. I like to keep the valves covered, open position and clean. I know that some of you don't care because these valves are so damn heavy and bother-some. Get over it and quit making \$800.00 bird nests! We are professionals and must remember the final outcome. We provide drinking water to the public.

Knife Gate Valve

Always follow standard safety procedures when working on a valve. Install the valve so that the arrows on both sides of the body are in the direction of positive pressure differential.


The preferred orientation is with the stem vertical and the handwheel pointing up. The opposite orientation is not recommended, because fiber and dirt can build-up in the bonnet.

Ductile pipe cement-lined iron pipe shown above. I've seen thousands of dollars of pipe that is dropped or moved with the front bucket of a backhoe and destroyed. This destroys the interior protection of the pipe, causing leaks which will start in a few years. I know that some of you welcome this as job security. These nitwits need job security, but water professionals do not need crappy work to keep them employed. Always protect and store all types of pipe in a pipe rack and covered. This goes for the proper storage of rubbers as well.

Flex Coupling-sometimes referred to as a Dayton-used to join pipes or to "cut-in a valve". You will learn that you can use different sizes to join pipe or even file out the inside diameter to adjust to larger pipes like ACP. This flex coupling only has three bolts. I like four or more for work with larger pipes. Professor Rusty's trick--When working on a water line, I like to turn the valves on slowly to fill the water main as the flex couplings are being tightened. This allows the air to escape and for you to find leaks. It also allows debris in the main to flush out.

Here is a four-way pipe cutting tool used for iron pipe. Be careful not to break the wheels by over tightening. I personally like 4-Ways because of the nice cut. You will learn to recognize the distinct snap of cut pipe. The only drawback to these cutters is cutting a small section out of the main. You may need to make two or three more cuts and break the section out with a cocking hammer. It will easily cut Ductile, galvanized, and even plastic. Plastic pipe cutters utilize sharper cutting wheels. Rookies like to thread the pipe rather than cut the pipe. It is fun to watch and to tease these rookies about it, especially if they just finished jumping a stop with the valve closed or no ball. Good times for sure in the crazy Distribution field.

Photograph on right-difficult to seethese are pipe crimpers. These will easily and effectively stop flow in copper or plastic pipe in tubing less than 2 inches. The only problem is dealing with the crimp when you are finished. I suggest placing a flex coupling over the crimp in plastic and completely cutting the crimped area out when done in copper pipe.

Common Rotary Valves

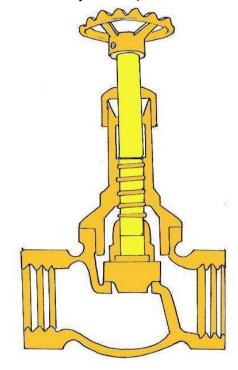
Globe Valve Rotary Valve

It is primarily used for flow regulation, and works similar to a faucet. Rare to find in most distribution systems, but can be found at treatment plants. Always follow standard safety procedures when working on a valve.

Most Globes have compact OS & Y type, bolted bonnet, rising stem, with renewable seatring valves. A Check Valve spring loaded disc resulting with most advanced design features provides the ultimate in dependable, economical flow control.

Globe valves should usually be installed with the inlet below the valve seat. For severe throttling service, the valve may be installed so that the flow enters over the top of the seat and goes down through it. Note that in this arrangement, the packings will be constantly pressurized. If the valve is to be installed near throttling service, verify with an outside contractor or a skilled valve technician. Globe valves, per se, are not suitable for throttling service. The valve should be welded onto the line with the disc in the fully closed position.

Leaving it even partially open can cause distortion and leaking. Allow time for the weld to cool before operating the valve the first time in the pipeline.


The preferred orientation of a globe valve is upright. The valve may be installed in other orientations, but any deviation from vertical is a compromise. Installation upside down is not recommended because it can cause dirt to accumulate in the bonnet.

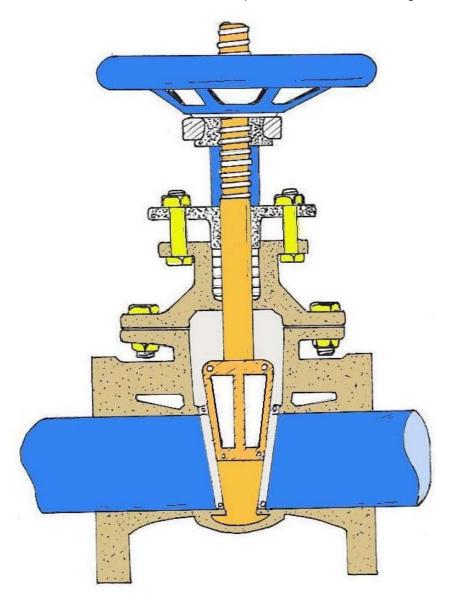
Globe Valve Problems and Solutions If the valve stem is improperly lubricated or

damaged: disassemble the valve and inspect the stem. Acceptable deviation from theoretical centerline created by joining center points of the ends of the stem is 0.005"/ft of stem. Inspect the threads for any visible signs of damage.

Small grooves less than 0.005" can be polished with an Emory cloth.

Contact specialized services or an outside contractor if run-out is unacceptable or large grooves are discovered on the surface of the stem.

GLOBE VALVE


If the valve packing compression is too tight: Verify the packing bolt torque and adjust if necessary.

Foreign debris is trapped on threads and/or in the packing area: This is a common problem when valves are installed outdoors in sandy areas and areas not cleaned before operating. Always inspect threads and packing area for particle obstructions, even seemingly small amounts of sand trapped on the drive can completely stop large valves from cycling. The valve may stop abruptly when a cycle is attempted.

With the line pressure removed from the valve, disconnect the actuator, gear operator, or handwheel and inspect the drive nut, stem, bearings and yoke bushing. Contaminated parts should be cleaned with a lint-free cloth using alcohol, varsol or equivalent. All parts should be re-lubricated before re-assemble. If the valves are installed outdoors in a sandy area, it may be desirable to cover the valves with jackets.

If the valve components are faulty or damaged: If you suspect that the valve components are damaged or faulty contact specialized services or an outside contractor.

If the valve's handwheel is too small: Increasing the size of the handwheel will reduce the amount of torque required to operate the valve. If a larger handwheel is installed, the person operating the valve must be careful not to over-torque the valve when closing it.

RISING STEM VALVE

Ball or Corporation Stop Rotary Valve Small Valves 2 inch and smaller

Most commonly found on customer or water meters. All small backflow assemblies will have two Ball valves. It is the valve that is either fully on or fully off. It is the valve that you use to test the abilities of a water service rookie. The best trick is to remove the ball from the Ball valve and have a rookie *Jump a Stop*. The Corp is usually found at the water main on a saddle. Some people say that the purpose of the Corp is to regulate the service. I don't like that explanation. No one likes to dig up the street to regulate the service and Ball valves, are only to be used fully on or fully off.

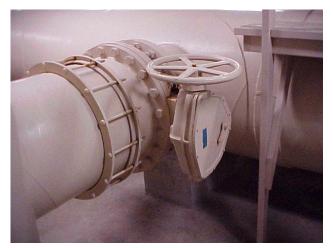
Most ball valves are the quick-acting type. They require only a 90-degree turn to either completely open or close the valve. However, many are operated by planetary gears. This type of gearing allows the use of a relatively small handwheel and operating force to operate a fairly large valve. Always follow standard safety procedures when working on a valve.

The gearing does, however, increase the operating time for the valve. Some ball valves also contain a swing check located within the ball to give the valve a check valve feature. The brass ball valve is often used for house appliance and industry appliance, the size range is 1/4"-4". Brass or zinc is common for body, brass or iron for stem, brass or iron for ball, aluminum, stainless steel, or iron for handle including a Teflon seal in the ball housing.

Flush the pipeline before installing the valve. Debris allowed to remain in the pipeline (such as weld spatters, welding rods, bricks, tools, etc.) can damage the valve. After installation, cycle the valve a minimum of three times and re-torque bolts as required. Ensure that the valve is in the open position and the inside of the body bore of the valve body/body end is coated with a suitable spatter guard.

Bird's eye view of the stainless steel ball.

Removing the ball is very difficult. I think they use a robot to tighten the rear nut to keep you from removing it. I recommend that you always use pipe dope or Teflon tape when installing a Stop. I know a lot of you think that brass or bronze will make up the slack or a small leak, but pipe dope, Teflon dope or tape makes a nicer job and makes for an easier removal.


Butterfly Valve Rotary Valve

Usually a huge water valve found in both treatment plants and throughout the distribution system. If the valve is not broken, it is relatively easy to operate. It is usually accompanied by a Gate valve used as a by-pass to prevent water hammer. When I was a Valve man, it seemed that every Bypass valve was broken closed when near a Butterfly valve.

These are rotary types of valves usually found on large transmission lines. They may also have an additional valve beside it, known as a *"bypass*" to prevent a water hammer.

Some of these valves can require 300-600 turns to open or close. Most Valvemen or the politically correct term "Valve Operators" will use a machine to open or close a Butterfly Valve, the machine will count the turns required to open or close the valve.

Butterfly valves should be installed with the valve shaft horizontal or inclined from vertical. Always follow standard safety procedures when working on a valve. The valve should be mounted in the preferred direction, with the "HP" marking. Thermal insulation of the valve body is recommended for operating temperatures above 392°F (200°C).

The valve should be installed in the closed position to ensure that the laminated seal in the disc is not damaged during installation.

If the pipe is lined, make sure that the valve disc does not contact the pipe lining during the opening stroke. Contact with lining can damage the valve disc.

54 inch Butterfly valve on a huge transmission line. Nice job but no shoring, ladder or valve blocking.

ACTUATION METHODS

- Standard Handwheel
- · Chainwheel Operated
- · Square Nut
- Pneumatic
- Electric

Butterfly Valve Problems

A butterfly valve may have jerky operation for the following reasons:

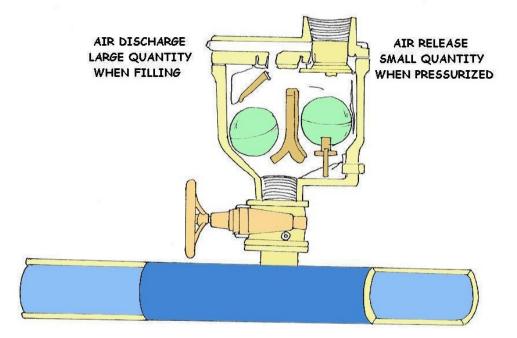
If the packing is too tight. Loosen the packing torque until it is only hand tight. Tighten to the required level and then cycle the valve. Re-tighten, if required. CAUTION: Always follow safety instructions when operating on valve.

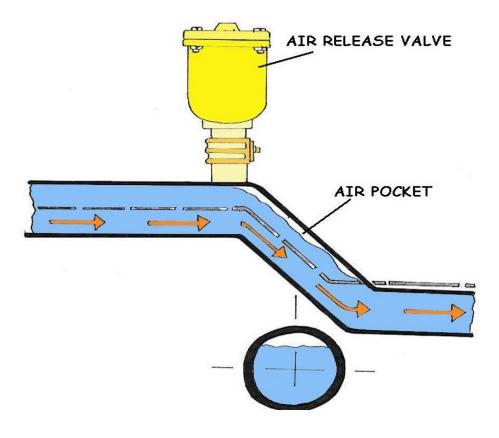
If the shaft seals are dirty or worn out: Clean or replace components, as per assemblydisassembly procedure. CAUTION: Always follow safety instructions when operating on valve.

If the shaft is bent or warped: The shaft must be replaced. Remove valve from service and contact an outside contractor or your expert fix-it person.

If the actuator/shaft adaptor is misaligned: Remove the actuator mounting and realign.

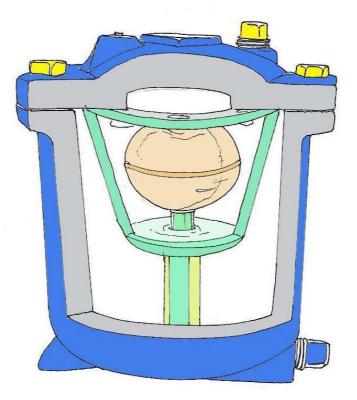
If the valve has a pneumatic actuator, the air supply may be inadequate: Increase the air supply pressure to standard operating level. Any combination of the following may prevent the valve shaft from rotating.


If the actuator is not working: Replace or repair the actuator as required. Please contact specialized services or an outside contractor for assistance.


If the valve is packed with debris: Cycle the valve and then flush to remove debris. A full cleaning may be required if flushing the valve does not improve valve shaft rotation. Flush or clean valve to remove the debris.

A broken 54-inch Butterfly valve and a worker inside the water main preparing the interior surface. Notice, this is a Permit Required Confined Space. A Hot work permit is also required.

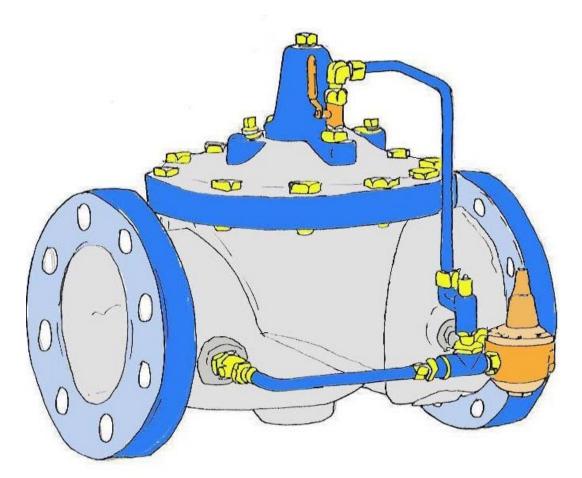
COMBINATION AIR VALVE


Why use automatic air valves?

- □ Increase flow capacity
- □ Reduce pumping costs (less electricity)
- Lessen the effect of water hammer.

Prevent vacuum damage, such as pipeline collapse, seal failure, contamination and cross connection.

□ Keep the lines full to reduce corrosion of the pipe.



INTERNAL VIEW OF COMBINATION AIR VALVE

Pressure Reducing Valves Rotary Valve

How do Pressure Relief Valves Operate?

Most pressure relief valves consist of a main valve and pilot control system. The basic main Cla-Val valve is called a Hytrol Valve.

PRESSURE REDUCING VALVE

When no pressure is in the valve, the spring and the weight of the diaphragm assembly hold the valve closed.

Often a small box can be connected to an existing pilot PRV valve to control the main Pressure Reducing Valve on the pipe network. This single box contains both the control electronics and an integral data logger to save the cost and space of having both a controller and a separate data logger. There are basically two types of PRV controllers: time based (to reduce the pipe pressure at low demand times, e.g. at night) or flow modulated, which can realize leakage savings throughout the day and night (by adjusting the pressure according to the demand, to prevent excessive pressure at any time of the day or night).

Valve Exercising

Valve exercising should be done once per year (especially main line valves) to detect malfunctioning valves and to prevent valves from becoming inoperable due to freezing or build-up of rust or corrosion. A valve inspection should include drawing valve location maps to show distances (ties) to the valves from specific reference points (telephone poles, stonelines, etc.).

Valve Exercising Machine \rightarrow

Hydrants are designed to allow water from the distribution system to be used for fire-fighting purposes.

Left photograph-- the bottom of a dry barrel fire hydrant, there is a drainage hole on the back of this hydrant, sometimes referred to as a "weep hole". Right photograph-- an "Airport Runway" type of hydrant.

More on Water Distribution Valves

Water distribution valves are provided in the design of the water systems to allow for the isolation and shut-off of water when emergency conditions occur. It is important to recognize that these valves are a critical link in the management of emergencies that occur in the distribution system. Additionally, these valves are usually operated infrequently. Therefore, the establishment of an annual valve exercising program is essential to the viability of an utility emergency operations plan.

Emergency operations of water valves presumes that the system operators are familiar with the exact locations of many key water valves within the water system. Of equal importance is the knowledge that when these valves need to be operated in order to isolate a section of the distribution system, they will operate and close effectively in order to prevent a large loss of the water recourse and excessive property damage.

Routine valve inspections should be conducted on the water system valves and the following tasks should be accomplished:

The accuracy of all valves and valve boxes are verified against existing records. If inconsistencies are found, the records are updated to reflect accurate information. An inspection is performed on each valve stem and nut to determine if any damage exists. The valve is fully closed and the number of turns necessary to accomplish a full closing is recorded.

The valve is re-opened, and the system flows are re-established.

The valve box and cover is cleaned, inspected for damaged and painted blue.

Exercising of all valves should be accomplished at the same time as the valve inspection. The exercising program assures that the valve operates and loosens any encrustation from valve seats and gates. Many valve manufacturers recommend that the valve stem be completely opened and then backed off by one complete turn.

Distribution System Hydrant Maintenance/Flushing

Fire hydrants provide not only fire protection, but also a method of moving large amounts of water out of various portions of the water system if microbiological and/or chemical contamination occurs and an emergency is declared. As a result, fire hydrant maintenance is conducted on al fire hydrants to assure their viability at all times.

Fire hydrant maintenance includes the following specific procedures:

All fire hydrants are inspected for leakage and repairs are made when necessary.

The fire hydrant is fully opened and the ease of operation is noted.

The hydrant flow is directed to waste. During this procedure, care is taken to direct and/or disperse the flow to minimize property damage.

All fire hydrant nozzle caps are inspected for thread damage and lubricated to provide ease of operation.

All fire hydrant nozzle cap thread gaskets are inspected and replaced as necessary. If a fire hydrant is found to be inoperable, a tag is placed on the hydrant, and the "**out of service**" is immediately reported to the Fire Department.

Accurate records related to the maintenance procedures performed on the fire hydrants are maintained by the water department.

Water Meters

Record the flow of water in a part of the distribution system. Bypass, Compound, Turbine or Propeller meters.

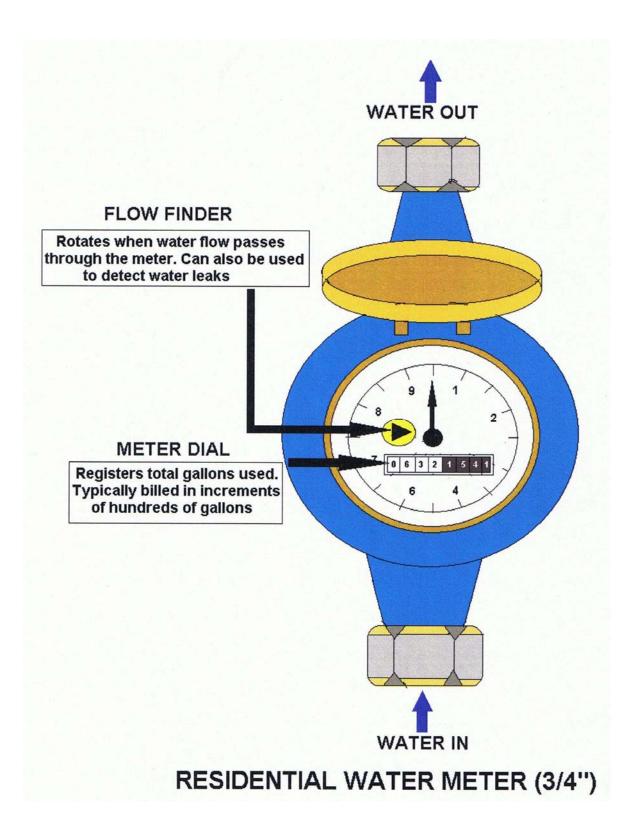
388

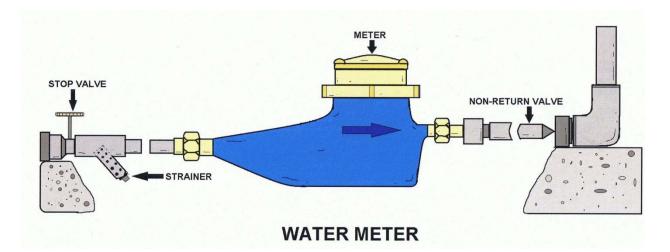

Water Meters

It is important to account for the water produced and supplied. A master meter should be installed on each source, with service meters placed at each point of use. These should be read and recorded periodically. Totals from the master meters should be compared to totals from the service meters to compute the amount of water lost in the distribution system. This information is important in locating and eliminating leaks and unauthorized taps.

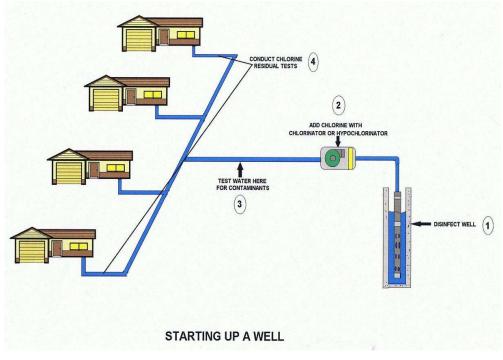
Losses of 10 to 20 percent are not uncommon in many distribution systems. Also, it has been shown that a system which is not metered is likely to have a water usage up to three times as great as a metered system. Un-metered water users tend to water freely and have little incentive to repair plumbing leaks.

Computerized handheld electronic meter reader "station"

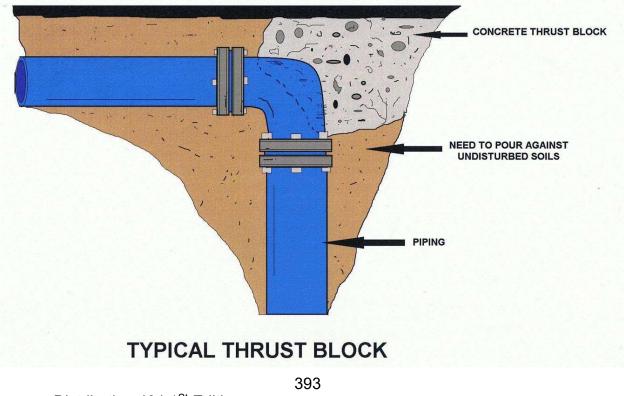



Water Theft (Unaccounted for Water)

Commonly found methods and devices. Notice diversion with the Semi-truck and dial removal. Customers can be very tricky in water theft.



It is all about deception when stealing water and customers can think of incredible methods to save a small amount of water. I wish these customers could figure how to save gas instead.


In many developed countries water meters are used to measure the volume of water used by residential and commercial building that are supplied with water by a public water supply system. Water meters can also be used at the water source, well, or throughout a water system to determine flow through that portion of the system. In most of the world water meters measure flow in Cubic meters (m³) or liters but in the USA and some other countries water meters are calibrated in cubic feet (ft.³), or US gallons on a mechanical or electronic register. Some electronic meter registers can display rate-of-flow in addition to total usage. There are several types of water meters in common use. Selection is based on different flow measurement methods, the type of end user, the required flow rates, and accuracy requirements. In North America, standards for manufacturing of water meters are made by the American Water Works Association.

392

Wear appropriate personal protective equipment (PPE) as required by the task being preformed and as required per OSHA regulations. Ensure a spotter is used if there are overhead power lines, underground utilities or tight working conditions in the work area. Verify the competent person is on site.

Distribution 404 1St Edition

Ensure policies and procedures will be followed when excavating across foreign utilities and other underground structures. Ensure that the competent person *is available* while any trenching/excavation work is being performed. Ensure that benching, sloping, and shoring practices are followed when necessary. Ensure proper protection and support of existing utilities and structures.

Meter Shop

Equipment used for meter calibration. Most meters will read lower than normal, never higher. All meters will create "head loss" on the water service except for a "Magnetic Meter". The large tanks are used to measure the water in gallons that is used to calibrate or check the water meter.

Most water utilities will charge the customer a fee to check the accuracy of the meter.

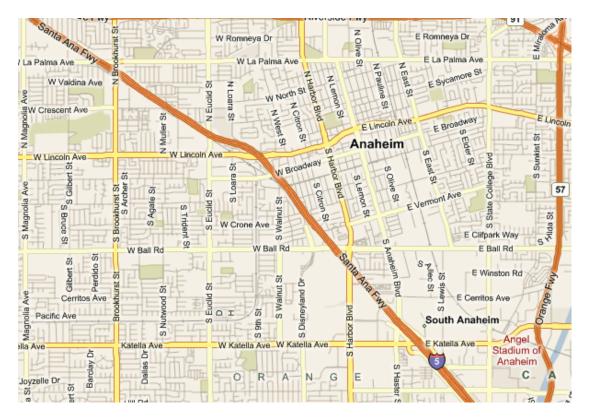
Service Connections

Service connections are used to connect individual buildings or other plumbing systems to the distribution system mains.

Water Meter Re-setter, Riser, or sometimes referred to as a copper yoke.

Common distribution fittings. Single check, Poly Pig, 1 inch repair clamp, 4 inch full circle clamp, T- Bolt and a corp. and bronze saddle.

Distribution 404 1St Edition


System Layouts

There are three general ways systems are laid out to deliver water (picture your quarter section layouts). They include:

Tree systems

Loop or Grid systems

Dead-end systems - Undesirable, taste and odor problems.

Tree System

Older water systems frequently were expanded without planning and developed into a treelike system. This consists of a single main that decreases in size as it leaves the source and progresses through the area originally served. Smaller pipelines branch off the main and divide again, much like the trunk and branches of a tree.

A treelike system is not desirable because the size of the old main limits the expansion of the system needed to meet increasing demands. In addition, there are many dead ends in the system where water remains for long periods, causing undesirable tastes and odors in nearby service lines. The most reliable means to provide water for firefighting is by designing redundancy into the system. There are several advantages gained by laying out water mains in a loop or grid, with feeder and distributor mains interconnecting at roadway intersections and other regular intervals.

Friction Loss

Water will still be distributed through the system if a single section fails. The damaged section can be isolated and the remainder of the system will still carry water.

Water supplied to fire hydrants will feed from multiple directions. Thus during periods of peak fire flow demand, there will be less impact from "friction loss" in water mains as the velocity within any given section of main will be less since several mains will be sharing the supply.

Rust and debris from cleaning a steel main.

A temporary blow-off at a dead-end line.

Troubleshooting Table for Distribution System

Problem

- 1. Dirty water complaints
- 2. Red water complaints
- 3. No or low water pressure
- 4. Excessive water usage.

Possible Cause

- 1A. Localized accumulations of debris, solids/particulates in distribution mains
- 1B. Cross connection between water system and another system carrying non-potable water.
- 2A. Iron content of water from source is high. Iron precipitates in mains and accumulates.
- 2B. Cast iron, ductile iron, or steel mains are corroding causing "rust" in the water.
- 3A. Source of supply, storage or pumping station interrupted.
- 3B. System cannot supply demands.
- 3C. Service line, meter, or connections shutoff, or clogged with debris.
- 3D. Broken or leaking distribution pipes.
- 3E. Valve in system closed or broken.
- 4A. More connections have been added to the system.
- 4B. Excessive leakage (>15% of production) is occurring, meters are not installed or not registering properly.

4C. Illegal connections have been made.

Possible Solution

1A. Collect and preserve samples for analysis if needed. Isolate affected part of main and flush.

1B. Collect and preserve samples for analysis if needed. Conduct survey of system for cross connections. Contact State Drinking Water Agency.

2A. Collect and test water samples from water source and location of complaints for iron. If high at both sites, contact regulatory agency, TA provider, consulting engineer or water conditioning company for assistance with iron removal treatment.

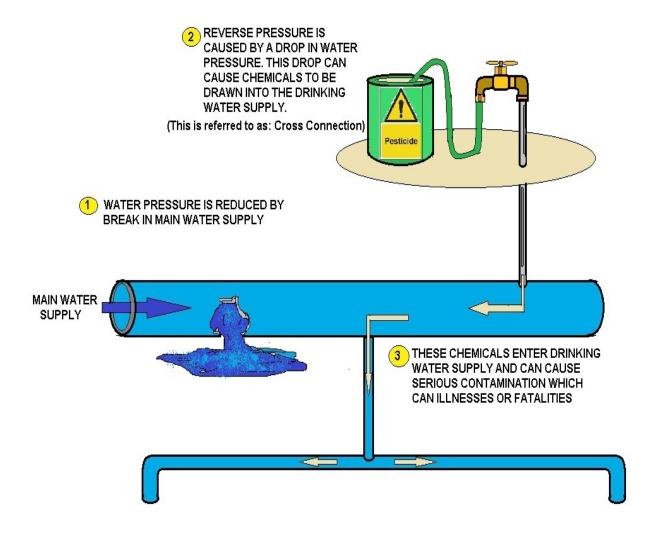
2B. Collect and analyze samples for iron and corrosion parameters. Contact State Drinking Water Agency , TA provider, consulting engineer or water conditioning company for assistance with corrosion control treatment.

3A. Check source, storage and pumping stations. Correct or repair as needed.

3B. Check to see if demands are unusually high. If so, try to reduce demand.

Contact State Drinking Water Agency, TA provider or consulting engineer.

3C. Investigate and open or unclog service.


3D. Locate and repair break or leak.

3E. Check and open closed isolation and pressure-reducing valves. Repair or contact contractor if valves are broken.

4A. Compare increase in usage over time with new connections added over same period. If correlation evident take action to curtail demand or increase capacity if needed. Contact State Drinking Water Agency, TA provider or consulting engineer.

4B. Conduct a water audit to determine the cause. If leakage, contact regulatory agency, and consulting engineer or leak detection contractor.

4C. Conduct survey to identify connections.

Types of Pipes Used in the Distribution Field

Several types of pipe are used in water distribution systems, but only the most common types used by operators will be discussed. These piping materials include copper, plastic, galvanized steel, and cast iron. Some of the main characteristics of pipes made from these materials are presented below.

Plastic Pipe (PVC)

This is currently the most common type of pipe used in distribution systems. It is available in diameters of 1/2" and larger, and in lengths of 10', 20', and 40'. A main advantage is its light weight, allowing for easy installation. A disadvantage is its inability to withstand shock loads. Since it is non-metallic, a tracer wire must be installed with the PVC water main so that it can be located after burial. The National Sanitation Foundation (NSF) currently lists most brands of PVC pipe as being acceptable for potable water use. This information should be stamped on the outside of the pipe, along with working pressure and temperature, diameter and pipe manufacturer. PVC pipe will have the highest C Factor of all the above pipes. The higher the C factor the smoother the pipe.

Plastic pipe has seen extensive use in current construction. Available in different lengths and sizes, it is lighter than steel or copper and requires no special tools to install. Plastic pipe has several advantages over metal pipe. It is flexible, it has superior resistance to rupture from freezing, it has complete resistance to corrosion and in addition, it can be installed above ground or below ground.

One of the most versatile plastic and polyvinyl resin pipes is the polyvinyl chloride (PVC). PVC pipes are made of tough, strong thermoplastic material that has an excellent combination of physical and chemical properties. Its chemical resistance and design strength make it an excellent material for application in various mechanical systems.

Sometimes polyvinyl chloride is further chlorinated to obtain a stiffer design, a higher level of impact resistance, and a greater resistance to extremes of temperature. A CPVC pipe (a chlorinated blend of PVC) can be used not only in cold-water systems, but also in hot-water systems with temperatures up to 210°F. Economy and ease of installation make plastic pipe popular for use in either water distribution and supply systems or sewer drainage systems.

Various types and sizes of coupons or tap cut-outs. You will want to date and collect these cut-outs to determine the condition of the pipe or measure the corrosion.

Cast Iron (CIP)

This is another type of piping material that has been in use for a long time. It is found in diameters from 3" to 48". Advantages of this material are its long life, durability and ability to withstand working pressures up to 350 psi. Disadvantages include the fact that it is heavy, difficult to install and does not withstand shock loading. Although it is not currently the material of choice, there is still a lot of it in the ground.

Ductile Iron Pipe (DIP)

This was developed to overcome the breakage problems associated with cast iron pipe. It can be purchased in 4" to 45" diameters and lengths of 18' to 20'. Its main advantage is that it is nearly indestructible by internal or external pressures. It is manufactured by injecting magnesium into molten cast iron. It is sometimes protected from highly corrosive soils by wrapping the pipe in plastic sheeting prior to installation. This practice can greatly extend the life of this type of pipe.

Steel Pipe

This pipe is often used in water treatment plants and pump stations. It is available in various diameters and in 20' or 21' lengths. Its main advantage is the ability to form it into a variety of shapes. It also exhibits good yielding and shock resistance. It has a smooth interior surface and can withstand pressures up to 250 psi. A disadvantage is that it is easily corroded by both soil and water. To reduce corrosion problems, steel pipe is usually galvanized or dipped in coal-tar enamel and wrapped with coal-tar impregnated felt. At present, however, coal-tar products are undergoing scrutiny from a health standpoint and it is recommended that the appropriate regulatory agencies be contacted prior to use of this material.

Asbestos Cement Pipe (ACP)

This pipe is manufactured from Portland cement, long fibrous asbestos and silica. It is available in diameters from 3" to 36" and in 13' lengths. Its main advantages are its ability to withstand corrosion and its excellent hydraulic flow characteristics due to its smoothness. A major disadvantage is that it is brittle and is easily broken during construction or by shock loading. There is some concern regarding the possible release of asbestos fibers in corrosive water and there has been much debate over the health effects of ingested asbestos. Of greater certainty, however, is the danger posed by inhalation of asbestos fibers.

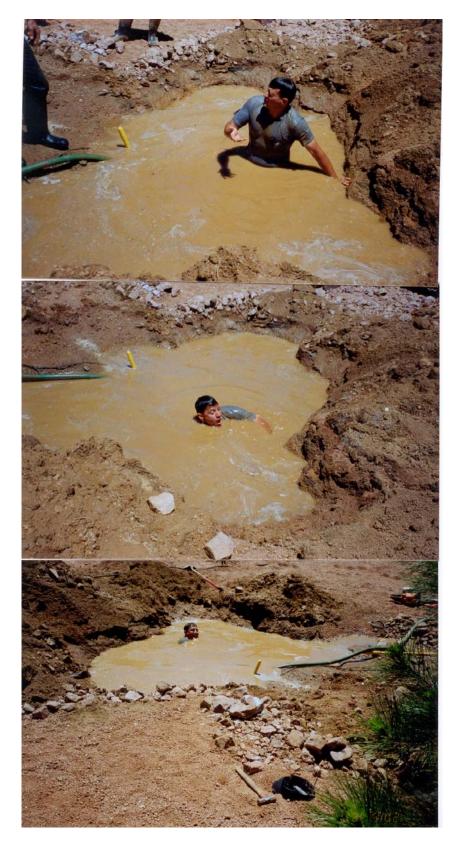
Asbestos is considered a hazardous material, and precautionary measures must be taken to protect water utility workers when cutting, tapping or otherwise handling this type of pipe.

Galvanized Pipe

Galvanized pipe is commonly used for the water distributing pipes inside a building to supply hot and cold water to the fixtures. This type of pipe is manufactured in 21-ft lengths. It is GALVANIZED (coated with zinc) both inside and outside at the factory to resist corrosion. Pipe sizes are based on nominal INSIDE diameters. Inside diameters vary with the thickness of the pipe. Outside diameters remain constant so that pipe can be threaded for standard fittings.

Copper Pipe or Tubing

Copper is one of the most widely used materials for tubing. This is because it does not rust and is highly resistant to any accumulation of scale particles in the pipe. This tubing is available in three different types: **K**, **L**, **and M**.


K has the thickest walls, and M, the thinnest walls, with L's thickness in between the other two. The thin walls of copper tubing are soldered to copper fittings. Soldering allows all the tubing and fittings to be set in place before the joints are finished. Generally, faster installation will be the result.

Type K copper tubing is available in either rigid (hard temper) or flexible (soft temper) and is primarily used for underground service in the water distribution systems.

Soft temper tubing is available in 40- or 60-ft coils, while hard temper tubing comes in 12- and 20-ft straight lengths. Type L copper tubing is also available in either hard or soft temper and either in coils or in straight lengths. The soft temper tubing is often used as replacement plumbing because of the tube's flexibility, which allows easier installation. Type L copper tubing is widely used in water distribution systems. Type M copper tubing is made in hard temper only and is available in straight lengths of 12 and 20 ft. It has a thin wall and is used for branch supplies where water pressure is low, but it is *NOT* used for mains and risers. It is also used for chilled water systems, for exposed lines in hot-water heating systems, and for drainage piping.

Copper Tubing Crimpers. Great if you are unable to get a shut-down. Just place this dude on the pipe. The problem is to fix that crimp when you are finished with the leak. They need to invent an uncrimper.

A normal day for a water distribution worker.

404

Joints and Fittings

Fittings vary according to the type of piping material used. The major types commonly used in water service include elbows, tees, unions, couplings, caps, plugs, nipples, reducers, and adapters.

Besides bell-and-spigot joints, cast-iron water pipes and fittings are made with either flanged, mechanical, or screwed joints. The screwed joints are used only on small-diameter pipe.

Tapping Sleeve

Customers are not inconvenienced by having their water turned off is one of the reason we utilize pressure taps or hot taps. Some of you are lucky to punch a hole with a ball-peen hammer. A Gate Valve is used to isolate sections of water mains. Not to be used to throttle or regulate the flow. A Globe valve should be used to regulate the flow. Be sure to chlorinate or disinfect all distribution parts such as valves and piping!

Caps

A pipe cap is a fitting with a female (inside) thread. It is used like a plug, except that the pipe cap screws on the male thread of a pipe or nipple.

Couplings

The three common types of couplings are straight coupling, reducer, and eccentric reducer. The STRAIGHT COUPLING is for joining two lengths of pipe in a straight run that do not require additional fittings. A run is that portion of a pipe or fitting continuing in a straight line in the direction of flow.

A REDUCER is used to join two pipes of different sizes. The ECCENTRIC REDUCER (also called a BELL REDUCER) has two female (inside) threads of different sizes with centers so designed that when they are joined, the two pieces of pipe will not be in line with each other, but they can be installed to provide optimum drainage of the line.

Elbows (OR ELLS) 90° AND 45°

These fittings (fig. 8-5, close to middle of figure) are used to change the direction of the pipe either 90 or 45 degrees. REGULAR elbows have female threads at both outlets. STREET elbows change the direction of a pipe in a close space where it would be impossible or impractical to use an elbow and nipple. Both 45 and 90-degree street elbows are available with one female and one male threaded end. The REDUCING elbow is similar to the 90-degree elbow except that one opening is smaller than the other is.

Nipples

A nipple is a short length of pipe (12 in. or less) with a male thread on each end. It is used for extension from a fitting. At times, you may use the DIELECTRIC or INSULATING TYPE of fittings. These fittings connect underground tanks or hot-water tanks. They are also used with pipes of dissimilar metals. These help slow down corrosion that starts inside the pipe and works to the outside of the pipe.

Do not heat or solder dielectric fittings. You may melt the plastic coating on them.

Zinc is a coating on the outside and inside of pipes to slow corrosion. This process is called "Galvanization".

Tees

A tee is used for connecting pipes of different diameters or for changing the direction of pipe runs. A common type of pipe tee is the STRAIGHT tee, which has a straight-through portion and a 90-degree takeoff on one side.

Notice the type of pipe connection device. This is known as a "Restraining Flange". \rightarrow

All three openings of the straight tee are of the same size. Another common type is the REDUCING tee, similar to the straight tee just described, except that one of the threaded openings is of a different size than the other.

Unions

There are two types of pipe unions. The GROUND JOINT UNION consists of three pieces, and the FLANGE UNION is made in two parts. Both types are used for joining two pipes together and are designed so that they can be disconnected easily. When joined, the two pieces of pipe will not be in line with each other, but they can be installed to provide optimum drainage of the line.

Disinfection of Repaired Pipeline Sections

You should recognize that the protection of the public health of its water customers is the primary role of a water provider. Accordingly, the disinfection of all repaired water appurtenances is paramount to the return of the water system to its' normal operation mode. Prior to initiating the disinfection process, a thorough cleaning of all repaired pipes and or reservoirs must be accomplished. The following table indicates the amount of Sodium Hypochlorite and Calcium Hypochlorite that is necessary to disinfect 100,000 gallons of water.

DISINFECTION TABLE For 100,000 Gallons Of Water

Desired Chlorine Dose in MG/L	Pounds of Liquid Chlorine Required	Gallons of Sodium Hypo Chlorite Required 5% Available Chlorine	10% Available Chlorine	15% Available Chlorine	Pounds of Calcium Hypo Chlorite Required. 65% Available
2	1.7	3.9	2.0	1.3	2.6
10	8.3	19.4	9.9	12.8	12.8
50	42	97	49.6	64	64

Spare Parts Inventory

You should maintain a complete inventory of spare parts for the maintenance and repair of all water transmission and distribution lines. The water lines in the system range in size between ³/₄ inch and 16 inches in diameter. Additionally, you should maintain spare motor controls, pump ends, and motors for all wells and booster stations. Water system personnel can repair the entire range of water lines without assistance from outside contractors. Stand-by warehouse personnel should be available twenty four hours per day to assist in the delivery of spare parts in instances requiring emergency repair.

Preventative Maintenance (PM)

Preventative maintenance can extend the life of any water pipeline. Pipes can deteriorate on the inside as a result of corrosion and on the outside as a result of aggressive soil and moisture. The Water Department should maintain an intense leak detection program to effectively reduce operating costs and provide revenue savings by reducing lost and unaccounted for water. Leaks can originate in joints and fittings or any corroded portion of a pipeline. Additionally, leaks will undermine the pavement and water soak the area around the leaking section of pipeline. When leaks are discovered, they are repaired within twenty four hours after properly locating all underground utilities through the Underground Service Alert or "*Blue Stake*" procedure.

Water Main Installation

Installation of new or replacement pipe sections should be in accordance with good construction practices. The line must be buried a minimum of 30" below the ground surface to prevent freezing. The line must be bedded and backfilled properly insuring protection from weather and surface loadings. Also, thrust blocking (*Kickers*) at all bends, tees, and valves is essential to hold the pipe in place and prevent separation of line sections. Thrust blocking is not necessary if the pipe is welded.

Disinfection of new installations or repaired sections is required prior to placing them in service. This can be accomplished by filling the line with a 25 mg/1 free chlorine solution and allowing it to stand for 24 hours. Valves and fittings used in the waterworks industry are made of cast iron, steel, brass, stainless and fiberglass. Enough gate valves should be placed throughout the system to enable problem areas (leaks, etc.) to be isolated and repaired with minimal service disruption. Air relief valves should be installed at high points in the system. Valves should be installed with valve boxes and covers.

Regardless of the type of pipe installed, certain maintenance routines should be performed on the distribution system to maintain water quality and optimal service. These programs should be scheduled and performed on a regular basis.

Flushing at blowoffs on dead end lines and at fire hydrants throughout the system should be done at least twice per year. Flushing is needed to remove stagnant water in dead ends and to remove accumulated sediment that results from turbidity, iron, manganese, etc. This should also help minimize customer complaints of water quality. Flushing should always be done from the source to the ends of the system. Affected customers should be notified of this process in advance. To do an adequate job of flushing, the flow should reach a velocity of at least 2.5 feet per second, known as the "minimum cleansing velocity" of the system (at hydrant locations).

These tests are important to determine the adequacy of the distribution system in transmitting water, particularly during days of peak demand. Also, these tests can help determine if pipe capacity is decreasing over time due to internal corrosion or deposits.

Pressure tests should be done at various locations in the distribution system several times per year. This helps to monitor the performance of the system and alert the operator to problems such as leaks or internal deposits. It is sometimes advantageous to have certain points in the system continuously monitored to provide a constant evaluation of the system.

Water Softening

Water softening is a method of removing minerals from water which makes the water hard. Hard water does not dissolve soap readily. It forms scale in pipes, boilers, and other equipment in which it is used.

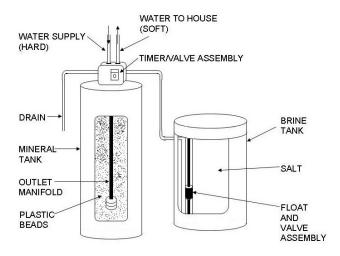
The principal methods of softening water are the lime soda process and the ion exchange process.

In the *lime soda process,* soda ash and lime are added to the water in amounts determined by chemical tests. These chemicals combine with the calcium and magnesium in the water to make insoluble compounds that settle to the bottom of the water tank.

In the *ion exchange process*, the water filters through minerals called *zeolites*. As the water passes through the filter, the sodium ions in the zeolite are exchanged for the calcium and magnesium ions in the water, and the water is softened. After household softeners become exhausted, a strong solution of *sodium chloride* (salt) is passed through the filter to replace the sodium that has been lost. The use of two exchange materials makes it possible to remove both metal and acid ions from water. Some cities and towns, however, prohibit or restrict the use of ion exchange equipment on drinking water, pending the results of studies on how people are affected by the consumption of the added sodium in softened water.

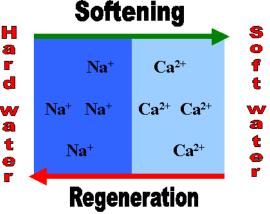
Calcium and magnesium in water create hard water, and high levels can clog pipes. The best way to soften water is to use a water softener unit connected into the water supply line. You may want to consider installing a separate faucet for unsoften water for drinking and cooking. Water softening units also remove iron.

The containers hold the resin for the deionization.


Soften Household Water

The most common way to soften household water is to use a water softener. Softeners may also be safely used to remove up to about 5 milligrams per liter of dissolved iron if the water softener is rated for that amount of iron removal. Softeners are automatic, semi-automatic, or manual. Each type is available in several

sizes and is rated on the amount of hardness it can remove before regeneration is necessary.


Using a softener to remove iron in naturally soft water is not advised; a green-sand filter is a better method. When the resin is filled to capacity, it must be recharged. Fully automatic softeners regenerate on a preset schedule and return to service automatically.

Regeneration is usually started by a preset time clock; some units are started by water use meters or hardness detectors. Semi-automatic softeners have

automatic controls for everything except for the start of regeneration. Manual units require manual operation of one or more valves to control back washing, brining and rinsing. In many areas, there are companies that provide a water softening service. For a monthly fee the company installs a softener unit and replaces it periodically with a freshly charged unit.

The principle behind water softening is really just simple chemistry. A water softener contains resin beads which hold electrically charged ions. When hard water passes through the softener, calcium and magnesium ions are attracted to the charged resin beads. It's the resulting removal of calcium and magnesium ions that produces "**soft water**." The diagram shows the exchange that takes place during the water softening process. When the resin beads in your softener become saturated with calcium and magnesium ions, they need to be recharged. Sodium ions from the water softening salt reactivate the resin beads so they can continue to do their job. Without sufficient softening salt, your water softener is less efficient. As a rule, you should check your water softener once a week to be sure the salt level is always at least one quarter full.

Mechanical Water Treatment Softeners

Mechanical water treatment softening units can be permanently installed into the plumbing system to continuously remove calcium and magnesium. Water treatment softeners operate on the ion exchange process. In this process, water passes through a media bed, usually sulfonated polystyrene beads. The beads are supersaturated with sodium. The ion exchange process takes place as hard water passes through the softening material. The hardness minerals attach themselves to the resin beads while sodium on the resin beads is released simultaneously into the water.

When the resin becomes saturated with calcium and magnesium, it must be recharged. The recharging is done by passing a salt (**brine**) solution through the resin. The sodium replaces the calcium and magnesium which are discharged in the waste water. Hard water treated

with an ion exchange water softener has sodium added. According to the Water Quality Association (**WQA**), the ion exchange softening process adds sodium at the rate of about 8 mg/liter for each grain of hardness removed per gallon of water.

For example, if the water has a hardness of 10 grains per gallon, it will contain about 80 mg/liter of sodium after being softened in an ion exchange water softener if all hardness minerals are removed. Because of the sodium content of softened water, some individuals may be advised by their physician, not to install water softeners, to soften only hot water or to bypass the water softener with a cold water line to provide unsoften water for drinking and cooking, usually to a separate faucet at the kitchen sink.

Mechanically softened water is not recommended for watering plants, lawns, and gardens due to its sodium content.

The container behind the salt pallet is a high concentration of salt and water. (Brine)

Water Filters

Water filters generally come in two forms. Portable ion exchange water filters, and reverse osmosis water filters. Both are used for "*point of use*" drinking water, that is, to filter out harmful or unwanted particles before the water is used for human consumption.

Reverse Osmosis works by forcing the water through a semi-permeable membrane that stops certain particles from passing through.

Portable water filters work using a cartridge containing activated carbon and ion exchange resin. The carbon absorbs and helps reduce the levels of chlorine and chlorine compounds, as well as pesticides, color and other organic substances. This improves taste and appearance. The ion exchange resin works to reduce temporary hardness.

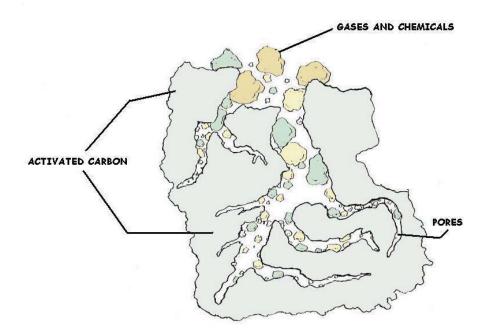
Activated Carbon Filtration

Activated carbon has been used for many years to solve water problems. In the beginning, its use was more art than science. Today, however, we understand more about what activated carbon can remove and how it removes impurities.

Activated carbon quickly and effectively removes chlorine from water.

The presence of organic matter in water can cause color, taste and odor complaints. Activated carbon adsorbs organic matter in its extensive network of pores. The adsorption process takes time, so service rates should be limited to 5 gpm/ft (12m/hr) or less for these applications.

A handful of GAC. Just expensive burnt coconuts shells.


SOCs and VOCs

Synthetic organic chemicals (**SOC**) include all man-made organics, some of which are volatile organic compounds (**VOC**). Activated carbon can substantially reduce many VOCs such as benzene, trichloroethane and carbon tetrachloride.

Activated carbon also removes SOCs such as Alachlor, EDB and toluene. The EPA is establishing limits for these chemicals in public drinking water supplies.

Before recommending treatment, water suspected of containing any of these and other substances must be analyzed to determine their concentrations and whether they exceed EPA standards.

Activated carbon beds compact with use so they may need occasional backwashing, however, backwash carbon as little as possible to prevent loss of the fragile material. Also, contaminant-laden carbon may migrate toward the bottom of the bed during backwash and reduce filter performance. When operating carbon on turbid water supplies, remove suspended particles with a depth filter before treating it with activated carbon. A carbon filter typically backwashes at 10 gpm/ft (25 m/hr.) for about 10 minutes, followed by a 5 minute down flow rinse. Over a period of several months to two years, the carbon's adsorption capacity diminishes. The exhausted carbon bed should be replaced with fresh carbon. The old carbon should be hauled to an approved disposal facility.

ACTIVATED CARBON ABSORBS GASES AND CHEMICALS

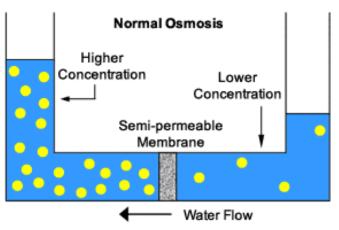
Membrane Filtration Processes

In 1748, the French physicist Nollet first noted that water would diffuse through a pig bladder membrane into alcohol. This was the discovery of osmosis, a process in which water from a dilute solution will naturally pass through a porous membrane into a concentrate solution. Over the years, scientists have attempted to develop a membrane that would be useful in industrial processes, but it wasn't until the late 1950s that membranes were produced that could be used for what is known as reverse osmosis. In reverse osmosis, water is forced to move through a membrane from a concentrate solution to a dilute solution.

Since that time, continual improvements and new developments have been made in membrane technology, resulting in ever-increasing uses in many industries. In potable water treatment, membranes have been used for desalinization, removal of dissolved inorganic and organic

chemicals, water softening, and removal of the fine solids. In particular, membrane technology enables some water systems having contaminated water sources to meet new, more stringent regulations. In some cases, it can also allow secondary sources, such as brackish groundwater, to be used. There is great potential for the continuing wide use of membrane filtration processes in potable water treatment, especially as technology is improved and cost are reduced.

Description of Membrane Filtration Processes


In the simplest membrane processes, water is forced through a porous membrane under pressure while suspended solid, large molecules or ions are held back or rejected.

Types of Membrane Filtration Processes

The two general classes of membrane processes, based on the driving force used to make the process work, are: Pressure-driven processes Electric-driven processes

Pressure-Driven Processes

The four general membrane processes that operate by applying pressure to the raw water are: Microfiltration Ultrafiltration Nanofiltration Reverse Osmosis

Microfiltration

Microfiltration (**MF**) is a process in which water is forced under pressure through a porous membrane. Membranes with a pore size of 0.45 mm are normally used; this size is relatively large compared with the other membrane filtration processes.

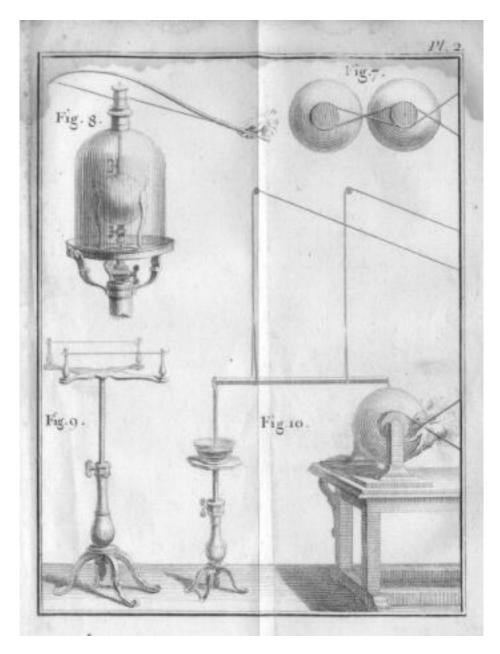
This process has not been generally applicable to drinking water treatment because it either does not remove substances that require removal from potable water, or the problem substances can be removed more economically using other processes. The current primary use of MF is by industries to remove very fine particles from process water, such as in electronic manufacturing. In addition, the process has also been used as a pretreatment for other membrane processes. In particular, Reverse Osmosis (**RO**) membranes are susceptible to clogging or binding unless the water being processed is already quite clean.

However, in recent years, microfiltration has been proposed as a filtering method for particles resulting from the direct filtration process. Traditionally, this direct filtration process has used the injection of coagulants such as alum or polymers into the raw water stream to remove turbidity such as clay or silts. The formed particles were then removed by rapid sand filters. The suggested use is to improve filtering efficiency, especially for small particles that could contain bacterial and protozoan life.

Ultrafiltration

Ultrafiltration (\mathbf{UF}) is a process that uses a membrane with a pore size generally below 0.1 m. The smaller pore size is designed to remove colloids and substances that have larger molecules, which are called high-molecular-weight materials.

UF membranes can be designed to pass material that weigh less than or equal to a certain molecular weight. This weight is called the molecular weight cutoff (**MWC**) of the membrane. Although UF does not generally work well for removal of salt or dissolved solids, it can be used effectively for removal or most organic chemicals.


Nanofiltration

Nanofiltration (**NF**) is a process using membranes that will reject even smaller molecules than UF. The process has been used primarily for water softening and reduction of total dissolved solids (**TDS**). NF operates with less pressure than reverse osmosis and is still able to remove a significant proportion of inorganic and organic molecules. This capability will undoubtedly increase the use of NF for potable water treatment.

Reverse Osmosis

Reverse Osmosis (**RO**) is a membrane process that has the highest rejection capability of all the membrane processes. These RO membranes have very low MWC pore size that can reject ions at very high rates, including chloride and sodium.

Water from this process is very pure due to the high reject rates. The process has been used primarily in the water industry for desalinization of seawater because the capital and operating costs are competitive with other processes for this service. The RO also works most organic chemicals, and radionuclides and microorganisms.

Nollet's first RO machine.

Water Production / Treatment System

Your heart and lungs play a vital role in keeping you alive. If you don't take care of your body and how your blood circulates, you will die. Our body works very similar to the water system we operate. Our lungs clean the blood exchanging carbon dioxide with oxygen; our water treatment plant treats the water by taking impurities out. Our heart pumps the blood to our lungs and out to other vital organs; our water pump stations deliver the water to our systems and to the customers.

What happens if our arteries become clogged and damaged or we lose circulation? The blood flow will no longer make its way back to the lungs or the lungs will no longer be able to send the purified blood to the vital organs. The same can happen if we have problems with our water transmission lines or distribution lines.

Water Treatment Basics

Water is a powerful solvent that is capable of dissolving almost everything it comes in contact with. For instance, water can pick up harmless minerals from the earth, such as calcium, magnesium, carbonates and sulfates. These give the water a pleasing taste as well as beneficial health qualities. This is also because water utilities across the country have in place effective processes to remove contaminants that cause waterborne diseases. The most commonly used processes include filtration, flocculation and sedimentation, and disinfection.

Flocculation/Sedimentation

The flocculation process coagulates (joins together) particles with alum and metal salts so that they settle out of the water as sediment. Sedimentation is simply a gravity process that removes flocculated particles from the water.

Filtration

Filtration removes remaining particles from the water supply. Those particles may include silt, natural organic matter, iron and manganese, and microorganisms. Filtration clarifies water and improves the effectiveness of disinfection.

Disinfection (Chlorination, Ozonation)

Water is then disinfected to ensure that dangerous microbes are killed. Chlorinebased disinfectants or ozone are used because they are very effective. Chlorine-based disinfectants also provide residual protection against biological contamination in the water distribution system. This is a critical step to assure our water is safe all the way to the consumer's tap.

Groundwater and Wells

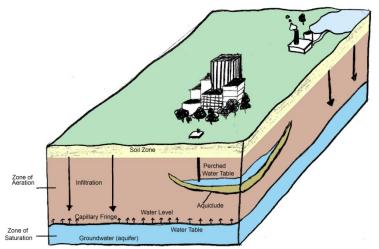
A well can be easily contaminated if it is not properly constructed or if toxic materials are released into the well. Toxic

material spilled or dumped near a well can leach into the aquifer and contaminate the groundwater drawn from that well.

Contaminated Wells

Contaminated wells used for drinking water are especially dangerous. Wells can be tested to see what chemicals may be in the well and if they are present in dangerous quantities.

Groundwater is withdrawn from wells to provide water for everything from drinking water for the home and business to water to irrigate crops to industrial processing water. When water is pumped from the ground, the dynamics of groundwater flow change in response to this withdrawal. Groundwater flows slowly through water-bearing formations (aquifers) at different rates. In some places, where groundwater has dissolved limestone to form caverns and large openings, its rate of flow can be relatively fast but this is exceptional.


Well with a mineral oil sealed vertical turbine pump.

Aquifer

Many terms are used to describe the nature and extent of the groundwater resource. The level below which all the spaces are filled with water is called the *water table*. Above the water table lies the *unsaturated zone*. Here the spaces in the rock and soil contain both air and water. Water in this zone is called *soil moisture*. The entire region below the water table is called the *saturated zone* and water in this saturated zone is called *groundwater*.

Fractured aquifers are cracks, joints, or fractures in solid rock, through which groundwater moves. Examples of fractured aquifers include granite and basalt. Limestones are often fractured aquifers, but here the cracks and fractures may be enlarged by solution, forming large channels or even caverns. Limestone terrain where solution has been very active is termed *karst*.

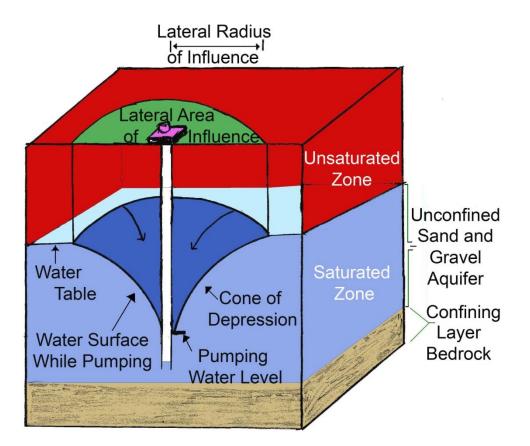
Porous media such as sandstone may become so highly cemented or recrystalized that all of the original space is filled. In this case, the rock is no longer a porous medium. However, if it contains cracks it can still act as a fractured aquifer. Most of the aquifers of importance to us are unconsolidated porous media such as sand and gravel. Some very porous materials are not permeable. Clay, for instance, has many spaces between its grains, but the spaces are not large enough to permit free movement of water.

Groundwater usually flows downhill with the slope of the water table. Like surface water, groundwater flows toward, and eventually drains into, streams, rivers, lakes and the oceans.

Groundwater flow in the aquifers underlying springs or surface drainage basins, however, does not always mirror the flow of water on the surface.

Therefore, groundwater may move in different directions below the ground than the water flowing on the surface.

Vertical Turbine Well


Unconfined aquifers are those that are bounded by the water table. Some aquifers, however, lie beneath layers of impermeable materials. These are called *confined aquifers*, or some-times *artesian aquifers*. A well in such an aquifer is called an *artesian well*. The water in these wells rises higher than the top of the aquifer because of confining pressure. If the water level rises above the ground surface a *flowing artesian well* occurs.

The *piezometric surface* is the level to which the water in an artesian aquifer will rise.

Cone of Depression

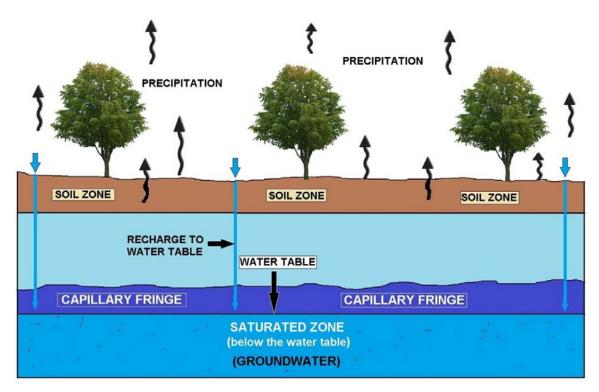
When pumping begins, water begins to flow towards the well in contrast to the natural direction of groundwater movement. The water level in the well falls below the water table in the surrounding aquifer.

As a result, water begins to move from the aquifer into the well. As pumping continues, the water level in the well continues to increase until the rate of flow into the well equals the rate of withdrawal from pumping. The movement of water from an aquifer into a well results in the formation of a cone of depression. The cone of depression describes a three-dimensional inverted cone surrounding the well that represents the volume of water removed as a result of pumping. Drawdown is the vertical drop in the height between the water level in the well prior to pumping and the water level in the well during pumping.

When a well is installed in an unconfined aquifer, water moves from the aquifer into the well through small holes or slits in the well casing or, in some types of wells, through the open bottom of the well. The level of the water in the well is the same as the water level in the aquifer. Groundwater continues to flow through and around the well in one direction in response to gravity.

Distribution 404 1St Edition

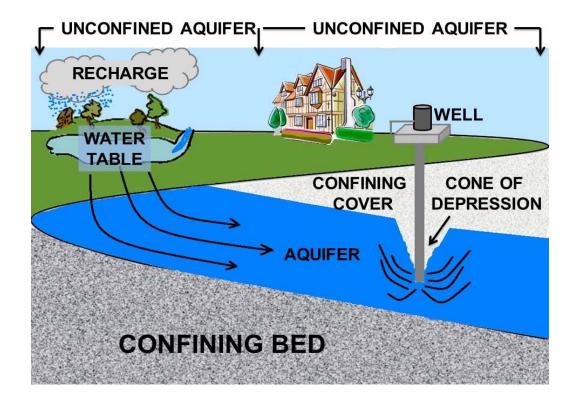
Groundwater Section

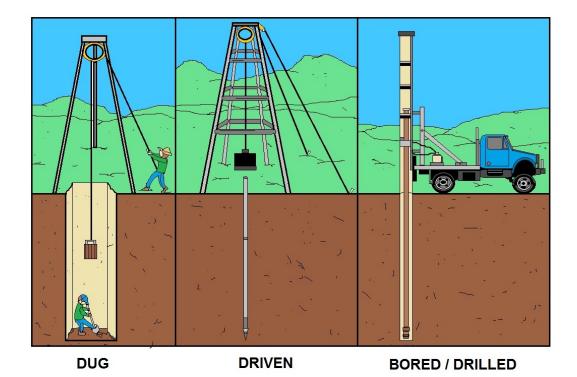

Half of all Americans and more than 95 percent of rural Americans get their household water supplies from underground sources of water, or ground water. Ground water also is used for about half of the nation's agricultural irrigation and nearly one-third of the industrial water needs. This makes ground water a vitally important national resource.

Over the last 10 years, however, public attention has been drawn to incidents of ground-water contamination. This has led to the development of ground-water protection programs at federal, state, and local levels. Because ground-water supplies and conditions vary from one area to another, the responsibility for protecting a community's ground-water supplies rests substantially with the local community.

If your community relies on ground water to supply any portion of its fresh water needs, you, the citizen, will be directly affected by the success or failure of a ground-water protection program.

Equally important, you, the citizen, can directly affect the success or failure of your community's ground-water protection efforts.


This guide is intended to help you take an active and positive role in protecting your community's ground-water supplies. It will introduce you to the natural cycle that supplies the earth with ground water, briefly explain how ground water can become contaminated, examine ways to protect our vulnerable ground-water supplies, and, most important of all, describe the roles you and your community can play in protecting valuable ground-water supplies.



CAPILLARY FRINGE

(Material above water table that may contain water by capillary pressure in small voids)

Distribution 404 1St Edition

TYPES OF WATER WELLS

Groundwater Explained

Many people have never heard of ground water. That's not really so surprising since it isn't readily visible -- ground water can be considered one of our "*hidden*" resources.

What Is Groundwater and Where Does It Come From?

Actually ground water occurs as part of what can be called the oldest recycling program - the hydrologic cycle. The hydrologic cycle involves the continual movement of water between the earth and the atmosphere through evaporation and precipitation. As rain and snow fall to the earth, some of the water runs off the surface into lakes, rivers, streams, and the oceans; some evaporates; and some is absorbed by plant roots. The rest of the water soaks through the ground's surface and moves downward through the unsaturated zone, where the open spaces in rocks and soil are filled with a mixture of air and water, until it reaches the water table. The water table is the top of the saturated zone, or the area in which all interconnected spaces in rocks and soil are filled with water. The water in the saturated zone is called ground water. In areas where the water table occurs at the ground's surface, the ground water discharges into marshes, lakes, springs, or streams and evaporates into the atmosphere to form clouds, eventually falling back to earth again as rain or snow - thus beginning the cycle all over again.

Where Is Ground Water Stored?

Ground water is stored under many types of geologic conditions. Areas where ground water exists in sufficient quantities to supply wells or springs are called aquifers, a term that literally means "water bearer." Aquifers store water in the spaces between particles of sand, gravel, soil, and rock as well as cracks, pores, and channels in relatively solid rocks. An aquifer's storage capacity is controlled largely by its porosity, or the relative amount of open space present to hold water. Its ability to transmit water, or permeability, is based in part on the size of these spaces and the extent to which they are connected.

Basically, there are two kinds of aquifers: confined and unconfined. If the aquifer is sandwiched between layers of relatively impermeable materials (e.g., clay), it is called a confined aquifer. Confined aquifers are frequently found at greater depths than unconfined aquifers. In contrast, unconfined aquifers are not sandwiched between these layers of relatively impermeable materials, and their upper boundaries are generally closer to the surface of the land.

Does Ground Water Move?

Ground water can move sideways as well as up or down. This movement is in response to gravity, differences in elevation, and differences in pressure. The movement is usually quite slow, frequently as little as a few feet per year, although it can move as much as several feet per day in more permeable zones. Ground water can move even more rapidly in karst aquifers, which are areas in water soluble limestone and similar rocks where fractures or cracks have been widened by the action of the ground water to form sinkholes, tunnels, or even caves.

How Is Ground Water Used?

According to the U.S. Geological Survey, ground-water use increased from about 35 billion gallons a day in 1950 to about 87 billion gallons a day in 1980. Approximately one-half of all fresh water used in the nation comes from ground water. Whether it arrives via a public water supply system or directly from a private well, ground water ultimately provides approximately 35 percent of the drinking water supply for urban areas and 95 percent of the supply for rural areas, quenching the thirst and meeting other household needs of more than 117 million people in this nation.

Overall, more than one-third of the water used for agricultural purposes is drawn from ground water; Arkansas, Nebraska, Colorado, and Kansas use more than 90 percent of their ground-water withdrawals for agricultural activities. In addition, approximately 30 percent of all ground water is used for industrial purposes. Groundwater use varies among the states, with some states, such as Hawaii, Mississippi, Florida, Idaho, and New Mexico, relying on ground water to supply considerably more than three-fourths of their household water needs and other states, such as Colorado and Rhode Island, supplying less than one-quarter of their water needs with ground water.

Ground-Water Quality

Until the 1970s, ground water was believed to be naturally protected from contamination. The layers of soil and particles of sand, gravel, crushed rocks, and larger rocks were thought to act as filters, trapping contaminants before they could reach the ground water. Since then, however, every state in the nation has reported cases of contaminated ground water, with some instances receiving widespread publicity. We now know that some contaminants can pass through all of these filtering layers into the saturated zone to contaminate ground water.

Between 1971 and 1985, 245 ground-water related disease outbreaks, with 52,181 associated illnesses, were reported. Most of these diseases were short-term digestive disorders. About 10 percent of all ground-water public water supply systems are in violation of drinking water standards for biological contamination. In addition, approximately 74 pesticides, a number of which are known carcinogens, have been detected in the ground water of 38 states. Although various estimates have been made about the extent of ground-water contamination, these estimates are difficult to verify given the nature of the resource and the difficulty of monitoring its quality.

How Does Ground Water Become Contaminated?

Ground-water contamination can originate on the surface of the ground, in the ground above the water table, or in the ground below the water table. Table I shows the types of activities that can cause ground-water contamination at each level. Where a contaminant originates is a factor that can affect its actual impact on ground-water quality. For example, if a contaminant is spilled on the surface of the ground or injected into the ground above the water table, it may have to move through numerous layers of soil and other underlying materials before it reaches the ground water.

As the contaminant moves through these layers, a number of processes are in operation (e.g., filtration, dilution, oxidation, biological decay) that can lessen the eventual impact of the substance once it finally reaches the ground water. The effectiveness of these processes also is affected by both the distance between the ground water and where the contaminant is introduced and the amount of time it takes the substance to reach the ground water. If the contaminant is introduced directly into the area below the water table, the primary process that can affect the impact of the contaminant is dilution by the surrounding ground water.

GROUND SURFACE	Infiltration of polluted surface water Land disposal of wastes Stockpiles Dumps Sewage sludge disposal	De-icing salt use & storage Animal feedlots Fertilizers & pesticides Accidental spills Airborne source particulates
ABOVE WATER TABLE	Septic tanks, cesspools, & privies Holding ponds & lagoons Sanitary landfills Waste disposal in excavations Underground storage tank leaks	Underground pipeline leaks Artificial recharge Sumps and dry wells Graveyards
BELOW WATER TABLE	Waste disposal in wells Drainage wells and canals Underground storage Mines	Exploratory wells Abandoned wells Water-supply wells Ground-water withdrawal

TABLE 1. Activities That Can Cause Ground-Water Contamination

In comparison with rivers or streams, ground water tends to move very slowly and with very little turbulence. Therefore, once the contaminant reaches the ground water, little dilution or dispersion normally occurs. Instead, the contaminant forms a concentrated plume that can flow along the same path as the ground water. Among the factors that determine the size, form, and rate of movement of the contaminant plume are the amount and type of contaminant and the speed of ground-water movement.

Because ground water is hidden from view, contamination can go undetected for years until the supply is tapped for use.

What Kinds of Substances Can Contaminate Groundwater, and Where Do They Come From?

Substances that can contaminate ground water can be divided into two basic categories: substances that occur naturally and substances produced or introduced by man's activities. Substances that occur naturally include minerals such as iron, calcium, and selenium. Substances resulting from man's activities include synthetic organic chemicals and hydrocarbons (e.g., solvents, pesticides, petroleum products); landfill leachates (liquids that have dripped through the landfill and carry dissolved substances from the waste materials), containing such substances as heavy metals and organic decomposition products; salt; bacteria; and viruses. A significant number of today's ground-water contamination problems stem from man's activities and can be introduced into ground water from a variety of sources.

Septic Tanks, Cesspools, and Privies

A major cause of ground-water contamination in many areas of the United States is effluent, or outflow, from septic tanks, cesspools, and privies. Approximately one fourth of all homes in the United States rely on septic systems to dispose of their human wastes. If these systems are improperly sited, designed, constructed, or maintained, they can allow contamination of the ground water by bacteria, nitrates, viruses, synthetic detergents, household chemicals, and chlorides. Although each systems and their widespread use in every area that does not have a public sewage treatment system makes them serious contamination sources.

Surface Impoundments

Another potentially significant source of ground-water contamination is the more than 180,000 surface impoundments (e.g., ponds, lagoons) used by municipalities, industries, and businesses to store, treat, and dispose of a variety of liquid wastes and wastewater. Although these impoundments are supposed to be sealed with compacted clay soils or plastic liners, leaks can and do develop.

Agricultural Activities

Agricultural activities also can make significant contributions to ground-water contamination with the millions of tons of fertilizers and pesticides spread on the ground and from the storage and disposal of livestock wastes. Homeowners, too, can contribute to this type of ground-water pollution with the chemicals they apply to their lawns, rosebushes, tomato plants, and other garden plants.

Landfills

There are approximately 500 hazardous waste land disposal facilities and more than 16,000 municipal and other landfills nationwide. To protect ground water, these facilities are now required to be constructed with clay or synthetic liners and leachate collection systems. Unfortunately, these requirements are comparatively recent, and thousands of landfills were built, operated, and abandoned in the past without such safeguards. A number of these sites have caused serious ground-water contamination problems and are now being cleaned up by their owners, operators, or users; state governments; or the federal government under the Superfund program (see p. 8). In addition, a lack of information about the location of many of these sites makes it difficult, if not impossible, to determine how many others may now be contaminating ground water.

Underground Storage Tanks

Between five and six million underground storage tanks are used to store a variety of materials, including gasoline, fuel oil, and numerous chemicals. The average life span of these tanks is 18 years, and over time, exposure to the elements causes them to corrode. Now, hundreds of thousands of these tanks are estimated to be leaking, and many are contaminating ground water. Replacement costs for these tanks are estimated at \$1 per gallon of storage capacity; a cleanup operation can cost considerably more.

Abandoned Wells

Wells can be another source of ground-water contamination. In the years before there were community water supply systems, most people relied on wells to provide their drinking water. In rural areas this can still be the case. If a well is abandoned without being properly sealed, however, it can act as a direct channel for contaminants to reach ground water.

Accidents and Illegal Dumping

Accidents also can result in ground-water contamination. A large volume of toxic materials is transported throughout the country by truck, train, and airplane.

Every day accidental chemical or petroleum product spills occur that, if not handled properly, can result in ground-water contamination. Frequently, the automatic reaction of the first people at the scene of an accident involving a spill will be to flush the area with water to dilute the chemical. This just washes the chemical into the soil around the accident site, allowing it to work its way down to the ground water. In addition, there are numerous instances of ground-water contamination caused by the illegal dumping of hazardous or other potentially harmful wastes.

Highway De-icing

A similar flushing mechanism also applies to the salt that is used to de-ice roads and highways throughout the country every winter. More than 11 million tons of salt are applied to roads in the United States annually. As ice and snow melt or rain subsequently falls, the salt is washed into the surrounding soil where it can work its way down to the ground water. Salt also can find its way into ground water from improperly protected storage stockpiles.

What Can Be Done After Contamination Has Occurred?

Unlike rivers, lakes, and streams that are readily visible and whose contamination frequently can be seen with the naked eye, ground water itself is hidden from view. Its contamination occurs gradually and generally is not detected until the problem has already become extensive. This makes cleaning up contamination a complicated, costly, and sometimes impossible process.

In general, a community whose ground-water supply has been contaminated has five options: Contain the contaminants to prevent their migration from their source.

Withdraw the pollutants from the aquifer.

Treat the ground water where it is withdrawn or at its point of use.

Rehabilitate the aquifer by either immobilizing or detoxifying the contaminants while they are still in the aquifer.

Abandon the use of the aquifer and find alternative sources of water

Which option is chosen by the community is determined by a number of factors, including the nature and extensiveness of the contamination, whether specific actions are required by statute, the geologic conditions, and the funds available for the purpose. All of these options are costly. For example, a community in Massachusetts chose a treatment option when the wells supplying its public water system were contaminated by more than 2,000 gallons of gasoline that had leaked into the ground from an underground storage tank less than 600 feet from one of the wells.

The town temporarily provided alternative water supplies for its residents and then began a cleanup process that included pumping out and treating the contaminated water and then recharging the aquifer with the treated water. The cleanup effort alone cost more than \$3 million. Because of the high costs and technical difficulties involved in the various containment and treatment methods, many communities will choose to abandon the use of the aquifer when facing contamination of their ground-water supplies. This requires the community to either find other water supplies, drill new wells farther away from the contaminated area of the aquifer, deepen existing wells, or drill new wells in another aquifer if one is located nearby. As Atlantic City, New Jersey, found, these options also can be very costly for a community. The wells supplying that city's public water system were contaminated by leachate from a landfill. The city estimated that development of a new wellfield would cost approximately \$2 million.

Government Ground-Water Protection Activities

Given the importance of ground water as a source of drinking water for so many communities and individuals and the cost and difficulty of cleaning it up, common sense tells us that the best way to guarantee continued supplies of clean ground water is to prevent contamination.

Are There Federal Laws or Programs to Protect Ground Water?

The U.S. Environmental Protection Agency (**EPA**) is responsible for federal activities relating to the quality of ground water. EPA's ground-water protection activities are authorized by a number of laws, including: The Safe Drinking Water Act, which authorizes EPA to set standards for maximum levels of contaminants in drinking water, regulate the underground disposal of wastes in deep wells, designate areas that rely on a single aquifer for their water supply, and establish a nationwide program to encourage the states to develop programs to protect public water supply wells (i.e., wellhead protection programs).

The Resource Conservation and Recovery Act, which regulates the storage, transportation, treatment, and disposal of solid and hazardous wastes to prevent contaminants from leaching into ground water from municipal landfills, underground storage tanks, surface impoundments, and hazardous waste disposal facilities.

The Comprehensive Environmental Response, Compensation, and Liability Act (Superfund), which authorizes the government to clean up contamination caused by chemical spills or hazardous waste sites that could (or already do) pose threats to the environment, and whose 1986 amendments include provisions authorizing citizens to sue violators of the law and establishing "community right-to-know" programs (Title III).

The Federal Insecticide, Fungicide, and Rodenticide Act, which authorizes EPA to control the availability of pesticides that have the ability to leach into ground water.

The Toxic Substances Control Act which authorizes EPA to control the manufacture, use, storage, distribution, or disposal of toxic chemicals that have the potential to leach into ground water.

The Clean Water Act, which authorizes EPA to make grants to the states for the development of groundwater protection strategies and authorizes a number of programs to prevent water pollution from a variety of potential sources.

The federal laws tend to focus on controlling potential sources of ground-water contamination on a national basis. Where federal laws have provided for general ground-water protection activities such as wellhead protection programs or development of state ground-water protection strategies, the actual implementation of these programs must be by the states in cooperation with local governments.

A major reason for this emphasis on local action is that protection of ground water generally involves making very specific decisions about how land is used. Local governments frequently exercise a variety of land-use controls under state laws.

Do the States Have Laws or Programs to Protect Ground Water?

According to a study conducted for EPA in 1988, most of the states have passed some type of ground-water protection legislation and developed some kind of ground-water policies. State ground-water legislation can be divided into the following subject categories:

Statewide strategies - Requiring the development of a comprehensive plan to protect the state's ground-water resources from contamination.

Ground-water classification - Identifying and categorizing ground-water sources by how they are used to determine how much protection is needed to continue that type of use.

Standard setting - Identifying levels at which an aquifer is considered to be contaminated.

Land-use management - Developing planning and regulatory mechanisms to control activities on the land that could contaminate an aquifer.

Ground-water funds - Establishing specific financial accounts for use in the protection of ground-water quality and the provision of compensation for damages to underground drinking water supplies (e.g., reimbursement for ground-water cleanup, provision of alternative drinking water supplies).

Agricultural chemicals - Regulating the use, sale, labeling, and disposal of pesticides, herbicides, and fertilizers.

Underground storage tanks - Establishing criteria for the registration, construction, installation, monitoring, repair, closure, and financial responsibility associated with tanks used to store hazardous wastes or materials.

Water-use management - Including ground-water quality protection in the criteria used to justify more stringent water allocation measures where excessive ground-water withdrawal could cause ground-water contamination.

Appendix 1 presents a matrix showing the types of ground-water protection legislation enacted by the states. In addition to ground-water protection programs states may have developed under their own laws, one state ground-water protection program is required by federal law. The 1986 amendments to the Safe Drinking Water Act established the wellhead protection program and require each state to develop comprehensive programs to protect public water supply wells from contaminants that could be harmful to human health. Wellhead protection is simply protection of all or part of the area surrounding a well from which the well's ground water is drawn. This is called a wellhead protection area (WHPA). The size of the WHPA will vary from site to site depending on a number of factors, including the goals of the state's program and the geologic features of the area.

The law specifies certain minimum components for the wellhead protection programs: The roles and duties of state and local governments and public water suppliers in the management of wellhead protection programs must be established.

The WHPA for each wellhead must be delineated (i.e., outlined or defined).

Contamination sources within each WHPA must be identified.

Approaches for protecting the water supply within the WHPAs from the contamination sources (e.g., use of source controls, education, training) must be developed.

Contingency plans must be developed for use if public water supplies become contaminated.

Provisions must be established for proper sitting of new wells to produce maximum water yield and reduce the potential for contamination as much as possible.

Provisions must be included to ensure public participation in the process.

For a program to be successful, all levels of government must participate in the wellhead protection program. The federal government is responsible for approving state wellhead protection programs and for providing technical support to state and local governments. State governments must develop and implement wellhead protection programs that meet the requirements of the Safe Drinking Water Act. Although the responsibilities of local governments depend on the specific requirements of their state's program, these governments often are in the best position (and have the greatest incentive) to ensure proper protection of wellhead areas. They have the most to lose if their ground-water becomes contaminated.

Although the Clean Water Act does not require states to develop ground-water protection strategies, the legislation does authorize states to take this action. As of 1989, all 50 states have at least begun to develop ground-water protection strategies, and some of these are in advanced stages. Proceeding at varying paces, the states are tailoring their efforts to fit their own perceived needs and budgets.

Citizen and Community Roles

In the first three chapters of this guide, you learned how dependent our nation is on ground water to provide water for drinking and other household uses, agriculture, and industry. You also learned a little about the many substances that can contaminate our ground-water supplies, where they can come from, and how difficult and costly it is to try to clean up ground water once it has been contaminated. Finally, you were given some information about current national and state programs to protect ground water. This chapter will focus on what actions you and your community can take to protect your ground-water supplies.

What Information Do You and Your Community Need?

Because no two communities are exactly alike in terms of hydrogeologic conditions, resources, or problems, ground-water protection efforts should be tailored specifically to meet the needs of each community. Thus, before you can begin to help your community develops an effective program to manage its ground-water resources; you will need the answers to some very specific questions.

What Has Your State Done to Protect Ground Water?

As you saw in Chapter III, the Safe Drinking Water Act requires all states to develop programs to protect public water supply wells from contaminants that could be harmful to human health. Information on your state's wellhead protection program should be available from the agency in your state that is managing this program. (Appendix 2 contains a list of the state agencies managing wellhead protection programs.)

Chapter III also mentioned that all 50 states are in the process of developing comprehensive ground-water protection strategies. Such a strategy can provide you with information on who has what ground-water responsibility in the state and on how any existing state programs fit together. A copy of your state's ground-water protection strategy should be available from the agency in your state that is managing this effort. (**Appendix 2** also contains a list of these state agencies.)

Does Your Community's Drinking Water Come from Ground Water, and What Information Is Available About Your Community's Wells?

If your community's drinking water comes from ground water, you will need some basic information about your community's hydrogeologic setting, including the types of soil conditions and geologic formations and the type, location, and depth of the aquifer that stores the ground water. In addition, information on the community's wells will be needed, including whether they are public or private, shallow or deep; their locations; and how they are constructed. It also could be important to know if sites have been identified for future wells.

Potential sources for this information include your local library, your local water supply agency, and your state geological survey, a local office of the U.S. Geological Survey (**USGS**), a county agricultural extension agent, or even the geology or engineering department of a local university or college.

What Is the Current Quality of Your Ground-Water Supply, and What Actual or Potential Sources of Contamination Are Present in Your Community?

You will need to know if your water is currently free from bacterial and chemical pollution and what kinds of procedures are in place to test or monitor ground-water quality. Initial information on the quality of your community's ground water should be available from your local water supply agency or your local health department.

Closely related to the issue of ground-water quality is determining whether there are activities in the community that produce or use toxic or hazardous substances and where underground storage tanks are located. Information on activities using or producing toxic or hazardous materials may be more difficult to obtain, but the community right-to-know provisions in the 1986 Superfund amendments may give you a starting point. These provisions require the establishment of state planning commissions, emergency planning districts, and local emergency planning committees. They also require companies that use certain toxic or hazardous substances to report to these committees. Companies also are required to report serious environmental releases immediately. All of this information is required to be available to the public.

Another source of information on environmental releases is available in a data base developed by EPA called the Toxic Chemical Release Inventory that is publicly accessible through the National Library of Medicine. The data include the names, addresses, and public contacts of plants manufacturing, processing, or using the reported chemicals; the maximum amount stored onsite; the estimated quantity emitted into the air, discharged into bodies of water, injected underground, or released to land; methods used in waste treatment and their efficiency; and information on the transfer of chemicals offsite for treatment and disposal.

(To obtain additional information on this data base, see Appendix 2.) On a local level, your community's fire department also may be helpful in providing information on both companies using toxic or hazardous materials and the location of underground storage tanks.

What Can Your Community Do to Protect Its Ground Water?

If your community relies on ground water for its water supplies, it has a strong incentive to protect that ground water. Before a plan or program can be developed to protect ground water, it is important to identify existing or potential threats to the ground water. This will generally mean conducting an inventory to learn the location of facilities using, manufacturing, or storing materials that have the potential to pollute ground water.

How your community conducts this inventory will depend largely on the resources available, particularly the number of people available to do the work and funds. A number of communities, however, have had great success in using groups of volunteers to conduct their inventories. For example, the city of El Paso, Texas, has mobilized its senior citizens with the help of the federally funded Retired Senior Volunteer Program (RSVP) and the Texas Water Commission. The inventory of existing or potential threats to the community's ground water may be quite long, and it is unlikely that your community will have the resources to address all of these threats. How do community officials decide which threats are the most serious or set priorities? One way is to assess these threats on the basis of their relative risks to the community's ground water. This requires determining which of the specific pollutants are most likely to be released and reach the ground water in concentrations high enough to pose health risks.

In addition to having an incentive to protect its ground water, your community has a number of powers that can be used for that purpose. These include implementing zoning decisions; developing land-use plans; overseeing building and fire codes; implementing health requirements; supplying water, sewer, and waste disposal services; and using their police powers to enforce regulations and ordinances. A few communities have begun developing their own ground-water protection programs using a variety of management tools based on these powers. These management tools include:

Zoning Ordinances - To divide a municipality into land-use districts and separate incompatible land uses such as residential, commercial, and industrial; zoning also defines the type of activity that can occur within a district and specifies appropriate regulations that can be used prevent activities that could be harmful to the community's ground water.

Subdivision Ordinances - Applied when a piece of land is actually being divided into lots for sale or development to ensure that growth does not outpace available local facilities such as roads, schools, and fire protection; subdivision ordinances also can be used to set density standards, require open space set asides, and regulate the timing of development, all of which can have significant impacts on ground-water quality.

Site Plan Review - To determine if a proposed development project is compatible with existing land uses in the surrounding area and if existing community facilities will be able to support the planned development; this review also can be used to determine compatibility of the proposed project with any ground-water protection goals.

Design Standards - To regulate the design, construction, and ongoing operation of various land-use activities by imposing specific physical requirements, such as the use of double-walled tanks to store chemicals underground.

Operating Standards - To ensure the safety of workers, other parties, and the environment by specifying how an activity is to be conducted; these can take the form of best management practices (BMPs) that define a set of standard operating procedures for use in a particular activity to limit the threat to the environment (e.g., limits on pesticide applications or animal feedlot operations).

Source Prohibitions - To prohibit the storage or use of dangerous materials in a defined area; these can take the form of prohibitions of certain activities or of restrictions on the use of certain materials.

Purchase of Property or Development Rights - To guarantee community control over the activities on lands that feed water into an aquifer, this may involve outright purchase of the land or of a more limited interest, such as surface-use rights.

Public Education - To build community support for regulatory programs, such as controls on pollution sources in special zoning districts, and to motivate voluntary ground-water protection efforts, such as water conservation or household hazardous waste management.

Ground-Water Monitoring - To assess the quality of local aquifers by sampling public and private wells for selected contaminants.

Household Hazardous Waste Collection - To alleviate the threat to ground water from the disposal in regular trash pick-ups, sewers, or septic systems of household products that contain hazardous substances or other materials that can be harmful to ground water, such as paints, solvents, or pesticides.

Water Conservation - To reduce the total quantity of water withdrawn from ground-water aquifers and to protect against contamination by reducing the rate at which contaminants can spread in the aquifer (e.g., excessive withdrawals from an aquifer located near the ocean can draw salt water into the aquifer and contaminate wells).

How Can You Clean Up Your Own Act?

So far, the emphasis has been on how you can help your community to protect its ground water through the development of community-wide policies and programs. But ground-water protection also begins at home. How do your personal habits affect your community's ground water quality? What can you, as an individual, do to protect your community's ground water?

How Do You Dispose of the Polluting Materials Used in Your Home?

You may be surprised to learn that the way you dispose of products you use at home can contribute to the contamination of your community's ground water. You may be even more surprised to learn that a number of the products you use at home contain hazardous or toxic substances.

The truth is, however, that products like motor oil, pesticides, left-over paints or paint cans, mothballs, flea collars, weedkillers, household cleaners, and even a number of medicines contain materials that can be harmful to ground water and to the environment in general. (See Appendix 1 for a list of the types of products commonly found around homes and their potentially harmful components.) The average American disposes of approximately one pound of this type of waste each year. So, although the amount of any of these substances that you pour down your drain, put in your trash, or dump on the ground may seem insignificant to you, try multiplying it by the number of people in your community. That amount may not seem so insignificant.

Don't Pour It Down the Drain! Anything you pour down your drain or flush down your toilet will enter your septic system or your community's sewer system. Using this method to dispose of products that contain harmful substances can affect your septic system's ability to treat human wastes.

Once in the ground, these harmful substances can eventually contaminate the ground water. In addition, most community wastewater treatment plants are not designed to treat many of these substances. Thus, they can eventually be discharged into bodies of surface water and cause contamination.

Don't Put It in the Trash! Community landfills also generally are not equipped to handle hazardous materials. As rain and snow pass through the landfill, the water can become contaminated by these products and eventually carry them into the ground water and surface water.

Don't Dump It on the Ground! Hazardous wastes that are dumped on or buried in the ground can contaminate the soil and either leach down into the ground water or be carried into a nearby body of surface water by runoff during rainstorms.

Do Use and Dispose of Harmful Materials Properly! There are very few options for disposing of hazardous products used in your home, so the first step may be to limit your use of such products. Whenever possible, substitute a nonhazardous product. When that is not possible, buy only as much as you need.

Larger quantities may be less expensive, but they leave you with the problem of disposing of them safely. Finally, urge community officials to sponsor periodic household hazardous waste collection days if they have not established this policy.

By helping your community to centralize collection of hazardous household wastes for appropriate disposal, you will be helping your community to make a major contribution toward protecting its ground water. The saying "Garbage in, garbage out" applies to more than computer data bases.

How Do You Take Care of Your Septic System?

Your septic system is designed to have its effluent discharge into a drainage field where it undergoes some decomposition by micro-organisms in the soil as it works its way down to the ground water. If your system is not pumped out frequently enough, solid materials can leave the tank and enter the drainage field. Any substances poured down your drains also will enter that drainage field and, eventually, the ground water. To prevent ground-water contamination from your septic system:

Have your septic system inspected annually and pumped out regularly; no chemical or other additive can be a substitute for this, and these septic system chemicals actually can prevent your septic system from functioning properly

Be cautious about what you put into your system; substances like coffee grounds, cigarette butts, sanitary items, or fats do not break down easily in septic systems, and chemicals like paints, solvents, oil, and pesticides will go from your septic system into the ground water.

Limit the amount of water entering your system by using water-saving fixtures and appliances.

How Does Your Garden Grow?

If you are a homeowner, you probably take a lot of pride in your home and the yard surrounding it. You may apply fertilizers to make your grass thick and green, your flowers colorful, and your vegetable crop abundant. You also may use pesticides to keep bugs from ruining what the fertilizers have helped to produce. What you may not know, however, is that many of these fertilizers and pesticides contain hazardous chemicals that can travel through the soil and contaminate ground water. If you feel you must use these chemicals, use them in moderation. This is not a case of "more is better." Your county extension agent can provide information on natural ways to control lawn, garden, and tree pests that can reduce reliance on chemicals.

What Else Can You Do?

Get informed and get involved! Around the country, citizens are getting involved in their communities, volunteering their time and energy, and making a difference. If you think one person can't change the system, help form a group. You, alone or as part of a group, can help to educate your family, friends, and neighbors about the importance of ground water to your community. And, after you've cleaned up your own act, you can help your community clean up its act.

APPENDIX 1. POTENTIALLY HARMFUL COMPONENTS OF COMMON HOUSEHOLD PRODUCTS

Product

Antifreeze (gasoline or coolant systems) Automatic transmission fluid Battery acid (Electrolyte) Degreasers for driveways and garages Degreasers for engines and metal

Engine and radiator flushes Hydraulic fluid (brake fluid) Motor oils; and waste oils Gasoline and jet fuel Diesel fuel, kerosene, #2 heating oil Grease, lubes Rustproofers Car wash detergents Car waxes and polishes Asphalt and roofing tar Paints, varnishes, stains, dyes Paint and lacquer thinner

Paint and varnish removers, deglossers

Paint brush cleaners

Floor and furniture strippers Metal polishes Laundry soil and stain removers Spot removers arid dry cleaning fluid

Other solvents Rock salt (Halite) Refrigerants Bug and tar removers Household cleansers, oven cleaners Drain cleaners Toilet cleaners Cesspool cleaners

Disinfectants Pesticides (all types)

Photochemicals

Printing ink Wood preservatives (creosote) Swimming pool chlorine Lye or caustic soda Jewelry cleaners

Toxic or Hazardous Components

methanol, ethylene glycol petroleum distillates, xylene sulfuric acid petroleum solvents, alcohols, glycol ether chlorinated hydrocarbons, toluene, phenols, dichloroperchloroethylene petroleum solvents, ketones, butanol, glycol ether hydrocarbons, fluorocarbons hydrocarbons hydrocarbons hydrocarbons hydrocarbons phenols, heavy metals alkyl benzene sulfonates petroleum distillates, hydrocarbons hydrocarbons heavy metals, toluene acetone, benzene, toluene, butyl, acetate, methyl ketones methylene chloride, toluene, acetone, xylene, ethanol, benzene, methanol hydrocarbons, toluene, acetone, methanol, glycol ethers, methyl ethyl ketones xylene petroleum distillates, isopropanol, petroleum naptha petroleum distillates, tetrachloroethylene hydrocarbons, benzene, trichloroethylene, 1, 1, 1 trichloroethane acetone, benzene sodium concentration 1, 1, 2 trichloro - 1, 2, 2 trifluoroethane xylene, petroleum distillates xylenols, glycol ethers, isopropanol 1, 1, 1 trichloroethane xylene, sulfonates, chlorinated phenols tetrachloroethylene, dichlorobenzene, methylene chloride cresol, xylenols napthalene, phosphorus, xylene, chloroform, heavy metals, chlorinated hydrocarbons phenols, sodium sulfite, cyanine, silver halide, potassium bromide heavy metals, phenol-formaldehyde pentachlorophenols sodium hypochlorite sodium hydroxide sodium cyanide

Chemical separation and recycling of batteries, oils and paint is important to a groundwater protection program. This includes proper pesticide disposal and triple-rinsing pesticide containers. Be carefully on chemical application and always clean-up spills.

HAZARDOUS WASTE FEDERAL LAWS L'ROHIBIT IMPROPER DISPOSAL	1
IF FOUND, CONTACT THE REAREST POLICE OR POSILIC SAFETY AUTHORITY OR THE U.S. ENVIRONMENTAL PROTECTION ASSICT	1
COMENATOR INFORMATION: WEDD	1
	1 Na
EPA ADROMODICIOL PARA	1
ACCUMILATION MANFEST NO.	
	人關係
HANDLE WITH CARE!	1

Water Well Reports and Hydrogeology Introduction

Filling in the blanks doesn't just satisfy some agency's requirements. Good well reports also provide hydrogeologists from the public and private sector with valuable information regarding local ground water systems. *By Dennis Nelson*

HYDROGEOLOGISTS ARE OFTEN CALLED UPON TO evaluate an aspect of a ground water system for example, the direction of ground water flow, the potential impact of a given land use on ground water, the potential impact of a well on another well or nearby stream, or the "*capture zone*" for a given well.

In order to conduct such an evaluation, the hydrogeologist must have actual or reasonable estimates of the physical and hydraulic properties of the geologic material through which the ground water is moving. In some cases, data may be available in the form of geologic maps, aquifer tests, monitoring wells, or written reports. In many cases, however, the only information available is in the form of well reports (well logs), filed by well constructors at the time of drilling.

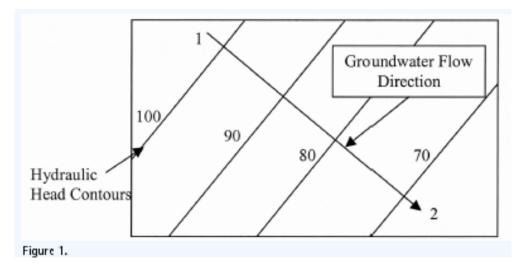
The importance of water well reports in hydrogeological investigations cannot be overstated. The information collected by well

constructors during and after the drilling of a well is often the only information available to the hydrogeologist. In many cases, it is our only "*window*" into the aquifer. The purpose of this document is to describe the type of ground water information needed to conduct typical hydrogeological assessments, and how the data collected by well constructors is used to obtain this information.

Hydrogeologic Data

For hydrogeologists to make reliable assessments about the current and future status of ground water, they need to know where ground water occurs in the subsurface, what the properties are of the various geologic units below the surface, and how fast and in what direction ground water is moving. Obtaining the data necessary for these studies can be time consuming and expensive.

Well reports, however, can provide information that can be used to determine if further data is needed, and if so, what data and from where. In this document, important hydrogeologic parameters that are used will be discussed first, followed by several general examples of how they are used. Finally, how a typical well report can be used to acquire this data will be described.


Depth to the Aquifer

It is necessary to identify which geologic unit is the aquifer; i.e., the porous and permeable rock or sediment that contains ground water and the depth at which it occurs. It is often also important to know the type of geologic materials that occur from the surface down to the top of the aquifer.

Nature of the Aquifer

The nature of the aquifer can be described as either unconfined or confined. An unconfined aquifer has the water table as its upper surface; there are no significant low-permeability layers between the water table and the surface; and the aquifer is recharged locally, (in the immediate vicinity of the well). The top of the aquifer, the water table, can rise or fall depending on water use and amount of recharge to the aquifer.

A confined aquifer has a low-permeability geologic formation (a confining layer) as its upper boundary; the ground water in the aquifer is under pressure; the aquifer is separated from the surface by the confining layer and generally is recharged at some distance from the well, e.g., in nearby or distant areas of higher topography.

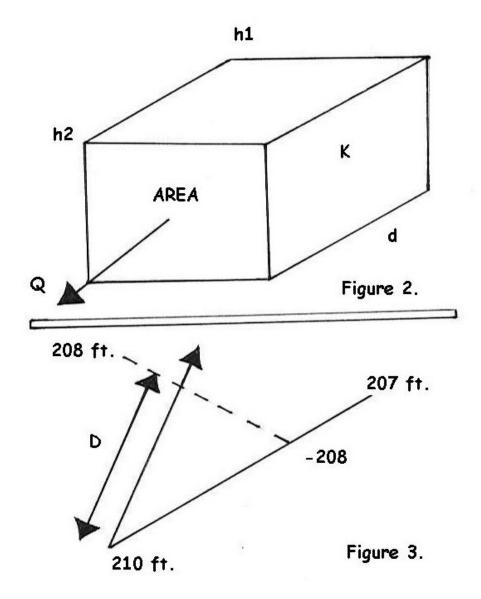
Hydraulic Head (h)

The hydraulic head is a measure of the energy that the water at a certain depth possesses because of its elevation and the pressure exerted through the weight of the water above it. Hydraulic head has units of feet, and generally corresponds to the elevation of water in the well.

Hydraulic head is the driving force for ground water movement either in a horizontal or vertical direction. Ground water moves from where the head is higher to where the head is lower. If we have enough hydraulic head data for an aquifer over a given area, we can contour the head elevation just like the ground elevation is contoured on a topographic map. Ground water will move from high head areas to low head areas and will generally flow in a direction that crosses the contours at a 90° angle (see Figure 1).

The change in hydraulic head (h1- h2) over the distance from point 1 to point 2 (D1,2) is the gradient (I), calculated as

I = (h1 - h2)/D1,2


In Figure 1, assuming points 1 and 2 represent individual wells, the gradient would be the difference in head between well 1 (~102 feet) and well 2 (~68 feet) divided by the horizontal (map) distance between the two wells.

Thickness of the Aquifer (b) and Water-Bearing Zones

To evaluate the amount of ground water moving through the aquifer or its ability to supply ground water to wells, it is necessary to know the thickness of the aquifer. It is also important to be able to identify whether the aquifer is uniform throughout its thickness or consists of one or more discrete water-bearing zones.

Aquifer Porosity (n)

The volume of open space relative to the total volume of the aquifer (porosity) and the degree to which these pore spaces are interconnected (effective porosity) controls the volume of water in the aquifer and the amount of water that can be reasonably withdrawn from the aquifer. For a given gradient, the effective porosity strongly influences the velocity in which the ground water is moving.

Permeability of the Aquifer (K)

The permeability, or hydraulic conductivity, of the aquifer is a measure of how fast ground water can move through the aquifer. Hydraulic conductivity has units of distance/time, e.g., feet/day, although it does not represent an actual speed.

Examples of the Use of Hydrogeological Parameters--Is the Aquifer Unconfined or Confined?

As indicated previously, whether an aquifer is confined or unconfined has important implications for its vulnerability to pollution. The most direct method of determining this characteristic is to compare the hydraulic head to the elevation of the top of the aquifer. Unconfined aquifers have the water table as their upper boundary. The water table is at atmospheric pressure and therefore, when the aquifer is drilled into, the water level in the well remains at the same elevation as the water table. Confined aquifers contain water that is under pressure.

When the aquifer is drilled into, the water level in the well will rise to a higher elevation than that of the top of the aquifer (remember that water seeks its own level).

Volume Rate of Ground Water Moving Through an Aquifer

If we wanted to know how much ground water was traveling through an aquifer, we can apply Darcy's law, which states that the rate (Q) is equal to the hydraulic conductivity (K), times the cross-sectional area of the aquifer (A), times the hydraulic gradient (I):

$Q (ft^3/day) = K (ft/day) X A (ft^2)$ X I (ft/ft),

where I = (h1 - h2)/d in Figure 2.

Consider a gravel quarry that intersects an aquifer through a thickness of 50 feet and a width of 500 feet. If the aquifer had a hydraulic conductivity of 50 feet/day with a gradient of a 1-foot drop for every 1000 feet of horizontal distance (I = 0.001), what volume of ground water would have to be pumped out of the quarry each day in order to keep it dry?

Q (ft3/day) = 50 ft/day X (50 feet X 500 feet) X 0.001 (ft/ft)

Q (ft3/day) = 1250 ft3/day or approximately 9300 gallons per day

It is common to combine the hydraulic conductivity and aquifer thickness to yield a number referred to as the transmissivity (T = Kb), a parameter that is more directly related to the volume of ground water flow. Using the transmissivity term, Darcy's law becomes;

$Q(ft^{3}/day) = T(ft^{2}/day) X w(ft) X I(ft/ft)$

In What Direction Is Groundwater Flowing?

The direction of ground water flow is from higher to lower hydraulic head. Consequently, if we have wells that produce from the same aquifer, we can estimate the direction of ground water flow. The hydraulic head can be measured by lowering a probe through the observation port of a number of wells, all within the same relative time period, i.e., within a few days of each other.

A minimum of three wells is required to estimate the direction of flow. We can also determine the gradient from these wells. Three wells from the same aquifer have hydraulic heads (elevation of the water table) of 207, 208, and 210 feet.

What is the direction ground water is flowing and what is the gradient?

We begin by drawing a line from the lowest (207 feet) to highest (210 feet) value of head. We note that somewhere along that line, the elevation of 208 feet, the intermediate value, must fall. If we assume that the water table has a constant slope, an elevation of 208 feet will occur one-third of the way from 207 to 210 ([208-207]/[210-207]).

Once we have determined where the 208 feet elevation occurs along the line, we can draw a line from that point to the well with the 208 feet hydraulic head. This line represents the 208 feet contour on the water table. As mentioned before, ground water tends to flow directly across, i.e., perpendicular to, the contours from higher head to lower head.

The arrow, then, represents the direction of flow. The gradient can be calculated by measuring D, the distance along the perpendicular from the well, with the 210-foot head to the 208-foot contour using the equation:

I = (h2 - h1)/D = (210 - 208)/D

Note that the three-point solution works best on wells that are relatively close to one another.

How Fast Is Ground Water Moving?

The speed of ground water movement in the down gradient direction can be calculated using a modified version of Darcy's law:

V (ft/day) = KI

This equation assumes that ground water is moving across the entire area of the aquifer, but in the real world, ground water does not flow that way. Ground water is moving only through the pore spaces (actual openings in that area). As a result, we have to include the porosity (n) in this equation: V = KI/n

Using the gravel quarry example given before (K = 50 ft/day; I = 0.001; n = 0.25), the velocity of ground water through the aquifer can be determined as follows:

V = (50 ft/day X 0.001)/0.25 = 0.2 foot/day

What Is the Drawdown Associated with Pumping of a Well?

Often we would like to know how the pumping of one well might affect the water level in another. There is a relation between the pumping rate of the well, the transmissivity of the aquifer, the distance between wells, the storage coefficient of the aquifer, and the duration of the pumping event.

The storage coefficient of an aquifer is related to how much water is released from the aquifer as the hydraulic head of the ground water drops. The storage coefficient is slightly less than porosity for an unconfined aquifer (from 0.10 to 0.25) and is significantly less than porosity in a confined aquifer (from 0.01 to 0.000001 or less).

For unconfined aquifers, using the porosity is a reasonable approximation in most cases. No simple expression is available to determine drawdown as a function of distance for a given set of conditions; however, there are a number of computer programs that can perform this calculation with input of the previously mentioned parameters.

Using the Well Report

Although most of the proposed questions can best be addressed through more detailed hydrogeologic investigations, we can often make reasonable estimates from available well reports if they have been carefully filled out (see The Well Guy, *"Lithology,"* May 2002, Water Well Journal). Well report forms vary from state to state, but most contain data that is relevant to a hydrogeologic investigation. Using typical entries from a well report form, let's examine where we can obtain the data we need.

Well Location

For most hydrogeologic studies, the precise location of the well is very important. In many cases, wells are located only to the nearest section or perhaps in a quarter-section. In the latter case, we still only know the location to the nearest 40 acres. Over the last few years, well constructors have been using tax lot information to locate wells. This is an improvement, but depending on lot size, there still may be significant uncertainty.

We hope that more and more well constructors will take advantage of low-cost global positioning system (GPS) technology and begin reporting well location as latitude and longitude. There are 24 satellites positioned above the earth's surface and at any given time off-the shelf GPS units are capable of linking to three or more of these and determining locations within 100 feet or less. Such high precision locations greatly enhance our ability to use the well report data to determine direction of ground water flow, ground water gradients, variation of aquifer properties throughout an area, and so on.

Well Tests

Most well reports require the well constructor to perform some level of pump test to evaluate the capacity of the

well. If the well constructor has carefully monitored the rate of water production (Q) and drawdown (s) associated with that production over the period of the test (t), the hydrogeologist can often derive useful information regarding the permeability or hydraulic conductivity (K) of the aquifer. The specific capacity (SC) of the aquifer at the well site is defined as the ratio of the discharge of the well to the total drawdown:

SC = Q (gpm)/s (ft.)

The transmissivity of the aquifer can be estimated from the specific capacity through the following relationship:

T (ft²/day) = AC X SC (gpm/ft.)

Where AC is a number varying in value depending on the aquifer characteristics.

If the hydrogeologist can determine the aquifer thickness from elsewhere in the well report, the hydraulic conductivity can be derived from this transmissivity value. It must be stressed that the specific capacity data can in no way replace the time-drawdown information acquired from a well-designed constant rate aquifer test. However, it does provide an approximation, and if enough specific capacity data can be found for an area, reasonable estimates can be made.

For information on conducting aquifer tests, see www.ohd.hr.state.or.us/ and click on "**How to prepare** for an aquifer test." So what is a hydrogeologist looking for in specific capacity data? Ideally, the SC test will have been accomplished using a pump over a period of at least four hours. Why four hours? Let's consider a 50 gpm test of 25-foot-thick sand and gravel aquifer. If this test lasts for only an hour, all the water will be derived from within 4.5 feet of the well. This small volume will not be very representative of the aquifer in general. If the test is run over a longer time period, a larger volume of aquifer can be "sampled" and the resulting hydraulic conductivity estimate will be more representative of the aquifer.

Depth to First Water-Bearing Zone

There seems to be two ways that well constructors interpret this parameter. Some report the depth at which water is first encountered in the drill hole; while others report the depth where enough water to supply the well is encountered. From the hydrogeologist perspective, the first interpretation is preferred because it tells us where the top of the aquifer is.

It is common to find that an aquifer, i.e., a water-saturated geologic unit, varies in permeability in the vertical sense. For example, consider a 50-foot-thick sand aquifer that occurs at a depth of 30 feet and contains silt in the top 5 feet. The entire 50 feet of aquifer is saturated; however, useful quantities of water can be produced from only the lower 45 feet. First, recognizable water would be encountered at 30 feet, while producible water would not be encountered until 35 feet.

From the hydrogeologist's view, the top of the aquifer is at 30 feet. Why is this so important? In order to determine whether the aquifer is confined or is unconfined, we must compare the elevation of the static water level to elevation of the top of the aquifer. In the case just given, the static water level in a well in this aquifer would be at 30 feet. If we had mistakenly thought that the top of the aquifer was at 35 feet, we may have considered it to be confined when actually it is unconfined.

Static Water Level

The driving force for ground water movement is the hydraulic head, and the static water level (SWL) is a measure of that force (head = ground elevation- SWL). If we want to determine the ground water flow direction and the gradient, we may be able to gather that information from well reports. Care must be taken in using SWLs from wells drilled at different times of the year or over a period of years. Careful SWL measurements greatly enhance our understanding of the nature of ground water movement.

Well report forms generally provide space for SWL reporting as a function of depth in a given well. Multiple aquifers exist in most areas and these aquifers may be encountered as one drills deeper into the ground. Identifying where one aquifer ends and another begins is key to identifying the source of ground water to individual wells. Although this often can be determined by careful review of the lithologic log provided by the well constructor, the transition from one aquifer to the next can be indicated by a marked change in the SWL.

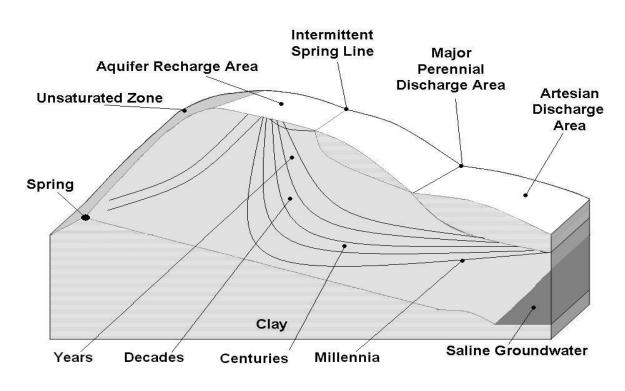
A change in SWL is a better indicator that a different aquifer has been encountered than the lithologic description. A progressive change in the static water level with depth can indicate to the hydrogeologist that the area represents a recharge zone (decreasing head with depth) or a discharge zone (increasing head with depth). Identification of recharge and discharge zones may have important implications in ground water protection and identifying the relation between area ground water and local streams.

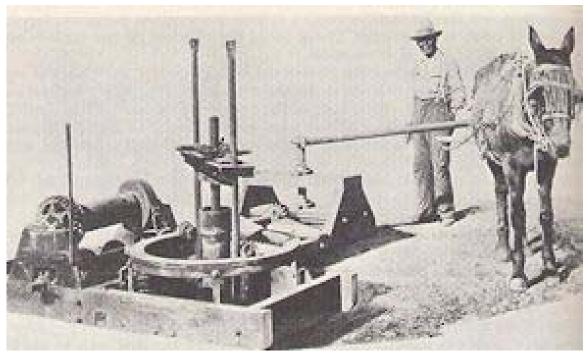
Water-Bearing Zones

A well report that does not indicate where within the 200 feet of open hole the water is actually coming from does not provide enough information to describe how water moves to the well. In some cases, the screened or perforated portions of cased wells provide a clue, but all too often, the screened interval is either significantly greater or less than the actual thickness of the water-bearing zone(s). Arriving at accurate estimates of aquifer parameters or calculating ground water velocity requires us to know the thickness of the water-bearing zone(s). On well reports, if well constructors can identify the depth(s) where ground water is found and estimate the yield from each zone, the hydrogeologist can increase his or her understanding of the ground water system significantly.

Lithologic Log

The well log portion of the well report describes what the driller encountered in the subsurface. Clear descriptions of the material drilled through, e.g., the relative proportions of silt/clay in the sand units, the locations of weak (fractured) zones in bedrock, whether a clay unit contains lenses or layers of sand, etc., allow the hydrogeologist to better estimate the potential permeability of these zones. This information also allows the hydrogeologist to better estimate the recharge amount, vulnerability from contaminants from the surface, degree of hydraulic connection to surface water, and so on. Of course, it is not necessary that well constructors be trained geologists. But it is important that their observations, coupled with their experience on a rig, be recorded. Once a hydrogeologist to the descriptions provided. Consistency in reporting lithologic character and distribution with depth is very important.


Contributions of Well Constructors to Hydrogeology


This document stresses the importance of data that is recorded on well reports and how that data influences hydrogeologic investigations. Filling in those blanks doesn't just satisfy some agency's requirements; it also provides hydrogeologists from the public and private sector valuable information regarding local ground water systems. Well constructors can provide important contributions to the science by making careful observations and measurements when recording that data on the well report.

Dennis O. Nelson is a registered geologist and the ground water coordinator at the Drinking Water Program, Oregon Department of Human Services (442 A Street, Springfield, OR 97477; 541-726-2587; fax 541-726-2596; donelson@oregonvos.net).

His current work focuses on the hydrogeologic identification of the source of ground water-based public water systems (drinking water protection areas), determining the sensitivity of aquifers to contamination, and assisting public water systems and communities in developing drinking water protection plans.

Reprinted with permission of the *Water Well Journal*. Copyright 2003 by the National Ground Water Association (<u>www.ngwa.org</u>). All rights reserved.

Up until 1940, mules were used as the horsepower to drill wells.

How Wells are Drilled

Man has been digging holes into the ground to obtain water for thousands of years. Early on, these wells were dug by hand and sometimes using animals. This work could be dangerous and slow requiring many years to complete. In these modern times, wells can be drilled much faster and safer using numerous technologically advanced methods.

Some examples of today's more common well drilling methods include *rotary, auger, and cable tool* with many variations of each. *Drilling fluids* are often used during drilling in order to keep the borehole open while drilling is done. Drilling fluids *stabilize* the hole and aid in the removal of *cuttings*. Typical drilling fluids may be water, mud, air, chemical or natural additives, or combinations of each.

Although each drilling technique may be utilized in different types of geology, each one is better suited for particular types of material. For example, **air rotary with downhole hammer** is particularly suited for *hard rock* drilling, while **mud rotary** is better suited for drilling in *sediment*. No matter what type of rig or method is being used, a highly trained and skilled *driller* is required to operate it successfully.

Basic Rotary Drilling Methods

Rotary drilling utilizes a **drilling rig** with a rotating bit and circulating drilling fluid to penetrate into the aquifer. It is the most common type of drilling method used today. Common variations of this method include: *direct and reverse mud rotary, direct air rotary, and drill through casing driver methods*.

The Rotary Drill String

Rotary drilling methods use a *drill string*, which typically consists of a bit, collar, drill pipe and a kelly (if table driven). A *kelly* is a section of heavy walled pipe that can be hexagonal, square, or rounded with grooves. The kelly is several feet longer than the drill pipe being used and fits into the table drive much like the splines on an automobile's drive shaft fit into a transmission.

The *table drive* turns the kelly and the rest of the drill string connected below as it slips down through the table. Some rotary rigs use a *top drive* to turn the drill string and are like a drill press, but larger. A top drive is free to move up and down the *mast* of the rig while rotating the drill string. *Drill pipe* makes up a majority of the overall length of a drill string and is used in various diameters and wall thicknesses for added strength. Drill pipe can be used in various lengths but are typically 20-foot sections and may be connected to the *drive unit* with a *sub*.

A sub is a length of pipe used to connect pipes and/or act as shock absorber (*floating sub*) between the drill pipes and drive unit. At the end of the drill pipe is the drill collar. The *drill collar* or *stabilizer* is typically very heavy and is often *gauged* close to the diameter of the bit being used. There are many types of drill collars that are often custom made by the driller by adding metal ribs to heavy drill pipe. The drill collar aids in maintaining a consistent borehole diameter and primarily helps to prevent *borehole deviation*.

At the end of the collar is the rotary **bit**. Several types of bits may be used, such as drag bits or roller bits. **Drag bits** are typically used in unconsolidated to semi-consolidated sand, silt, and clay-rich formations. Drag bits come in many shapes and sizes and cut with a shearing action aided by the jetting of drilling fluids from nozzles or jets in the bit. Roller bits, such as the common **tri-cone bit**, typically utilize interlocking teeth or buttons on individual rotating cones to cut, crush, or chip through the formation.

Roller bits are also aided by the jetting of drilling fluids from nozzles or jets in the bit. These bits can be used in consolidated formations and even hard rock applications if equipped with **carbide buttons**. These types of bits are often referred to as **roller button bits**.

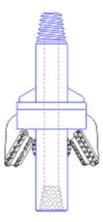
Often an initial borehole needs to be **reamed** or made larger. **Reamers** are bits that can be used to enlarge, straighten, or clean an existing borehole. Occasionally, **under reamers** are used to enlarge deeper sections of an existing borehole without requiring the enlargement of the entire upper well bore.

Under reaming involves the projection of cutting blades beneath permanently installed casing in loosely consolidated sediments. This can allow for the cost effective installation of well screen and gravel pack within deeper loosely consolidated aquifers.

Table Drive (Notice notches for kelly)

RIBBED STRAIGHT STABILIZER

RIBBED SPIRALED STABILIZER


OVER THE HAMMER STABILIZER


Tricone Roller Bits

Drag Bit

Roller Reamer

Drag Type Under-reamer

Drill String

Top Drive

Drill Pipe

Floating Sub Assembly

Direct Rotary Method

Direct rotary drilling methods utilize a rotating bit at the end of a *drilling string* with *drilling fluid* that is *circulated* from the rig through the drill pipe and jets in the bit. Down-force exerted by the drilling rig and/or the weight of the drill string itself is used along with rotating action to force the bit downwards, cutting through the sediment or rock. The drilling fluid that is pumped by the rig's *mud pump* and/or *air compressor* is jetted out of ports in the bit.

These ports are called *jets*. The drilling fluid carries **cuttings** up the *annular space* between the drill pipe and *formation* and into *mud pits* or *containment recirculating systems* on the surface. The drilling fluid pressurizes the *borehole* and helps to keep the hole open while removing cuttings. If this pressure is lost due to *washouts*, *voids*, *caverns*, or any number of other causes, circulation will not be maintained and drilling will likely have to be stopped.

Large drill rigs may utilize the cutting's containment systems that separate the cuttings from the drilling fluid before a pickup pump recirculates the drilling fluid back down the borehole, where the process is then repeated.

Also, one or more temporary mud pits may be dug into the ground adjacent to the rig in order to contain and settle out cuttings from the drilling fluid before recirculating.

Direct Mud Rotary Method

Direct Mud rotary drilling rigs use various types of mud or drilling fluid to drill into the ground. Mud is circulated down the drill string and through the bit at the bottom of the borehole. The mud then carries the cuttings generated by the bit up to the surface and into the mud *recirculating system*.

Soil or formation samples may be collected from the recirculating system as drilling proceeds. A vibrating screen or set of screens called a *shaker* may be used in part of the recirculating system on larger rigs. It separates out cuttings from drilling fluid and provides an ideal *sampling location*. The mud not only removes cuttings but also adheres to and pushes against the borehole walls, minimizes fluid loss, and cools the bit.

The process of building up a film of mud on the borehole walls is important to mud rotary drilling and is called *mud caking*. Sometimes specially trained personnel are needed to manage the physical properties of the mud to ensure that a proper *mud cake* thickness is maintained and that a proper density or weight of mud is used to efficiently drill the well. The *mud engineer* will often use bentonite clay and water to make the mud drilling fluid. Sometimes chemical additives such as drilling polymers or gels may be used.

Mud engineers play an important role in ensuring that a mud rotary drilled well can be drilled to the proper depths successfully and ultimately developed for use. Sometimes the loss of mud drilling fluids to cavities in the earth cannot be stopped with a mud cake alone, however. In these instances, *casing* or *grout* may be installed to permit drilling beyond such zones.

Mud Pump

Typical Rotary Rig

Small Self-Contained Mud System

Constructed Mud Pits

Well Drilling Components and Products

Reverse Mud Rotary Method

Reverse mud rotary drilling rigs utilize the same process as direct mud rotary with the exception that the mud drilling fluid injection process is reversed. Reverse rotary methods pump the drilling fluid down the borehole to the bit where the cuttings are forced up the drill string and into the containment or recirculating system.

The reverse method is utilized in situations where borehole stability problems are particularly difficult and would otherwise prevent conventional drilling of the well to the total *target depth*.

This method is particularly applicable to hard rock aquifers in zones where highly fractured or **weathered** rock may prevent the efficient flow of drilling fluids up the borehole walls to the surface. Also, fluid losses may be minimized with this method.

Samples are collected in the same way as mud rotary.

Air Rotary Method

Air rotary methods utilize compressed air and derived drill cuttings and groundwater as the drilling fluid. Air is forced through the drill string and out the bit where it then mixes with and lifts cuttings and any derived groundwater to the surface.

Once at the surface, the cuttings and groundwater are typically contained in subsurface pits, much like the mud rotary method.

Soil or formation samples may be collected in a bucket or shovel placed beneath the *table* of the rig as drilling proceeds, resulting in representative samples. The borehole is kept in a pressured condition while drilling, in order to maintain the circulation of drilling fluid to the surface.

Biodegradable foam or *surfactant* (soap) is often added while drilling with air in order to maintain sufficient hole pressurization so that cuttings may be lifted to the surface efficiently while maintaining hole stability.

As in drilling with mud, if this pressure is lost due to washouts, voids, caverns, or any number of causes, circulation cannot be maintained and drilling may not continue.

The air rotary method is particularly suitable to hard rock drilling with a **down hole air hammer**. The air hammer utilizes compressed air to drive a piston up and down which makes the **hammer bit** move up and down while the drill string rotates.

The combined rotating and hammering action generates great rock breaking force and is very valuable for drilling through solid rock or consolidated formations. Conventional air rotary drilling methods utilize roller bits in the same way as those used for mud rotary drilling.

In hard rock or consolidated formations, a roller *button bit* may be used when *drilling pressures* are too high or borehole sizes are too large for the efficient operation of an air hammer.

Air Rotary Containment Pit (Notice Foam and Water Truck)

Hammer & Bit

First Pit (heavy with cuttings)

Last Pit (small amount of fines)

Several containment pits installed in series can help cuttings to settle out.

Drill through Casing Driver Method

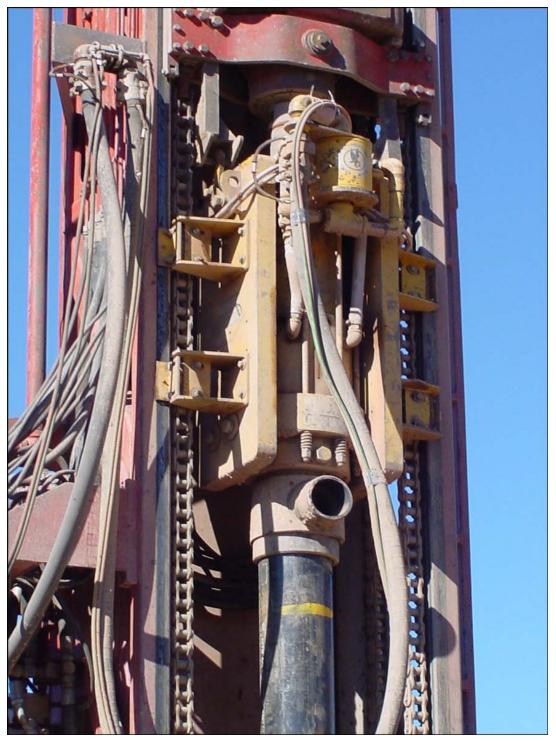
The drill through casing driver method drives casing into the borehole as the drill string advances. A *casing driver* is a pneumatic device designed to push or pull casing that is typically attached to a top head drive air rotary rig. Heavy gauge steel casing is used with a *cutting shoe* installed on the down hole side.

The cutting shoe is a specially designed hardened steel ring that is installed on the casing end. It helps the casing cut its way through the formation as it is forced downward by the casing driver. The drill string is inserted into the casing and the casing is attached to the casing driver. As the drill string penetrates into the **overburden** or formation, the casing driver hammers the casing down, following the drill string.

The drill string may employ a hammer or roller bit. The driller pays close attention to the distance between the cutting shoe and the bit and adjusts as is necessary. Cuttings rise to the surface with the injected air through the casing and exit through the casing driver.

The cuttings are then collected near the rig. As the borehole is drilled, the casing advances and isolates the material being drilled from the remaining borehole. As a result, very accurate soil or cuttings samples may be collected as drilling proceeds with this method.

The addition of casing and drill string can continue until *competent* formation is encountered. Once the well has been drilled to competent formation, conventional drilling methods may be utilized to continue. The casing driver method is often used to install temporary casing in order to permit the installation of a well in unstable aquifers.


In this instance, the casing driver may be used as a puller to remove the temporary casing following well construction. This method is most useful when accurate formation or soil samples are needed and when drilling in troublesome unconsolidated overburden or formations with numerous cobbles or boulders.

Cutting Shoe

The Cutting Shoe is welded to the bottom of casing before installation.

A Casing Driver attached to a top drive air rig.

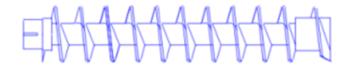
Auger Boring Methods

Auger boring methods make use of a rotating blade or *spiral flange*, which may be attached to a *pilot bit* and *cutter head*. Down-force applied by the rig along with the rotating action of the blade and cutting action of the pilot and/or cutter bits facilitates the boring process.

Soil samples may be collected as cuttings rise or are brought to the surface, or they may be collected with *split spoon* type samplers.

Augers are capable of boring large diameter holes in excess of four feet in diameter. They are typically used in shallow applications (less than 200 feet) and where stable silt and clay soils or soft materials are dominant.

These boring methods are commonly used to construct large diameter boreholes for the construction of *surface seals* around wells through thin and stable overburden sediments which overlie the aquifer below. One of the methods is commonly used in environmental applications for the collection of soil samples. There are three primary types of auger boring methods: *solid stem, bucket, and hollow stem.*


Typical Auger Rig

453

Solid Stem Auger Method

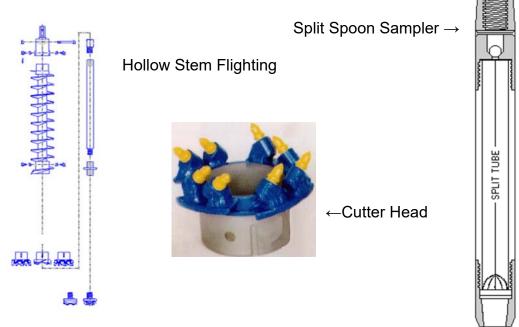
The solid stem auger boring method uses a spiral flanged drill pipe driven by either a kelly or rotary drive head, like those used on rotary rigs. The drill pipe may be continuously flanged or just the initial section is flanged. Flanged sections of drill pipe are referred to as *flighting*. The lower portion of flighting, having the cutter bit attached, makes the initial cuts into the formation, providing the path for the remaining flighting to follow. Larger diameter augers typically employ a single flight and can be used in stable formations to depths of approximately 60 feet. Deeper borings are typically installed with continuous flighting and only in stable formations. Occasionally, the lower flight is removed from the borehole so that cuttings, which accumulate at the bottom of the borehole, may be removed and/or sampled. When boring with continuous flighting, cuttings are brought to the surface by the spiral action of the flighting. Samples may be collected from these cuttings or the flighting may be brought to the surface and samples collected from the source and samples collected form the borehol is not suited for applications below the water table and may provide limited soil sample data. However, it may be used to aid in quickly constructing the larger diameter upper sections for larger wells.

Auger Flighting: Cutting Head

Bucket Auger Method

The bucket auger method essentially combines the rotary and auger techniques. The bucket auger method employs a single, typically large in diameter, bucket auger to drill or bore into the ground. The **bucket auger** is a cylinder constructed with auger like blades at its bottom edge. These blades may be armored with various forms of cutting teeth or blades to provide strength and "**bite**". The bucket auger is rotated via a kelly and table drive much like those of rotary rigs. However, bucket auger rigs utilize a **telescoping kelly**. A telescoping kelly consists of two or more sections of square piping that telescope into each other. This type of kelly allows the rig to drill to depths of 40 feet or more without requiring the addition and removal of drill pipe. When the bucket is filled with cuttings it is closed and brought to the surface where it is swung out to the side of the rig by a specially designed **swing arm or dumping arm**. At this point the bucket is opened and cuttings are dumped. Soil samples may then be collected and can be considered representative of the section bored. Bucket auger methods typically cannot be used in material containing cobbles and boulders, but is used most often in more stable **semi consolidated** silty or clay rich deposits. Large diameter wells up to 4 feet in diameter may be constructed with the bucket auger method, with smaller diameters approaching 200 feet in depth. Occasionally, drilling fluids such as **bentonite mud** may be used in order to maintain borehole stability when drilling in questionable materials.

Bucket Auger Rig (notice swing arm)


Hollow Stem Auger Method

The hollow stem auger method has been used in the *geotechnical* field for many years for its usefulness in obtaining soil samples. Continuous *hollow stem flights* are used with a **pilot** and **cutter head**.

The lowermost flight contains a *plug* that is connected to drill pipe that passes through the center of the flights and is ultimately connected to a top drive. The plug prevents soil from entering the auger and is connected to the pilot bit that helps to guide the auger downward during boring.

When the plug is removed, accurate soil samples may be obtained while the flighting remains to keep the borehole open. Samples are typically collected with a *split spoon sampler* or core barrel sampler driven into the soil a few feet ahead of the flighting.

The use of larger diameter continuous flights can also permit the installation of well screen and filter media in otherwise relatively unstable formations by its acting as temporary casing. Wells constructed with this method are normally less than 200 feet deep. This method is also limited to relatively soft ground applications with few boulders or cobbles.

What is a significant deficiency?

Significant deficiencies cause, or have the potential to cause, the introduction of contamination into water delivered to customers. This could include defects in design, operation, or maintenance of the source, treatment or distribution systems. They could also be represented by the failure or malfunction of those systems. The rule requires each state to define and describe at least one type of specific significant deficiency for each of the eight sanitary survey elements.

An example of a source-related significant deficiency could be a well located near a source of fecal contamination (e.g., failing septic systems or a leaking sewer line) or in a flood zone. EPA will develop guidance to help states carry out sanitary surveys and identify significant deficiencies that could affect the quality of drinking water.

Cable Tool or Percussion Method

The cable tool or percussion method is one of the oldest and most reliable forms of well drilling still used today. This method is adaptable to virtually every kind of drilling environment. As a result, numerous variations in both rig types and methods have evolved over its history. However, it is often used as a method of last resort when time is an issue, due to its typically slow process. Still, the cable tool method can surely succeed where any of the other methods fail.

Cable tool or percussion drilling methods utilize a system of cables and reels to lift and drop a very heavy drilling string as downward progress is made. The weight and force of the bits' impact breaks up the ground and permits a typically slow, but steady, downward movement. Water is used as the primary drilling fluid. As drilling proceeds, cuttings and water mix, forming slurry. This slurry is allowed to pass back and forth through a watercourse or opening within the drill string.

The drill sting is occasionally removed from the borehole through the use of a specially designed **bailer**. A bailer is a section of pipe constructed with a check valve located at the bottom of the pipe. As the bailer is lowered, it fills with the drilling fluid and cuttings.

When the bailer is raised up, the valve at the bottom of the pipe closes, trapping the slurry inside. The slurry can then be lifted to the surface and the contents dumped into a containment system, where samples may then be collected.

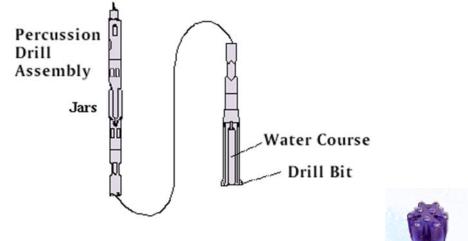
The cable tool drill string is comprised of a *cable, swivel socket, drilling jars, drill stem, and drill bit*. The primary cable is used to lift and drop the drill string, while the swivel socket provides a rotating mechanism.

The rotation allowed by the swivel socket ensures that fresh cuts are made with each strike of the bit. The drilling jars are used only for additional upward shock to remove the bit, should it become stuck in the borehole.

The drill stem provides the majority of the weight of the drill string and also helps to maintain a straight borehole. It serves the same purpose as the drill collar used in rotary methods. Cable tool bits are normally a wedge shape, although numerous variations may be used for different formations, including carbide button and armored bits for consolidated formations.

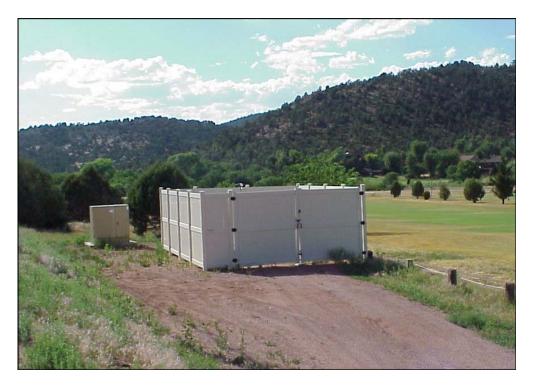
The borehole may remain open or casing may be advanced while drilling, in order to keep the borehole open in **unstable** formations. Casing is advance by either pushing it hydraulically, like a large press, or by **driving** it down with the drill string or a **drive block**.

The drive block is a heavy collar type device that attaches over the drill pipe and is lifted up and allowed to fall, striking the casing and forcing it down. An accessory reel called a *cathead* is used to lift and drop the drive block with a heavy rope.


Also, a *drive clamp* may be attached to the top of the drill stem and serves as a striking surface. A cutting shoe is attached to the bottom edge of the casing to add strength and provide cutting ability. Drilling, casing advancement, and bailing alternate as the borehole gets progressively deeper. If the casing becomes too difficult to advance further and the required drill depth has yet to be achieved, a smaller borehole and casing may be used inside of the outer casing in order to continue. This is called *telescoping*.

Typical Cable Tool Rig

Sand Bailer



Percussion Bits

Using a video camera to see inside a groundwater well.

Selecting an Appropriate Well Site

Before a well can be drilled a permit is normally required. The permit helps to ensure that an appropriate location of the well is selected which reduces the possibility of *contamination*. The ideal well location has good drainage and is higher than the surrounding ground surface.

All possible sources of contamination should be at a lower elevation than the well, and the distances to those contamination sources must be in accordance with the State or Local Water Well Construction Codes.

Surface drainages should not allow surface water to accumulate within a 15-foot radius of the well. A well must also never be located closer than 20 feet to sewers, 100 feet to septic tanks, or 100 feet to sewage seepage fields. (*The "code" refers to the requirements of the well permit process enforced by the State or Local regulating agency.*)

Well Construction

Following the drilling of a well, it must be constructed to meet strict standards set by the **governing agency**. Each State has well construction design criteria for water supply wells. Before a well is drilled, a well drilling permit is normally required to be in hand. The purpose of the well **drilling permit** is to ensure that a qualified driller is being used to drill and complete the well to a standard set by the governing agency.

The drilling permit also ensures that the *regulating agency* is aware of the location and proposed use of wells and that they are not constructed within close proximity to any activities that may put the water supply at risk, such as a septic tanks or chemical storage areas.

A permit application fee is normally charged. The permit will normally require information about the proposed well's location, depth, diameter, anticipated production rate, sanitary seal, and proposed construction at a minimum.

Permitting requirements and well construction standards can vary by state and location. As such, well construction specifications presented in this document are general in nature and should not be considered legal in your state.

One should become familiar with his state's particular regulations regarding well drilling and construction.

WELL PROTECTION

(EXAMPLE ONLY – CHECK STATE OR LOCAL REQUIRMENTS)

Common Well Construction Specifications

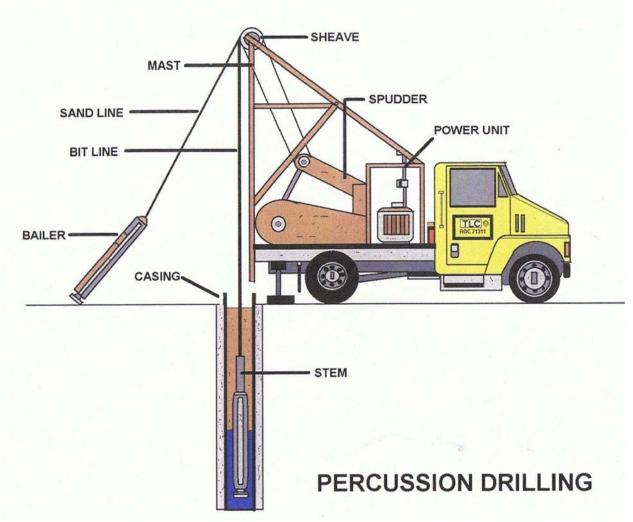
Water wells should always be located and constructed in such a manner that they **yield** safe water at all times and under all conditions. Contamination of a water supply typically occurs when leachate from sewage systems or surface waters enter a well. Surface water may enter the well through an opening in the top or by seeping through the shallow borehole walls.

Tests have shown that bacterial contamination is usually eliminated after filtering through 10 feet of normal soil. Therefore, construction of the well must ensure that the top and uppermost 20 feet of the well bore are sealed and watertight. This is the primary reason why surface casing and surface seals are so important.

All wells must be constructed with a *surface seal* to prevent the infiltration of surface water and/or surface contaminants into the well bore and aquifer. This seal is installed in the upper portions of the well bore between the *annulus* and *surface casing* and will normally extend to the ground surface around the well.

The seal is constructed by pouring or pumping neat *cement grout* and/or *bentonite* between the surface casing and the well bore. The installation of the cement or grout between the annulus and surface casing effectively seals off the upper borehole from the surface.

The surface casing used is a solid piece of permanently installed casing, usually steel, that should be of sufficient size to allow the *completion* of the well within it. In addition to the surface seal, a *well seal* or *cap* is always installed with the pumping equipment to ensure no surface water or debris enters the well.


When the well is drilled into the aquifer, the depths of water (*productive intervals*) and *estimated well yield* are normally *logged* by the *driller* or *geologist*. Sometimes the aquifer's productive intervals may not be known, due to drilling method limitations or a lack of regional *hydrogeological* data.

In these instances, specialized **borehole geophysical logging equipment** may be used to isolate the areas of optimum production capability and aid in determining the ultimate well design. In addition, preliminary **pumping tests** are normally conducted to ensure the well is as productive as originally estimated and to obtain preliminary **aquifer parameters**.

Following the installation of the well's surface seal, the well is then reamed (if necessary) to accept additional *blank casing, well screen, and filter or gravel pack*. Once the well has been reamed large enough in diameter for the anticipated flow rate, the appropriate casing can be installed.

The well casing ensures that the borehole remains open and that debris from the formation(s) does not enter the well, thereby protecting the pump equipment and the well itself. Blank casing is normally installed to the depth of the main *producing zone*.

At this point, *well screen* is used and may extend to the total depth of the well or may be used intermittently to total depth with blank casing used through unstable or non-productive areas.

Percussion drilling is a commonly found groundwater production drilling technique in which a drill bit attached to rope or cable is repeatedly raised and lowered, impacting soil and rock and making the hole deeper. Frequently used to drill wells or during mineral prospecting activities, percussion drilling has been used for thousands of years and is adaptable to whatever technology is available. Percussion drills may be simple apparatuses consisting of a heavy drill bit and a rope, and operated by hand. Modern percussion drilling may also be called cable drilling and uses an engine and cable to drill holes that may be hundreds of feet deep.

One use of percussion drilling is in third-world countries as a cheap and reliable way to drill water wells. Equipment is easy to build, transport, and simple to use. Percussion drills introduce less contamination than conventional hand drilling methods. This technique can drill a narrower and deeper hole than hand drilling through many different types of soil and rock.

If the substance being drilled through is sturdy enough, drilling can continue until water is reached. If drilling occurs in loose soil or sand, a pipe may need to be inserted to keep walls from collapsing. After the well is deep enough, permanent casing is installed, too.

Choice of Casing

The choice of casing is as important as its placement. There are numerous types of casing designed for specific applications. The type of well casing needed is related to the type of aquifer, well depth, water quality, well use, and regulatory requirements. *Stainless steel* casing and screen may be required for one situation, while *PVC* or *low carbon steel* may be acceptable in another. As such, *please check with your regulating agency and well driller to ensure the installation of the appropriate type of casing for your application.*

As with casing, the choice of well screen is as important as its placement. The size of the openings in the casing (*screen slot or perforated opening size*) are dependent on the *grain size* of the filter or gravel pack used. The same applies to applications where a well is *naturally developed* or *naturally packed* (no filter pack is used). As a rule, course grained sediment or fractured hard rock aquifers may be naturally developed, while fine-grained sediment aquifers typically require a filter pack. The selection of screen slot size is normally made based on samples collected from the aquifer during drilling and consideration of the filter or gravel pack grain-size. A *sieve analyses* is often conducted in order to select the optimum size of slot for the application. During a sieve analyses for well screen, determination samples are screened through various sizes of sieves. The *sieve size that retains 40% of total aquifer sample is normally used to select the well screen and associated filter pack material.*

The sieve analyses results will indicate in decimal inches what size slot may be used.

For Example: A sieve analyses indicates that a 40% share of a sample from an aquifer is retained in a .050 sieve. This suggests that the well screen slot size should be .050 inches wide and that a filter pack of .050 or larger may be used within that portion of the aquifer.

However, unless the entire aquifer is uniform in composition, it is always possible that the ideal slot size

for one interval may not be ideal in another. This is why the collection of samples during drilling is so important. It is not unusual to have a single well-constructed with several different slot sizes over variable intervals. It is still possible though to identify a single slot size that may be effective throughout the screened interval by varying the filter pack size and adjusting the slot size to the smallest observed 40% retention sieve analyses result. Not only are there numerous types of casing and slot sizes, but there are also many different types of well screen. A few of the more common types of well screen are: wire wrapped, continuous screen, slotted, louvered, and perforated screens.

All except wire wrapped are available in various types of metal or PVC composition. Again, the appropriate selection depends on local regulations, use, type of aquifer, depth, water quality, location and possibly much more. Therefore, *please refer to your driller and regulatory agency for the proper selection or recommended well screen*. As a rule, wire wrapped screen or continuous screen is normally used in municipal applications where a *high yield* is obtained from *unconsolidated* to *semi-consolidated* formations.

Slotted and perforated screens are stronger and less expensive than wire wrapped screens and are best suited to deep applications, where borehole stability is a concern, and in domestic applications. Louvered screen is used in high yield production wells but particularly in filter packed wells and may help where *cascading water* is a problem.

Louvers

The louvers deflect groundwater above *pumping levels* back into the annulus or filter pack so that *air entrainment* and corrosion within the well are minimized. Air entrainment occurs when cascading water drops into the pumping water level creating turbulence and making bubbles. These bubbles may get drawn into a *vortex* created by the pump and then included in the water pumped from the well.

Once the casing and screen specifications are determined, they may be installed into the well. Due to weight, casing is often installed with a drill rig. If a well is *telescoped*, the driller will install the largest diameter portions first. Gravel or filter packs can then be installed. A bentonite or *cement plug* is often installed in the bottom of the borehole before the filter pack is installed, effectively sealing the bottom of the casing and borehole. If certain intervals of the well need to be isolated from others, *inflatable packers* and bentonite or cement grout may be used. The inflatable packer is used to seal off a portion of the annulus to prevent the mixing of the seal material and the filter pack.

These types of seals are commonly used for wells constructed within confined aquifers so that they may be isolated to prevent cross connection with other aquifers or formations. Well *centralizers* are normally installed on the screen and casing before installation. The centralizers are a type of banding or metal offset that, when installed, ensures the casing and screen do not rest up against the borehole walls.

The centralizers will minimize the potential of *bridging* during the installation of filter media and grout. When complete, the well casing is *capped* and normally must terminate at least 12 inches above ground level. Once the well construction is completed it may be developed.

Wire wrapped screen being installed in a well.

Specialized Well Construction Information

(Please check with your regulating agency and well driller to ensure your well is properly constructed)

Fractured Formations

Wells obtaining water from fractured formations such as limestone or granite are susceptible to contamination. Contaminated water can move rapidly through these types of formations. Therefore, proper well location and construction are very important when drilling wells in these types of formations. When the **overburden** overlying the upper bedrock formation is less than 30 feet thick, the well casing should extend to a depth of at least 40 feet below ground level.

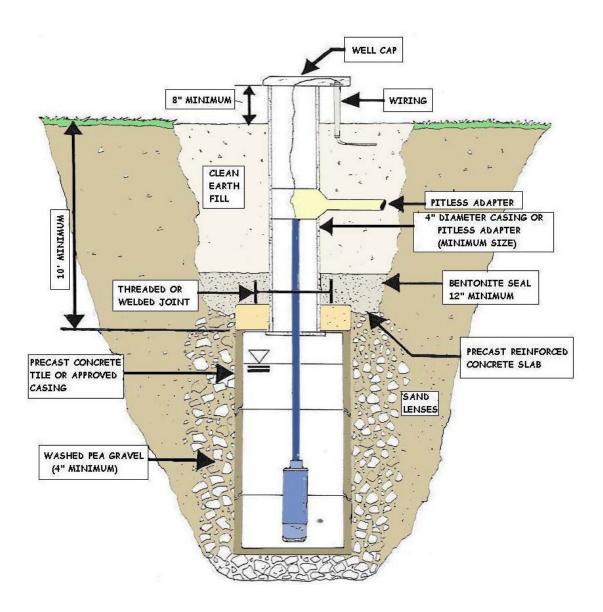
The annular space between the well bore and the casing should also be pressure grouted. Where the well is drilled to obtain water from a formation located below a fractured formation, the casing should extend at least through the fractured formation and be seated in firm rock or clay. Where the overburden overlying the upper bedrock formation is greater than 30 feet thick, the casing should be fitted with a drive shoe and driven to a firm seat in the bedrock. The annular space around the casing can then be sealed with Bentonite grout or neat cement grout.

Auger Drilled Wells

As opposed to smaller diameter drilled wells, auger wells are generally constructed at locations where aquifers (water bearing geologic formations) are both shallow and low yielding. An aquifer that yields only 1 gallon per minute will provide 1,440 gallons per day. Auger wells range in depth from 30 to 100 feet.

To compensate for low-yielding aquifers, large diameter auger wells serve as storage reservoirs to provide water during periods of high demand. An auger well with a diameter of 3 feet, a total depth of 50 feet and a water depth of 30 feet, contains approximately 1,600 gallons of water.

There are two recommended methods for the construction of auger wells.


1) Auger (bored) Well with Buried Slab Construction

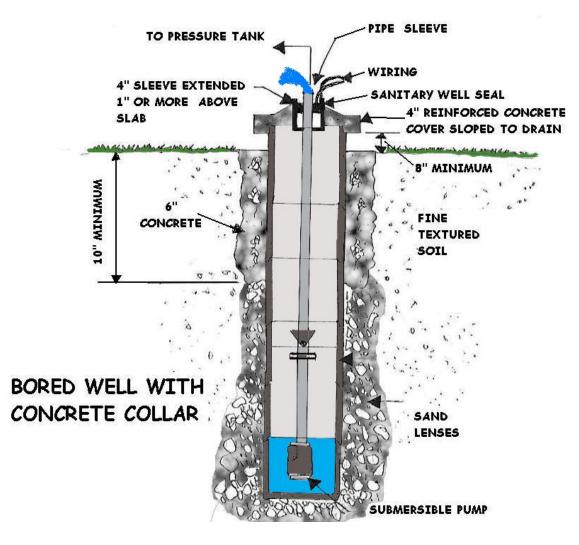
Auger wells are usually constructed utilizing the buried slab method. With this method, the upper well casing shall extend to a depth of 10 feet or more below ground surface and be firmly imbedded in a uniformly tapered hole that is formed when the reinforced concrete buried slab is manufactured, or shall be connected to a pipe cast in the concrete slab. The upper well casing should be at least 4 inches in diameter and extend from the concrete slab to at least 8 inches above the finished ground surface.

A bentonite seal that is a minimum of 12 inches in thickness shall be installed over the buried slab the entire diameter of the borehole. The earth fill on top of the buried slab and around the upper well casing should be well compacted and mounded to drain away from the well.

Sand or gravel cannot be used as fill on top of the buried slab. The lower concrete casing is normally constructed using pre-cast concrete sections ranging in diameter from 2 to 3 feet. The diameter of the well bore hole below the buried slab must be at least 4 inches greater than the outer diameter of the well casing, and the annular space (opening between concrete casing and well bore) must be filled with pea gravel to the well bottom.

The discharge pipe exits the well below grade through an approved *pitless* well adapter. A pitless well adapter is a mechanical device attached to the well casing pipe, usually below frost level, that permits water to pass through the wall of the casing and provides protection to the well and water from contamination. An approved vented well cap or seal should be properly installed on top of the well casing. As an alternative, the discharge pipe can exit at the top of the well casing through an approved well seal. If the pump is located away from the well, the buried pipe leading to the pump from the well must be encased in a pressure discharge line at system pressure.

(EXAMPLE ONLY – CHECK STATE OR LOCAL REQUIRMENTS)


Auger (bored) Well with Concrete Collar

For auger wells not finished with a buried slab, the concrete casing also ranges in diameter from 2 to 3 feet. The annular space between the excavation and the installed casing should be grouted with concrete that is at least 6 inches thick and poured without construction joints from a minimum of 10-20 feet below ground level to the ground surface. The diameter of the well bore hole below the grouting must be at least 4 inches greater than the outside diameter of the well casing and the annular space should be filled with pea gravel to the well bottom.

The casing should extend at least 8-12 inches above the finished ground surface. The cover slab must be at least 4 inches thick, without joints, adequately reinforced and with a diameter sufficient to extend to the outer edge of the casing.

Adequate sized pipe sleeve(s) should be cast in place in the slab to accommodate the type of pump or pump piping proposed for the well.

A watertight joint must be made where the slab rests on the well casing. If a manhole is installed, it should consist of a curb cast in the slab and extend 4 inches above the slab. A watertight cover must be provided over the manhole and should overhang the curb at least 2 inches. The discharge pipe must exit the well in a watertight manner at the top of the well casing through an approved well seal.

Why is EPA taking a risk-based approach to protect drinking water provided by ground water systems?

An evaluation of data on outbreaks and the occurrence of waterborne viral and bacterial pathogens and indicators of fecal contamination in ground water supplying public water system (PWS) wells indicate that there is a subset of ground water systems (GWS) that are susceptible to fecal contamination. Therefore, in 1996, Congress amended the Safe Drinking Water Act (SDWA) to require that EPA take a targeted risk-based approach to require GWSs that are identified as being at the greatest risk of contamination to take action to protect public health. Previously, the 1986 Amendments to the SDWA had included a provision that would have required all PWSs using ground water to disinfect. This would have posed a great implementation challenge for approximately 147,000 GWSs and states.

What types of pathogens can be found in water provided by ground water systems?

Ground water that is susceptible to fecal contamination may contain harmful viruses or bacteria. Viral pathogens found in GWSs may include enteric viruses such as Echovirus, Hepatitis A and E, Rotavirus and Noroviruses (i.e., Norwalk-like viruses) and enteric bacterial pathogens such as Escherichia coli (including E. coli O157:H7), Salmonella species, Shigella species, and Vibrio cholerae. Ingestion of these pathogens can cause gastroenteritis or, in certain rare cases, serious illnesses such as meningitis, hepatitis, or myocarditis. Health implications in sensitive subpopulations may be severe (e.g., hemolytic uremic syndrome) and may cause death.

What causes contamination of ground water?

Viral and bacterial pathogens are present in human and animal feces, which can, in turn, contaminate drinking water. Fecal contamination can reach ground water sources, including drinking water wells, from failed septic systems, leaking sewer lines, and by passing through the soil and large cracks in the ground. Fecal contamination from the surface may also get into a drinking water well along its casing or through cracks if the well is not properly constructed, protected, or maintained.

Does this rule address private wells? If not, how does EPA help protect them?

This rule does not address private wells because they are not under the jurisdiction of the Safe Drinking Water Act and are therefore not subject to EPA regulation. EPA has provided outreach material to states and homeowners to help them understand how to manage individual wells. EPA recommends that well owners periodically test their water for microbial and chemical contaminants and properly maintain their well. Information is available on EPA's Private Wells Web site.

What are the basic requirements of the rule?

The risk-targeting strategy incorporated into the rule provides for:

regular sanitary surveys of public water systems to look for significant deficiencies in key operational areas;

triggered source water monitoring when a system that does not sufficiently disinfect drinking water identifies a positive sample during its Total Coliform Rule monitoring and assessment monitoring (at the option of the state) targeted at high-risk systems;

implementation of corrective actions by ground water systems with a significant deficiency or evidence of source water fecal contamination to reduce the risk of contamination; and,

compliance monitoring for systems that are sufficiently disinfecting drinking water to ensure that the treatment is effective at removing pathogens.

Well Development Section

Once well construction is complete, the well is *developed*. The purpose of well development is to *purge* the well and bore of all drilling mud and or fluid, fine grained sediment, and loose aquifer matter.

The well development process also helps to settle the gravel or filter pack and/or rearrange particles within the well and nearby aquifer to allow for the most efficient operation of the well. Not surprisingly, the drilling procedure often damages the aquifer around the well.

Well development can significantly improve a well's performance by essentially repairing as much of this damage as possible by improving the transition from the aquifer to the well. The screened and productive portions of the well can be subjected to various development techniques.

All methods of well development essentially involve the flushing of water back and forth between the well and aquifer.

If you think of the aquifer as one great big *natural media filter*, the development process to a well is much the same as the backwashing process for a water treatment system. So what about hard rock wells? Wells constructed in hard rock aquifers are not composed of unconsolidated sediments. Still, they can and should be developed because fine cuttings, drilling mud, and clay within the *fractures* and *pore spaces* near the well can obstruct flow from otherwise productive zones.

Well development procedures can remove such sediments from hard rock wells also. Several common methods of well development include, surge-block, jetting, airlift, and pump surging.

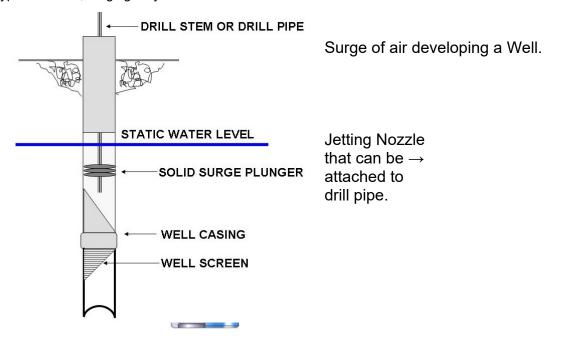
Well Surging or Backwashing

Pump surging (sometimes called **Rawhiding**) involves the repeated pumping and resting of the well for well development purposes. A column of water that is withdrawn through a pump is allowed to surge back into the well by turning the pump on and off repeatedly. However, sufficient time for the pump motor to stop reverse rotation must be allowed, such that pump damage can be avoided. Occasionally, water is pumped to waste until it is clear of sediment before again shutting the pump off. This is done to permanently remove the sediments that are being developed by the backwashing action. The process continues until sufficient quantities of water produced are consistently clean.

Surge-blocks, *swabs, or plungers* are disc shaped devices made to fit tightly within the well. Their edges are usually fitted with rubber or leather rings to make a tight seal against the well casing. Pipe sections are then attached to the surge-block to lower it into the well, above the well screen, and about 15 feet below the water level. The assembly is then repeatedly lifted up and down. The up and down action of the surge-block creates suction, and compression strokes that force water in and out of the well through the screened interval, gravel pack, and aquifer. It works like a plunger in the way that it removes small obstructions and sediments from the well. The surge-block is slowly lowered each time resistance begins to decrease.

Once the top of the screen is reached, the assembly may be removed and accumulated sediment either bailed or airlifted out of the well. Surging within known problem areas of the screened interval may be conducted also. The cycle of swabbing and removing sediment should be continued until resistance to the action of the swab or block is significantly lower than at the start of development. The development is complete when the amount of sediment removed is both significantly and consistently less than when surging began.

Airlifting (or **Air surging**) involves the introduction of large short blasts of air within the well that lifts the column of water to the surface and then drop it back down again. Continuous airlifting or **air pumping** from the bottom of the well is then used occasionally to lift sediments out of the well. Airlift development is most often used following initial pump surging, and is employed to confirm that the well is productive, since the injection of air into a plugged well may result in casing or screen failure.


Air lifting development is most often done with a rotary drilling rig through the drill string. Sometimes special air diffusers or jets are used to direct the bursts of air into preferred directions (see jetting). Piping is inserted into the well and intermittent blasts of air are introduced as the piping is slowly lowered into the well. Sometimes surfactant or drill foam is added to aid in the efficiency of sediment removal and cleaning of the well. Air surging development is much the same as drilling the well with air rotary; only the well has already been constructed. Specialized air development units are available independent of a drilling rig, which may be used as well. The great thing about air rotary drilled wells is that they are essentially developed while drilling, particularly in hard rock formations, when greater than 100 gallons per minute is being lifted to the surface. The development of a filter pack (if used) in such wells is still recommended.

Jetting is a type of well development technique in which water and/or air is *jetted* or sprayed horizontally into the well screen. This method is especially suited for application in *stratified* and *unconsolidated* formations. The water or air is forced through *nozzles* in a specially designed *jetting tool* (or simply drilled pipe and fittings) at high velocities. Normally, air lifting or pumping is used in conjunction with jetting methods in order to minimize potential damage to the well bore. Jetting with water alone can be so powerful that the sediment, which is supposed to be removed, can be forced into the formation causing clogging problems.

This is why pumping or airlifting while jetting with water is so important. Jetting is normally conducted from the bottom of the well screen upwards.

Rotary Rig

A rotary rig is often used to provide the fluid or air with sustained pressure while the tool is slowly raised up through the screen. As jetting proceeds, sediment is occasionally removed from the bottom of the well bore thru the use of a bailer or airlifting. Several passes should be made over the length of screen until sediment generation drops off. Air is normally used for jetting in shallow aquifers (less than 300 feet of submergence) due to limited supply pressures. Jetting in PVC constructed wells is not recommended since the high velocities of fluid and sediment can erode and possibly cut through the plastic well screen. In addition, wells constructed with louvered or slotted screen limit the effectiveness of jetting. In these types of wells, surging may be more effective.

In the best of situations a combination of methods can be used to ensure the efficient development and operation of a well.

Selecting an Optimum Pumping Rate

Before a well can be completed with the necessary pumping equipment, it should be tested for capacity and proper operation. When the well was drilled, the driller and geologist kept close watch of the amount of water production that had been obtained. The development techniques used can also be useful in estimating a wells production rate. However, the driller will normally know what to expect based on his experience, and the geologist or *hydrologist* will also obtain information on other nearby wells to bracket the expected production rate. If the well was drilled with air rotary, the *airlift* at the time of drilling also can serve as a baseline to estimate the well's production rate. Either way, the well is normally pump tested following well development.

A *pumping test* is normally conducted for at least eight hours in order to estimate a well's maximum production rate. Ideally, a twenty-four hour step test is conducted. A step test is a *variable rate* pumping test, typically conducted for 24 hours at up to six different pumping rates. Typically, the well will be pumped at the lower estimated maximum pumping rate for the first four hours.

The pumping rate is then adjusted upwards in equal amounts every four hours until 24 hours of pumping have been completed. The personnel conducting the test keep track of the water levels in the well to ensure that the steps are not too large and not too small.

In the end, the optimum pumping rate is selected following a careful review and comparison of the water level data for each rate. The well's *specific capacity (Sc)* is then determined. Specific capacity is the gallons per minute the well can produce per foot of drawdown. Specific capacities for each of the pumping steps are compared. The highest Sc observed is normally associated with the optimum pumping rate. That rate should also have resulted in *stabilized* pumping levels or *drawdown*.

Well pumping test being conducted in photograph above. (Notice the portable electric generator for powering the pump. The Hydrogeologist is using a depth probe to measure the drop in the static water level.)

Well Pump Selection

A drill rig in the snow.

Basically, a well is a hole drilled into an aquifer. A pipe and a pump are used to pull water out of the ground, and a screen filters out unwanted particles that could clog the pipe. Wells come in different shapes and sizes, depending on the type of material the well is drilled into and how much water is being pumped out.

Three Basic Types of Wells

Bored or **shallow wells** are usually bored into an unconfined water source, generally found at depths of 100 feet or less.

Consolidated or **rock wells** are drilled into a formation consisting entirely of a natural rock formation that contains no soil and does not collapse. Their average depth is about 250 feet. **Unconsolidated** or **sand wells** are drilled into a formation consisting of soil, sand, gravel, or clay material that collapses upon itself.

Selection of Pumping Equipment

The proper selection of pumping equipment for a well is of great importance. The primary factors that must be considered before selecting the well pump are: flow rate, line pressure, pumping lift (total dynamic head), power requirements (and limitations), and size of piping. Each of these components must be considered together when selecting well pumps.

Pumping Lift and Total Dynamic or Discharge Head

The most important components in selecting the correct pump for your application are: *total pumping lift* and *total dynamic or discharge head*. Total dynamic head refers to the total equivalent feet of lift that the pump must overcome in order to deliver water to its destination, including frictional losses in the delivery system.

Basic Pump Operating Characteristics

"Head" is a term commonly used with pumps. Head refers to the height of a vertical column of water. Pressure and head are interchangeable concepts in irrigation, because a column of water 2.31 feet high is equivalent to 1 pound per square inch (PSI) of pressure. The total head of a pump is composed of several types of head that help define the pump's operating characteristics.

Total Dynamic Head

The total dynamic head of a pump is the sum of the total static head, the pressure head, the friction head, and the velocity head.

The Total Dynamic Head (TDH) is the sum of the total static head, the total friction head and the pressure head.

Total Static Head

The total static head is the total vertical distance the pump must lift the water. When pumping from a well, it would be the distance from the pumping water level in the well to the ground surface plus the vertical distance the water is lifted from the ground surface to the discharge point. When pumping from an open water surface, it would be the total vertical distance from the water surface to the discharge point.

Pressure Head

The pressure head at any point where a pressure gauge is located can be converted from pounds per square inch (PSI) to feet of head by multiplying by 2.31. For example, 20 PSI is equal to 20 times 2.31 or 46.2 feet of head. Most city water systems operate at 50 to 60 PSI, which, as illustrated in Table 1, explains why the centers of most city water towers are about 130 feet above the ground.

Table 1. Pounds per square inch (PSI) and equivalent head in feet of water.

PSI	Head (feet)
0	0
5	11.5
10	23.1
15	34.6
20	46.2
25	57.7
30	69.3

Distribution 404 1St Edition

35	80.8
40	92.4
45	104
50	115
55	127
60	138
65	150
70	162
75	173
80	185
85	196
90	208
95	219
100	231

Friction Head

Friction head is the energy loss or pressure decrease due to friction when water flows through pipe networks. The velocity of the water has a significant effect on friction loss. Loss of head due to friction occurs when water flows through straight pipe sections, fittings, valves, around corners, and where pipes increase or decrease in size. Values for these losses can be calculated or obtained from friction loss tables. The friction head for a piping system is the sum of all the friction losses.

Velocity Head

Velocity head is the energy of the water due to its velocity. This is a very small amount of energy and is usually negligible when computing losses in an irrigation system.

Suction Head

A pump operating above a water surface is working with a suction head. The suction head includes not only the vertical suction lift, but also the friction losses through the pipe, elbows, foot valves, and other fittings on the suction side of the pump. There is an allowable limit to the suction head on a pump and the net positive suction head (NPSH) of a pump sets that limit.

The theoretical maximum height that water can be lifted using suction is 33 feet. Through controlled laboratory tests, manufacturers determine the NPSH curve for their pumps. The NPSH curve will increase with increasing flow rate through the pump. At a certain flow rate, the NPSH is subtracted from 33 feet to determine the maximum suction head at which that pump will operate. For example, if a pump requires a minimum NPSH of 20 feet the pump would have a maximum suction head of 13 feet. Due to suction pipeline friction losses, a pump rated for a maximum suction head of 13 feet may effectively lift water only 10 feet. To minimize the suction pipeline friction losses, the suction pipe should have a larger diameter than the discharge pipe.

Operating a pump with suction lift greater than it was designed for, or under conditions with excessive vacuum at some point in the impeller, may cause cavitation. Cavitation is the implosion of bubbles of air and water vapor and makes a very distinct noise like gravel in the pump. The implosion of numerous bubbles will eat away at an impeller and it eventually will be filled with holes.

Pump Power Requirements

The power added to water as it moves through a pump can be calculated with the following formula:

Q x TDH WHP = ----- (1) 3960

where:

WHP = Water Horse Power Q = Flow rate in gallons per minute (GPM) TDH = Total Dynamic Head (feet)

However, the actual power required to run a pump will be higher than this because pumps and drives are not 100 percent efficient. The horsepower required at the pump shaft to pump a specified flow rate against a specified TDH is the **Brake Horsepower** (BHP) which is calculated with the following formula:

WHP BHP = ----- (2) Pump Eff. x Drive Eff.

BHP -- Brake Horsepower (continuous horsepower rating of the power unit).

Pump Eff. -- Efficiency of the pump usually read from a pump curve and having a value between 0 and 1.

Drive Eff. -- Efficiency of the drive unit between the power source and the pump. For direct connection this value is 1, for right angle drives the value is 0.95 and for belt drives it can vary from 0.7 to 0.85.

Effect of Speed Change on Pump Performance

The performance of a pump varies with the speed at which the impeller rotates. **Theoretically**, varying the pump speed will result in changes in flow rate, TDH and BHP according to the following formulas:

```
\begin{array}{l} \text{RPM}_{2} \\ (-----) \ x \ \text{GPM}_{1} = \text{GPM}_{2} \quad (3) \\ \text{RPM}_{1} \\ \\ (-----)^{2} \ X \ \text{TDH}_{1} = \text{TDH}_{2} \quad (4) \\ \text{RPM}_{1} \\ \\ \\ \begin{array}{l} \text{RPM}_{2} \\ (-----)^{3} \ x \ \text{BPH}_{1} = \text{BPH}_{2} \quad (5) \\ \text{RPM}_{1} \end{array}
```

where:

- RPM₁ = Initial revolutions per minute setting
- RPM₂ = New revolutions per minute setting
- GPM = Gallons per Minute
 - (subscripts same as for RPM)
- TDH = Total Dynamic Head
 - (subscripts same as for RPM)
- BHP = Brake Horsepower
 - (subscripts same as for RPM)

As an example, if the RPM are increased by 50 percent, the flow rate will increase by 50 percent, the TDH will increase 2.25 times, and the required BHP will increase 3.38 times that required at the lower speed. It is easy to see that with a speed increase the BHP requirements of a pump will increase at a **faster rate** than the head and flow rate changes.

Pump Efficiency

Manufacturers determine by tests the operating characteristics of their pumps and publish the results in pump performance charts commonly called **"pump curves**."

A typical pump curve for a horizontal centrifugal pump. NPSH is the Net Positive Suction Head required by the pump and TDSL is the Total Dynamic Suction Lift available (both at sea level).

All pump curves are plotted with the flow rate on the horizontal axis and the TDH on the vertical axis. The curves in a pump curve are for a centrifugal pump tested at different RPM. Each curve indicates the GPM versus TDH relationship at the tested RPM. In addition, pump efficiency lines have been added and wherever the efficiency line crosses the pump curve lines **that** number is what the efficiency is at that point. Brake horsepower (BHP) curves have also been added; they slant down from left to right. The BHP curves are calculated using the values from the efficiency lines. At the top of the chart is an NPSH curve with its scale on the right side of the chart.

Reading a Pump Curve

When the desired flow rate and TDH are known, these curves are used to select a pump. The pump curve shows that a pump will operate over a wide range of conditions. However, it will operate at peak efficiency only in a narrow range of flow rate and TDH. As an example of how a pump characteristic curve is used, let's use the pump curve to determine the horsepower and efficiency of this pump at a discharge of 900 gallons per minute (**GPM**) and 120 feet of TDH.

Solution: Follow the dashed vertical line from 900 GPM until it crosses the dashed horizontal line from the 120 feet of TDH. At this point the pump is running at a peak efficiency just below 72 percent, at a speed of 1600 RPM. If you look at the BHP curves, this pump requires just less than 40 BHP on the input shaft. A more accurate estimate of BHP can be calculated with equations 1 and 2. Using equation 1, the WHP would be [900 x 120] / 3960 or 27.3, and from equation 2 the BHP would be 27.3 / 0.72 or 37.9, assuming the drive efficiency is 100 percent. The NPSH curve was used to calculate the Total Dynamic Suction Lift (TDSL) markers at the bottom of the chart. Notice that the TDSL at 1400 GPM is 10 feet, but at 900 GPM the TDSL is over 25 feet.

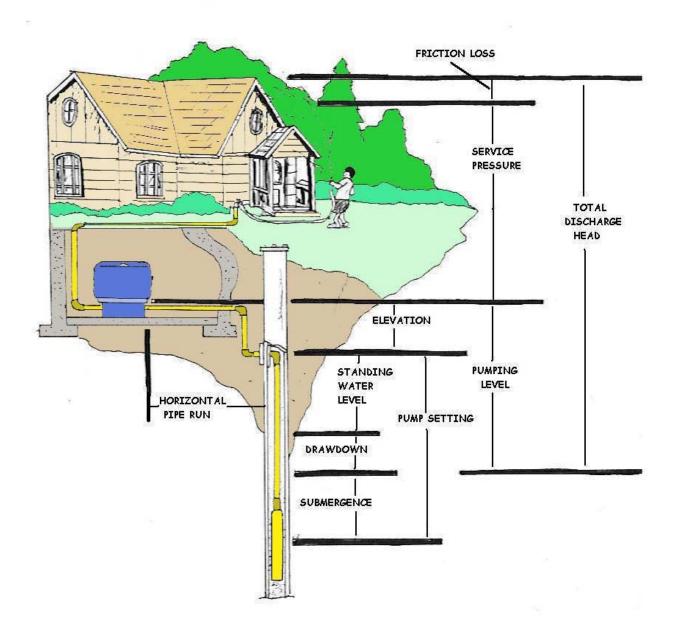
Changing Pump Speed

In addition, suppose this pump is connected to a diesel engine. By varying the RPM of the engine we can vary the flow rate, the TDH and the BHP requirements of this pump. As an example, let's change the speed of the engine from 1600 RPM to 1700 RPM. What effect does this have on the GPM, TDH and BHP of the pump?

Solution: We will use equations 3, 4 and 5 to calculate the change. Using equation 3, the change in GPM would be $(1700/1600) \times 900$, which equals 956 GPM. Using equation 4, the change in TDH would be $(1700/1600)^2 \times 120$, which equals 135.5 feet of TDH. Using equation 5, the change in BHP would be $(1700/1600)^3 \times 37.9$, which equals 45.5 BHP. This point is plotted on Figure 2 as the circle with the dot in the middle. Note that the new operating point is up and to the right of the old point and that the efficiency of the pump has remained the same.

When a pump has been selected for installation, a copy of the pump curve should be provided by the installer. In addition, if the impeller(s) was trimmed, this information should also be provided. This information will be valuable in the future, especially if repairs have to be made.

Determining Friction Losses


A well system installer and/or engineer can help in determining the friction losses in the distribution system. There are numerous friction loss tables with values of equivalent feet of head for given flow rates and types and diameters of pipe available. However, unless great distances or small diameter pipes are used, friction loss is almost negligible. The lift requirements for the pump primarily include the height to which the pump must deliver the water from the wellhead, plus the distance from the pumping level to the land surface.

For example: A municipal supply well has been tested and determined to yield 500gpm. The well was constructed with 10 inch casing that has been perforated from 200 to 500 feet below the ground surface within an unconfined aquifer. The static water level has been measured at 100 feet while the drawdown at 500gpm has been estimated at 80 feet. The full level of the storage tank for the well exerts about 87psi at the wellhead and is connected to the well via a 12-inch distribution main. Three-phase power is available and 4-inch column pipe is to be used down the hole. The pump intake is to be set at 180 feet.

Before we can select an appropriate pump, we first need to determine what the total dynamic head is. After referring to a friction loss table for flow in 4 inch and 12-inch pipe; we determine that the friction losses in the 4 inch pipe will be about 24 feet per 100 foot, while losses in the 12 inch main are negligible.

This leads us to determine that there will be about 43 feet of friction loss through the 4-inch pipe. We also know that the total lift is equal to the drawdown, plus the distance to the land surface from the static water level, plus the vertical distance to the full level of the storage tank. We know from physics that for every foot of water there is .433psi of pressure or 2.31ft of head for every 1 psi. The line pressure at the well head is equal to the height of the column of water above the well head, which gives us a line pressure at the well head of 87psi or 200 feet of water. The total lift from the pump to the wellhead 180 feet and equivalent to 78psi. So the total dynamic head is equivalent to a lift of 380 feet or an equivalent pressure of about 165psi at the pump, plus about 43 feet of friction loss. Therefore, in order to pump 500gpm under these circumstances, the pump that is selected should have its most efficient operating range in the neighborhood of 423 feet total lift. We then look at *performance curves* from the various pump manufacturers to determine the best pump and power combination for the application.

Because this is a municipal supply well that is pumping directly into the distribution system, we will choose a submersible turbine for the job rather than a line shaft turbine, which must be lubricated. Upon looking at the *curves* for this application, one will find that a 75HP, 8in, 5 stage, submersible pump will do the job most efficiently without risking the over-pumping of the well.

Elements of Total Dynamic Head for the proper selection of pumping equipment.

A new 8 inch submersible pump and motor with 6 inch column pipe about to be installed in a high capacity municipal supply well.

The Well Head Assembly

An approved well cap or seal is to be installed at the *wellhead* to prevent any contamination from entering the well through the top once construction is complete. When the well is completed with pumping equipment a well vent is also required.

The well *vent pipe* should be at least ½ inch in diameter, 8 inches above the finished grade, and be turned down, with the opening screened with a minimum 24-mesh durable screen to prevent entry of insects. Only approved well casing material meeting the requirements of the Code may be utilized.

In addition, frost protection should be provided by use of insulation or pump house. Turbine and submersible pumps are normally used. Any pressure, vent, and electric lines to and from the pump should enter the casing only through a watertight seal.

Pumps and pressure tanks may be located in basements and enclosures. However, wells should not be located within vaults or pits, except with a *variance permit*.

If the pump discharge line passes through the well casing underground, an approved *pitless adapter* should be installed. The *well manifold* should include an air relief valve, flow meter, sample port, isolation valve, and a check valve. If the well should need rehabilitation, additional construction, or repair, it must be done in compliance with the State or Local Water Well Construction Codes.

Water Use or Demand

Water system demand comes from a number of sources including residential, commercial, industrial and public consumers as well as some unavoidable loss and waste. If fire protection is desired, that could also represent a rather significant (although not continuous) demand upon the system. The combination of storage reservoirs and distribution lines must be capable of meeting consumers' needs for quality, quantity and pressure at all times. The quantity of water used in any community varies from 50 to 500 gallons per person per day. A common design assumption is to use from 100 to 150 gallons per person per day for average domestic use. The maximum daily use is approximately 2 to 3 times the average daily use. Maximum daily use is usually encountered during the summer months and can vary widely depending on irrigation practices.

Water Pressure

For ordinary domestic use, water pressure should be between 25 and 45 psi. A minimum of 60 psi at a fire hydrant is usually adequate, since that allows for up to 20 psi pressure drop in fire hoses. In commercial and industrial districts, it may be common to have 75 psi or higher. 20 psi is considered the minimum required at any point in the water system, so that backflow and infiltration is prevented. Pressure is provided by the direct force of the water (such as water from a pump), or by the height of the water (such as a storage reservoir). 2.31 feet of water is equal to 1 psi, or 1 foot of water is equal to about a half a pound (.433 pounds to be exact).

Storage and Distribution

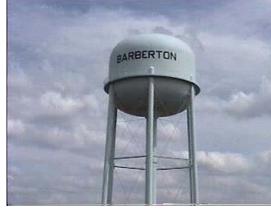
The cost of supplying water to the users of any water system includes the installation of storage and distribution facilities. Also, there are on-going maintenance costs associated with cleaning, repairing and replacing these facilities. The distribution system must also protect water quality between the source and the customer's tap. Proper construction is important in maintaining system integrity. Care must be taken that no foreign material is introduced into the system during pipe laying operations. Pipe ends should be covered at the end of the work day or during interruptions of construction.

All pipes, joints and fittings should be pressure tested and disinfected with a 5% chlorine solution such as household bleach before backfilling. It is also important that all materials in contact with potable water meet the requirements of the National Sanitation Foundation (**NSF**) or American Water Works Association (**AWWA**) or have equivalent third-party certification. This includes solders (must be lead-free), pipes, joining and sealing materials, and protective coatings.

Water Storage Facilities

Water storage facilities and tanks vary in size, shape, and application. There are different types that are used in the water distribution systems, such as stand pipes, elevated tanks and reservoirs, hydropneumatic tanks and surge tanks.

These tanks serve multiple purposes in the distribution system. Just the name alone can give you an idea of its purpose.


Surge Tanks Reservoirs Elevated Tanks Water towers and Standpipes

Surge Tanks

What really causes water main breaks - ENERGY - when released in a confined space, such as a water distribution system? Shock waves are created when hydrants, valves, or pumps are opened and closed quickly, trapping the kinetic energy of moving water within the confined space of a piping system. These shock waves can create a turbulence that travels at the speed of sound, seeking a point of release. The release the surge usually finds is an elevated tank, but the surge doesn't always find this release quickly enough. Something has to give, and oftentimes, it's your pipe fittings. Distribution operators are aware of this phenomenon! It's called *WATER HAMMER*.

This banging can be heard as water hammer. Try it at home - turn on your tap, then turn it off very quickly. You should hear a bang, and maybe even several. If you turn the tap off more slowly, it should stay quiet, as the liquid in the pipes slows down more gradually. A Surge tank should not be used for water storage.

The goal of the water tower or stand pipe is to store water high in the air, where it has lots of gravitational potential energy. This stored energy can be converted to pressure potential energy or kinetic energy for delivery to homes. Since height is everything, building a cylindrical water tower is inefficient. Most of the water is then near the ground. By making the tower wider near the top, it puts most of its water high up.

Storage Reservoirs

Storage reservoirs allow the system to meet the fluctuations in demand described earlier. It is recommended that the volume of storage be equal to from one to three days of the system's average daily use. It is also recommended that storage reservoirs be located at a high enough elevation to allow the water to flow by gravity to the distribution system.

This, coupled with restricted usage on the part of the consumers, should provide an uninterrupted water supply in the event of pump failure, loss of power or an acute contamination event or crossconnection. Also, if applicable, some storage for fire protection should be provided. Reservoirs are also used as detention basins to provide the required chlorine contact time necessary to ensure the adequacy of disinfection. As such, the contact time in a reservoir is greatly improved when the reservoir is constructed with a separate inlet and outlet pipe, preferably located on opposite sides of the reservoir and at different

levels. Also, baffles inside the reservoir (walls, curtains, or spirals) increase the contact time by preventing the water from leaving the reservoir too quickly (known as "*short-circuiting*").

Steel Reservoirs

Steel reservoirs or tanks generally have lower construction and installation costs than concrete, but require more maintenance. To protect against corrosion, the exterior should be kept cleaned and painted. Interiors of steel reservoirs are commonly coated with an epoxy or enamel-type finish. Some coal-tar linings used in the past have apparently degraded over time and are implicated in the release of small amounts of solvents into the stored water.

Steel reservoirs are usually welded or bolted together and are manufactured in a variety of sizes. Small steel reservoirs can be manufactured off-site and then trucked and lifted into place. Steel tanks should be inspected once a year and repainted every 5-7 years. Steel tank should also have cathodic protection and be screened to keep birds and insects out. The maintenance program for reservoir tanks should call for annual draining for a complete inspection of the interior. Cleaning and disinfection prior to placing the reservoir or tank back in service is necessary.

Disinfection by chlorine can be accomplished by one of three methods:

- 1. Fill the tank or reservoir with a 25 mg/1chlorine solution and leave it for 24 hours.
- 2. Fill the reservoir with a 50 mg/1 chlorine solution and leave it for 3 hours.
- 3. Spray or brush on a 200 mg/1 chlorine solution and allow it to remain for 3 hours.

The chlorinated water shall be disposed of in a manner that will not have an adverse effect on the environment. Check with your state environmental, health or drinking water section.

Large steel water storage tank

Disinfection of Water Storage Reservoirs

The distribution system is the piping that delivers water to service connections.

There are several types of piping material that can be used.

Each has its advantages and disadvantages.

The pipe material must have adequate strength to withstand external loads from backfill, traffic and earth movement, high burst strength to withstand high water pressure, smooth interior surfaces, corrosion resistant exteriors and tight joints.

A number of linings are also used to extend the life of the pipe and improve flow characteristics:

1,000	.5
2,000	1
3,000	1.5
4,000	2
5,000	2.5
10,000	5
20,000	10
30,000	15
40,000	20
50,000	25

Reservoir size (gals.) Amount (in pounds of dry weight) of 65% strength dry chlorine powder (HTH) to add to achieve a 25ppm dose.

10,000	3.5
20,000	6.5
30,000	10
40,000	13
50,000	16
100,000	32
200,000	64
300,000	100
400,000	130
500,000	160

Top of a storage reservoir needs to be kept locked and monitored.

Large Gate Valve and a Butterfly Valve which works like an old fashioned carburetor.

Pouring a Calcium Hypochlorite solution down a well to disinfect the well.

150 pound chlorine gas cylinder. Always tag the empty cylinder and store upright.

Chlorine Review Statements

What are the requisite emergency procedures in case of a large, uncontrolled, Cl2 leak? Immediately notify the local emergency response team; immediately warn and evacuate people living or working in adjacent areas and

What compounds are formed in water when Cl2 gas is introduced? Cl2 gas forms a mixture of hydrochloric and hypochlorous acids.

What does '*breakpoint chlorination*' mean? Adding Cl2 to the water until the Cl2 demand is satisfied.

What happens when hypochlorite is brought into contact with an organic material? The organic material decomposes, releasing heat very rapidly.

What is the name of a device that has a transparent tube with a tapered bore containing a ball and is often used to measure the rate of a gas or liquid? Rotameter.

What is the primary safety concern when using Cl2 gas as opposed to calcium hypochlorite or sodium hypochlorite? The potential for a gas leak.

What is the purpose of an evaporator? To convert liquid Cl2 to gaseous Cl2 for use by gas chlorinators.

What is the purpose of the bottom valve on a 1-ton Cl2 cylinder? To remove liquid Cl2.

What is the purpose of the ejector on a hypochlorinator? The ejector draws in additional water for dilution of the hypochlorinate solution.

What may happen if the temperature of a full Cl2 cylinder is increased by 50°F. (30° C.)? The cylinder may rupture.

Hydropneumatic Tank Section

Hydropneumatic Tanks Out of Service for Maintenance Effects on the Water Supply

Whenever a tank must be taken out of service for maintenance, the operator should insure that the water pressure is maintained by other back-up tanks in the system. If this is not possible, customers should be given as much advance notice as possible, maintenance should be conducted during periods of low water demand, and the maintenance should be conducted as quickly as possible to reduce the time without water service.

Troubleshooting Hydropneumatic Tank Problems

The purpose of a hydropneumatic tank is to provide air for the water system. It is the responsibility of the operator to perform basic troubleshooting of problems in hydropneumatic tank systems. The operator has to decide, based on his/her own training and capability when a problem requires assistance from another operator or an outside expert. Operators should not hesitate to seek assistance if they are uncomfortable with a particular problem or situation. Remember, the goal is to provide a safe and consistent supply of water and this cannot always be accomplished by one or two individuals who may have many other responsibilities. Corrective action should only be performed by individuals who are trained and skilled in that particular area.

Corrective actions by unskilled individuals could result in personal injury or serious damage to the water system equipment. The following troubleshooting table is provided to assist operators of small water systems to troubleshoot basic problem with hydropneumatic tanks. It must be recognized that problems occurring in hydropneumatic tanks could also be related to the well, water supply pump and controls, and the distribution system, therefore other troubleshooting tables included in this manual should be consulted in addition to the troubleshooting table for hydropneumatic tanks.

Troubleshooting Table for Hydropneumatic Tanks Problem

- 1. Well pump will not start.
- 2. Well pump will not shut off.
- 3. Well pump starts and stops too frequently (Excessive cycle rate).
- 4. Sand / sediment is present in the water.
- 5. Air is present in the water.
- 6. Oil is present in the water.
- 7. Dirt and or bacteria present in the water.
- 8. Excessively high distribution system pressure (greater than 70 psi).

9. Excessively low distribution system pressure (normal working pressure below 40 psi or occasional pressures below 20 psi during peak usage).

10. Corrosion present on outside of tank.

11. Tank is unstable and can be easily be moved, or tank is supported by the piping.

Possible Hydropneumatic Tank Problem Causes

1A. Circuit breaker or overload relay tripped.

1B. Fuse(s) burned out.

1C. No power to switch box.

1D. Short, broken or loose wire.

1E. Low voltage.

1F. Defective motor.

1G. Defective pressure switch.

2A. Defective pressure switch.

2B. Cut-off pressure setting too high.

2C. Float switch or pressure transducer not functioning.

3A. Leaking foot valve or check valve.

3B. Defective pressure switch or automatic control system. High or Low pressure cutoff switches may need to be adjusted.

3C. Excessive water use or major leak in water distribution system.

3D. Water-logged hydropneumatic tank.

3E. Air-logged hydropneumatic tank.

4A. Problems with well screen or gravel

4B. If there is iron or manganese in the well water and it is not removed before the

hydropneumatic tank, and the air in the hydropneumatic tank comes into direct contact with the water in the tank, then

the iron and manganese could be oxidizing and settling in the tank. Also, sediment could be present in the distribution system.

5A. If there is a check valve between the well pump and the hydropneumatic tank, and air is present on the well side of the check valve, then the pump may be breaking suction. In this case, the water level in well is near or below the pump intake.

5B. If there is a check valve between the well pump and the hydropneumatic tank, and air is present only on the hydropneumatic tank side of the check valve and in the distribution system, then air from hydropneumatic may be tank entering water.

6A. Oil leaking from air compressor.

7A. Refer to troubleshooting table on "hypochlorinators."

7B. Replace filter. Also review troubleshooting table on "*hypochlorinators*." Notify water system specialist.

8A. See Problem Item #2 in this troubleshooting table.

9A. Refer to troubleshooting guide section "*Pumps*." Notify supervisor.

10A. Clean area with a wire brush. Prime and paint the surface with. Do not chip rust from the tank unless it is drained and out of service. If chipping is required, contact a tank corrosion specialist. The tank may not be structurally sound and re-pressurizing could cause further damage or personal injury. Note: 50 psi exerts a pressure of 3.5 tons per square foot! Never paint the tank interior without first consulting the state regulatory authority.

11A. Provide suitable and permanent supports so the tank cannot be moved and the piping is not supporting the weight of the tank. This may require taking the system out of service while these repairs are made. Never try to move a tank that is pressurized. Notify your water system specialist.

Possible Hydropneumatic Tank Solutions

1A. Reset breaker or manual overload relay.

1B. Check for cause and correct, replace fuse(s).

1C. Check incoming power supply. Contact power company.

1D. Check for shorts and correct, tighten terminals, replace broken wires.

1E. Check incoming line voltage. Contact power company if low.

1F. Contact electrical contractor.

1G. Check voltage of incoming electric supply with pressure switch closed. Contact power company if voltage low. Perform maintenance on switch if voltage normal. Refer to trouble-shooting table on "*Pumps*."

3A. Contact well specialist.

3B. Contact well specialist or electrician.

3C. Locate and repair leak.

3D. Check air-to-water ratio from sight tube (if provided). If the tube is completely filled with water or if the water level exceeds 2/3 of the volume of the tank, then air will have to be introduced into the tank. Check tank and air system for leaks. The optimum air-to-water ratio in the hydropneumatic tank should be 2/3 water to 1/3 air. If the problem persists or if there is no sight tube, notify water system specialist.

3E. Check air-to-water ratio from sight tube (if provided). If the tube is completely filled with air or if the water level is less than 1/2 of the volume of the tank, then air will have to bled from the tank. The optimum air-to-water ratio should be 2/3 water to 1/3 air. If the problem persists or if there is no sight tube, notify water system specialist.

4A. Contact well contractor.

4B. Check air-to-water ratio from sight tube (if provided). If the tube is completely filled with air or if the water level is less than 1/2 of the volume of the tank, then air will have to bled from the tank. The optimum air-to-water ratio should be 2/3 water to 1/3 air. If the problem persists or if there is no sight tube, notify water system specialist. If there is a physical separation between the air and water in the tank, then the separator could have broken. Notify water system specialist.

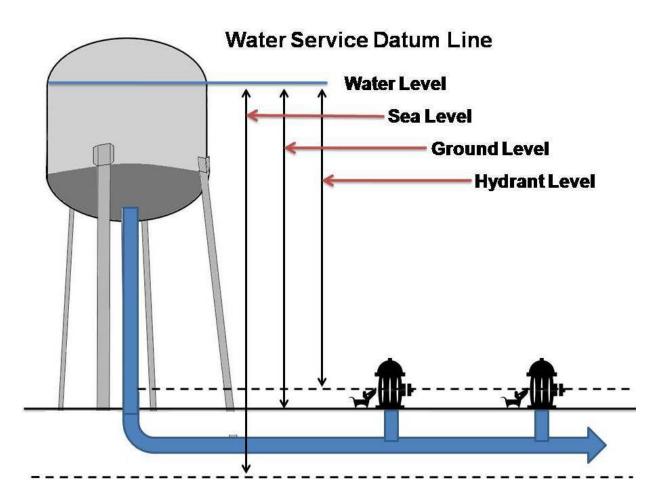
5A. Partially throttle discharge valve. Notify supervisor or well service company.

5B. Improve removal of iron and manganese. If the hydropneumatic tank is equipped with a drain, open the drain valve and discharge the sediment to waste.

6A. Check the oil separator on the discharge side to the air compressor.

Notify water system specialist. Consider replacing the unit with a non-oil lubricated type unit. 7A. Inadequate disinfection.

7B. Intake filters on air compressor broken or dirty.


8A. Automatic pressure controls needs adjustment or cut-out sequence is not functioning.

9A. Automatic pressure controls needs adjustment or cut-in sequence is not functioning.

10A. Inadequate protective coating (paint).

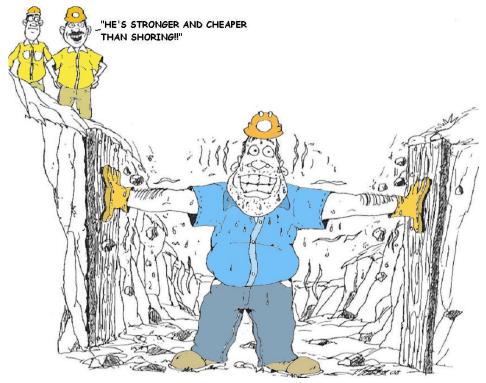
11A. Tank supports are inadequate.

Note: If the water supply pump is running constantly, excessive pressures can develop in the hydropneumatic tank and distribution system. The tank should be equipped with a pressure relief valve that opens at approximately 100 psi. This may protect the tank from damage but it is possible that the distribution system could be damaged if pressures exceed normal working pressures. Check for leaks throughout the service area. Notify electrician experienced with industrial controls.

Safety Section

Excavation & Trenching

This section outlines procedures and guidelines for the protection of employees working in and around excavations and trenches. This section requires compliance with OSHA Standards described in Subpart P (**CFR 1926.650**) for the construction industry.


Safety compliance is mandatory to ensure employee protection when working in or around excavations. The competent person(s) must be trained in accordance with the OSHA Excavation Standard, and all other programs that may apply (examples Hazard Communication, Confined Space, and Respiratory Protection), and must demonstrate a thorough understanding and knowledge of the programs and the hazards associated. All other employees working in and around the excavation must be trained in the recognition of hazards associated with trenching and excavating.

REFERENCES

29 CFR 1926.650, Subpart P - Excavations

Excavation Equipment Manufacturer Safety Procedures

Trench Shield

Hazards

One of the reasons OSHA requires a competent person on-site during excavation & trenching are the numerous potential hazardous that may be encountered or created. Hazards include: Electrocution Gas Explosion Entrapment Struck by equipment Suffocation

Hazard Controls

Before any work is performed and before any employees enter the excavation, a number of items must be checked and ensured:

Before any excavation, underground installations must be determined. This can be accomplished by either contacting the local utility companies or the local "one-call' center for the area. All underground utility locations must be documented on the proper forms. All overhead hazards (surface encumbrances) that create a hazard to employees must be removed or supported to eliminate the hazard.

If the excavation is to be over 20 feet deep, it must be designed by a registered professional engineer who is registered in the state where work will be performed.

Adequate protective systems will be utilized to protect employees. This can be accomplished through sloping, shoring, or shielding.

The worksite must be analyzed in order to design adequate protection systems and prevent cave-ins. There must also be an excavation safety plan developed to protect employees. Workers must be supplied with and wear any personal protective equipment deemed necessary to assure their protection.

All spoil piles will be stored a minimum of two (2) feet from the sides of the excavation. The spoil pile must not block the safe means of egress.

If a trench or excavation is 4 feet or deeper, stairways, ramps, or ladders will be used as a safe means of access and egress. For trenches, the employee must not have to travel any more than 25 feet of lateral travel to reach the stairway, ramp, or ladder.

No employee will work in an excavation where water is accumulating unless adequate measures are used to protect the employees.

A competent person will inspect all excavations and trenches daily, prior to employee exposure or entry, and after any rainfall, soil change, or any other time needed during the shift. The competent person must take prompt measures to eliminate any and all hazards. Excavations and trenches 4 feet or deeper that have the potential for toxic substances or hazardous atmospheres will be tested at least daily. If the atmosphere is inadequate, protective systems will be utilized.

If work is in or around traffic, employees must be supplied with and wear orange reflective vests. Signs and barricades must be utilized to ensure the safety of employees, vehicular traffic, and pedestrians.

Competent Person Responsibilities

The OSHA Standards require that the competent person must be capable of identifying existing and predictable hazards in the surroundings, or working conditions which are unsanitary, hazardous, or dangerous to employees, and have authorization to take prompt corrective measures to eliminate them and, if necessary, to stop the work.

A competent person is required to:

Have a complete understanding of the applicable safety standards and any other data provided.

Assure the proper locations of underground installations or utilities, and that the proper utility companies have been contacted.

Conduct soil classification tests and reclassify soil after any condition changes.

Determine adequate protective systems (sloping, shoring, or shielding systems) for employee protection.

Conduct all air monitoring for potential hazardous atmospheres.

Conduct daily and periodic inspections of excavations and trenches.

Approve design of structural ramps, if used.

Excavation Safety Plan

An excavation safety plan is required in written form. This plan is to be developed to the level necessary to ensure complete compliance with the OSHA Excavation Safety Standard and state and local safety standards.

Excavation safety plan factors:

Utilization of the local one-call system. Determination of locations of all underground utilities. Consideration of confined space atmosphere potential. Proper soil protection systems and personal protective equipment and clothing. Determination of soil composition and

classification.

Determination of surface and subsurface water.

Depth of excavation and length of time it will remain open.

Proper adherence to all OSHA Standards, this excavation and trenching safety program, and any other coinciding safety programs.

Soil Classification and Identification

The OSHA Standards define soil classifications within the Simplified Soil Classification Systems, which consist of four categories: Stable rock, Type A, Type B, and Type C. Stability is greatest in stable rock and decreases through Type A and B to Type C, which is the least stable. Appendix A of the Standard provides soil mechanics terms and types of field tests used to determine soil classifications.

Stable rock is defined as natural solid mineral matter that can be excavated with vertical sides and remain intact while exposed.

Type A soil is defined as:

 \checkmark Cohesive soils with an unconfined compressive strength of 1.5 tons per square foot (**TSF**) or greater.

✓ Cemented soils like caliche and hardpan are considered Type A.

Soil is NOT Type A if:

- It is fissured.
- \checkmark The soil is subject to vibration from heavy traffic, pile driving or similar effects.
- ✓ The soil has been previously disturbed.

 \checkmark The material is subject to other factors that would require it to be classified as a less stable material.

✓ The exclusions for Type A most generally eliminate it from most construction situations.

Type B soil is defined as:

 \checkmark Cohesive soil with an unconfined compressive strength greater than .5 TSF, but less than 1.5 TSF.

- ✓ Granular cohesion-less soil including angular gravel, silt, silt loam, and sandy loam.
- ✓ The soil has been previously disturbed, except soil classified as Type C soil.

 \checkmark Soil that meets the unconfined compressive strength requirements of Type A soil, but is fissured or subject to vibration.

 \checkmark Dry rock that is unstable.

Type C soil is defined as:

- \checkmark Cohesive soil with an unconfined compressive strength of .5 TSF or less.
- ✓ Granular soils including gravel, sand and loamy sand.
- ✓ Submerged soil or soil from which water is freely seeping.
- \checkmark Submerged rock that is not stable.

Soil Test & Identification

The competent person will classify the soil type in accordance with the definitions in Appendix A based on at least one visual and one manual analysis. These tests should be run on freshly excavated samples from the excavation and are designed to determine stability based on a number of criteria: the cohesiveness, the presence of fissures, the presence and amount of water, the unconfined compressive strength, the duration of exposure, undermining, and the presence of layering, prior excavation and vibration.

The cohesion tests are based on methods to determine the presence of clay. Clay, silt, and sand are size classifications, with clay being the smallest sized particles, silt intermediate and sand the largest. Clay minerals exhibit good cohesion and plasticity (can be molded). Sand exhibits no elasticity and virtually no cohesion unless surface wetting is present. The degree of cohesiveness and plasticity depend on the amounts of all three types and water.

When examining the soil, three questions must be asked: Is the sample granular or cohesive? Fissured or non-fissured? What is the unconfined compressive strength measured in TSF?

Methods of Testing Soils:

Visual test: If the excavated soil is in clumps, it is cohesive. If it breaks up easily, not staying in clumps, it is granular.

Wet manual test: Wet your fingers and work the soil between them. Clay is a slick paste when wet, meaning it is cohesive. If the clump falls apart in grains, it is granular.

Dry strength test: Try to crumble the sample in your hands with your fingers. If it crumbles into grains, it is granular. Clay will not crumble into grains, only into smaller chunks.

Pocket penetrometer test: This instrument is most accurate when soil is nearly saturated. This instrument will give unconfined compressive strength in tons per square foot. The spring-operated device uses a piston that is pushed into a coil up to a calibration groove. An indicator sleeve marks and retains the reading until it is read. The reading is calibrated in tons per square foot (**TSF**) or kilograms per cubic centimeter.

Pocket Penetrometer 495

Thumb Penetration Test: The competent person attempts to penetrate a fresh sample with thumb pressure. If the sample can be dented, but penetrated only with great effort, it is Type A. If it can be penetrated several inches and molded by light pressure, it is Type C. Type B can be penetrated with effort and molded.

Shearvane: Measures the approximate shear strength of saturated cohesive soils. The blades of the vane are pressed into a flat section of undisturbed soil, and the knob is turned slowly until soil failure. The dial is read directly when using the

standard vane. The results will be in tons per square foot or kilograms per cubic centimeter.

The competent person will perform several tests of the excavation to obtain consistent, supporting data along its depth and length. The soil is subject to change several times within the scope of an excavation and the moisture content will vary with weather and job conditions. The competent person must also determine the level of protection based on what conditions exist at the time of the test, and allow for changing conditions.

Excavation Protection Systems

The three basic protective systems for excavations and trenches are sloping and benching systems, shoring, and shields. The protective systems shall have the capacity to resist without failure all loads that are intended or could reasonably be expected to be applied to or transmitted to the system.

Every employee in an excavation shall be protected from cave-ins by an adequate protective system.

Exceptions to using protective system:

Excavations are made entirely in stable rock Excavations are less than 5 feet deep and declared safe by a competent person

Sloping and Benching Systems

There are four options for sloping:

Slope to the angle required by the Standard for Type C, which is the most unstable soil type. The table provided in Appendix B of the Standard may be used to determine the maximum allowable angle (after determining the soil type).

Tabulated data prepared by a registered professional engineer can be utilized.

A registered professional engineer can design a sloping plan for a specific job.

Sloping and benching systems for excavations five (5) to twenty (20) feet in depth must be constructed under the instruction of a designated competent person.

Sloping and benching systems for excavations greater than twenty (20) feet must be designed and stamped by a registered professional engineer. Sloping and benching specifications can be found in Appendix B of the OSHA Standard (Subpart P).

Shoring Systems

Shoring is another protective system or support system. Shoring utilizes a framework of vertical members (uprights), horizontal members (whales), and cross braces to support the sides of the excavation to prevent a cave-in. Metal hydraulic, mechanical, or timber shoring are common examples.

The different examples of shoring are found in the OSHA Standard under these appendices:

APPENDIX C - Timber Shoring for Trenches

APPENDIX D - Aluminum Hydraulic Shoring for Trenches

APPENDIX E - Alternatives to Timber Shoring

Shield Systems (Trench Boxes)

Shielding is the third method of providing a safe workplace. Unlike sloping and shoring, shielding does not prevent a cave-in. Shields are designed to withstand the soil forces caused by a cave-in and protect the employees inside the structure. Most shields consist of two flat, parallel metal walls that are held apart by metal cross braces.

Shielding design and construction is not covered in the OSHA Standards. Shields must be certified in design by a registered professional engineer and must have

either a registration plate on the shield or registration papers from the manufacturer on file at the jobsite office.

ANY REPAIRS OR MODIFICATIONS MUST BE APPROVED BY THE MANUFACTURER.

Safety Precautions for Shield Systems

Shields must not have any lateral movement when installed.

Employees will be protected from cave-ins when entering and exiting the shield (examples - ladder within the shield or a properly sloped ramp at the end).

Employees are not allowed in the shield during installation, removal, or during any vertical movement.

Shields can be 2 ft. above the bottom of an excavation if they are designed to resist loads at the full depth and if there are no indications of caving under or behind the shield.

The shield must extend at least 18 inches above the point where proper sloping begins (the height of the shield must be greater than the depth of the excavation).

The open end of the shield must be protected from the exposed excavation wall. The wall must be sloped, shored, or shielded. Engineer designed end plates can be mounted on the ends of the shield to prevent cave-ins.

Personal Protective Equipment

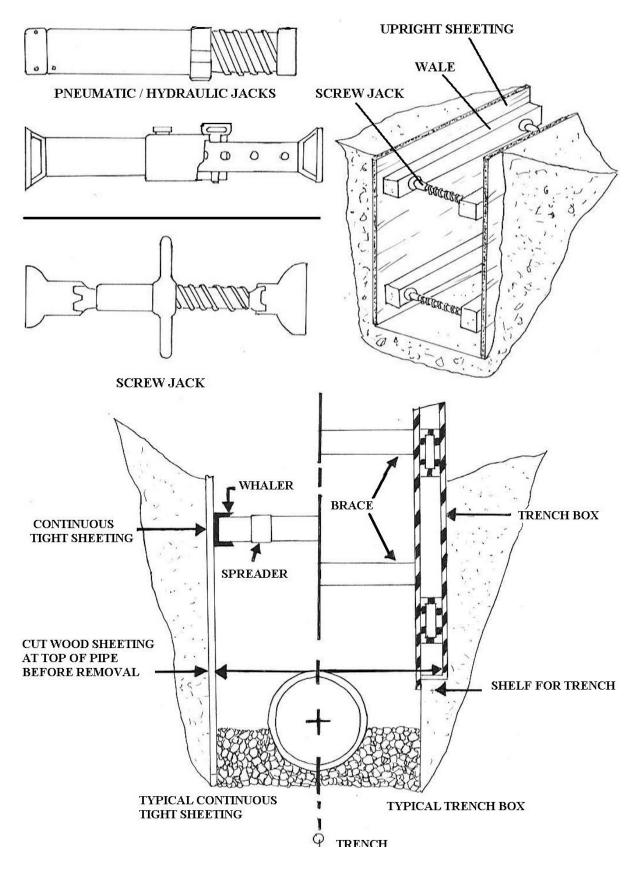
It is **OSHA** policy for you to wear a hard hat, safety glasses, and work boots on the jobsite. Because of the hazards involved with excavations, other personal protective equipment may be necessary, depending on the potential hazards present (examples: goggles, gloves, and respiratory equipment).

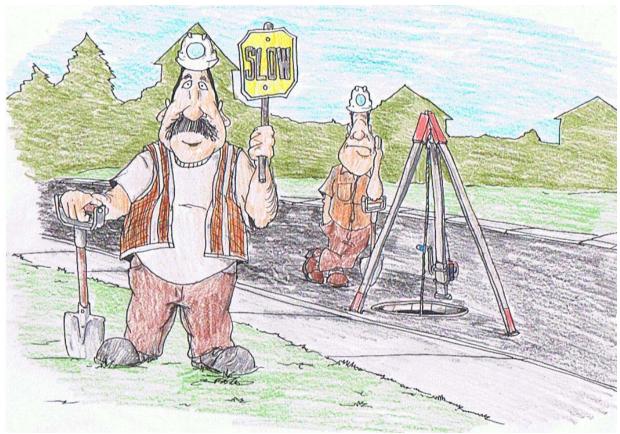
Inspection

Daily inspection of excavations, the adjacent areas, and protective systems shall be made by the competent person for evidence of a situation that could result in a cave-in, indications of failure of protective systems, hazardous atmospheres or other hazardous conditions.

All inspections shall be conducted by the competent person prior to the start of work and as needed throughout the shift.

Inspections will be made after every rainstorm or any other increasing hazard.


All documented inspections will be kept on file in the jobsite safety files and forwarded to the Safety Director weekly.


A copy of the Daily Excavation Inspection form is located at the end of this program.

The competent person(s) must be trained in accordance with the OSHA Excavation Standard, and all other programs that may apply (examples Hazard Communication, Confined Space, and Respiratory Protection), and must demonstrate a thorough understanding and knowledge of the programs and the hazards associated.

All other employees working in and around the excavation must be trained in the recognition of hazards associated with trenching and excavating.

The evaluator should also look for signs of bulging, boiling, or sloughing, as well as for signs of surface water seeping from the sides of the excavation or from the water table. If there is standing water in the cut, the evaluator should check for "quick" conditions. In addition, the area adjacent to the excavation should be checked for signs of foundations or other intrusions into the failure zone, and the evaluator should check for surcharging and the spoil distance from the edge of the excavation.

One-Call Center, Underground Service Alert or Bluestakes

You are required to locate or call for proper buried utility locations before you dig or excavate. You will usually need a 48-hour notice before you excavate. Please check your local One-Call system.

Red means-Electricity, Yellow-Gas, Blue-Water. It would be very difficult to replace this water service line because of all the buried utilities.

Orange Telephone & Fiber Optics

One-Call Program

According to federal safety statistics, damage from unauthorized digging is the major cause of natural gas pipeline failures. To prevent excavation damage to all utilities, including pipelines, all 50 states have instituted **"One Call"** Programs. The programs provide telephone numbers for excavation contractors to call before excavation begins.

The One Call operator will notify a pipeline company of any planned excavation in the vicinity of its pipeline so that the company can flag the location of the pipeline and assign personnel to be present during excavation, if necessary.

In a related effort, a joint government-industry team has developed a public education program entitled "**Dig Safely**". The team involves representatives from the U.S. Department of Transportation, gas and liquid pipeline companies, distribution companies, excavators, the insurance industry, one-call systems and the telecommunications industry. This campaign provides information to the general public concerning underground utilities and the danger of unknowingly digging into buried lines and cables.

The program has posters, brochures, and other printed materials available for use by interested organizations. For more information, contact www.digsafely.com.

Buried Telephone Cables. Always hand dig around this stuff. There will be ties that you cannot even use a shooter shovel because of the damage that may be caused.

Confined Spaces are

-large enough to allow entry of any body part, and

-limited or restricted entry or exit, and

-not designed for continuous employee occupancy

Permit Required Confined Spaces are confined spaces that have any of the following -potential hazardous atmosphere -material inside that may engulf or trap you -internal design that could trap or asphyxiate you -**any other serious safety or health hazard**

Entry Permits are required before you enter any "Permit Required Confined Space"

Hazards include

Fire & Explosion Engulfment Asphyxiation Entrapment Slips & Falls Electric Shock Noise & Vibration Chemical Exposure Toxic Atmospheres Thermal / Chemical Burns

Engineering Controls

Ventilation Locked Access Lighting

Administrative Controls

Controlled Access Hazard Assessments Entry Permits & Procedures Signs & Lockout Tagout Training

Smart Safety Rules

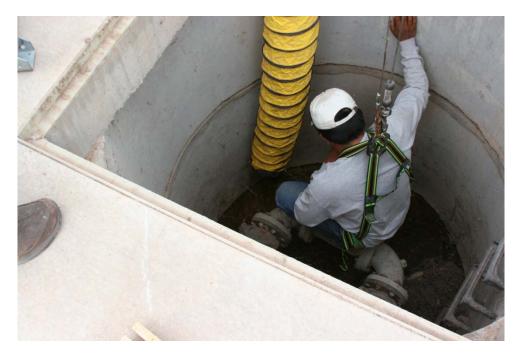
Know what you are getting into.

Know how to get out in an emergency.

Know the hazards & how they are controlled.

Only authorized & trained personnel may enter a Confined Space or act as an attendant.

No smoking in Confined Space or near entrance or exit area.


Attendant must be present at all times.

Constant visual or voice communication must be maintained between the attendant and entrants.

No bottom or side entry will be made, or work conducted, below the level any hanging material or material which could cause engulfment.

Air and oxygen Monitoring is required before entering a Permit-Required Confined Space.

Ventilation & oxygen monitoring is required when welding is performed.

Entering a confined space with proper ventilation.

Service worker cutting abandoned utility conduit out of the way. Always call first and get the utility to show up to verify if you are able to cut an abandoned utility. I personally do not trust anything the other utilities will say or put in writing.

Confined Space Entry Program

Purpose

The Confined Space Entry Program is provided to protect authorized employees that will enter confined spaces and may be exposed to hazardous atmospheres, engulfment in materials, conditions which may trap or asphyxiate due to converging or sloping walls, or contains any other safety or health hazards.

Reference: OSHA-Permit-Required Confined Spaces (29 CFR 1910.146).

Scope

You are required to recognize the dangers and hazards associated with confined spaces, and this program is designed to assist you in the safety of and compliance with the OSHA standards associated with such.

Most communities will utilize the Fire Department for all rescues and additional assistance dealing with confined spaces, understanding that most Fire Department operations utilize additional in house SOG's/SOP's pertaining to such operations.

Definitions

Confined space:

Is large enough or so configured that an employee can bodily enter and perform work.

Has limited or restricted means for entry or exit (i.e. tanks, vessels, silos, storage bins, hoppers, vaults, and pits are spaces that may have limited means of entry).

Is not designed for continuous employee occupancy.

Permit required confined space (permit space), is a confined space that has one or more of the following characteristics:

1. Contains or has a potential to contain a hazardous atmosphere.

2. Contains a material that has the potential for engulfing an entrant.

3. Has an internal configuration such that an entrant could be trapped or asphyxiated by inwardly covering walls or by a floor which slopes downward and tapers to a smaller cross-section.

4. Contains any other recognized serious safety or health hazard.

Each Permit-Required Confined Space will be marked

"Confined Space - Entry Permit Required".

Examples of "*Permit Required Confined Spaces*." Make sure you comply with these Confined Space rules or face civil and/or criminal charges. Several states have criminally charged Supervisors and Attendants for the actions of the employees in a Confined Space/Permit Required Confined Space. Don't risk death or the chance of going to jail in order to speed up your job!

Distribution 404 1St Edition

506

Confined Space Hazards

Fatalities and injuries constantly occur among construction workers who, during the course of their jobs, are required to enter confined spaces. In some circumstances, these workers are exposed to multiple hazards, any of which may cause bodily injury, illness, or death.

Newspaper and magazine articles abound with stories of workers injured and killed from a variety of atmospheric factors and physical agents. Throughout the construction jobsite, contractors and workers encounter both inherent and induced hazards within confined workspaces.

Inherent Hazards

Inherent hazards, such as electrical, thermal, chemical, mechanical, etc., are associated with specific types of equipment and the interactions among them.

Examples include high voltage (shock or corona discharge and the resulting burns), radiation generated by equipment, defective design, omission of protective features (no provision for grounding non-current-carrying conductive parts), high or low temperatures, high noise levels, and high-pressure vessels and lines (rupturing with resultant release of fragments, fluids, gases, etc.).

Inherent hazards usually cannot be eliminated without degrading the system or equipment, or without making them inoperative. Therefore, emphasis must be placed on hazard control methods.

Induced Hazards

Induced hazards arise, and are induced from, a multitude of incorrect decisions and actions that occur during the actual construction process. Some examples are: omission of protective features, physical arrangements that may cause unintentional worker contact

with electrical energy sources, oxygen-deficient atmospheres created at the bottom of pits or shafts, lack of safety factors in structural strength, and flammable atmospheres.

Typical Examples of Confined Workspaces

Following are typical examples of confined workspaces in construction which contain both inherent and induced hazards.

Vaults

A variety of vaults are found on the construction jobsite. On various occasions, workers must enter these vaults to perform a number of functions.

The restricted nature of vaults and their frequently belowgrade location can create an assortment of safety and health problems.

Oxygen-Deficient Atmosphere

One of the major problems confronting construction workers while working in vaults is the ever-present possibility of an oxygen-deficient atmosphere.

Explosive or Toxic Gases, Vapors, or Fumes

While working in an electrical vault, workers may be exposed to the build-up of explosive gases such as those used for heating (propane). Welding and soldering produce toxic fumes which are confined in the limited atmosphere.

Electrical Shock

Electrical shock is often encountered from power tools, line cords, etc. In many instances, such electrical shock results from the fact that the contractor has not provided an approved grounding system or the protection afforded by ground-fault circuit interrupters or low-voltage systems.

Purging

In some instances, purging agents such as nitrogen and argon may enter the vault from areas adjacent to it. These agents may displace the oxygen in the vault to the extent that it will asphyxiate workers almost immediately.

Materials Falling In and On

A hazard normally considered a problem associated with confined spaces is material or equipment which may fall into the vault or onto workers as they enter and leave the vault.

Vibration could cause the materials on top of the vault to roll off and strike workers. If the manhole covers were removed, or if they were not installed in the first place, materials could fall into the vault, causing injury to the workers inside.

Condenser Pits

A common confined space found in the construction of nuclear power plants is the condenser pit. Because of their large size, they are often overlooked as potentially hazardous confined spaces.

These below-grade areas create large containment areas for the accumulation of toxic fumes, gases, and so forth, or for the creation of oxygen-deficient atmospheres when purging with argon, Freon, and other inert gases.

Other hazards will be created by workers above dropping equipment, tools, and materials into the pit.

Manholes

Throughout the construction site, manholes are commonplace. As means of entry into and exit from vaults, tanks, pits, and so forth, manholes perform a necessary function. However, these confined spaces may present serious hazards which could cause injuries and fatalities.

A variety of hazards are associated with manholes. To begin with, the manhole could be a dangerous trap into which the worker could fall. Often covers are removed and not replaced, or else they are not provided in the first place.

Pipe Assemblies

One of the most frequently unrecognized types of confined spaces encountered throughout the construction site is the pipe assembly. Piping of sixteen to thirty-six inches in diameter is commonly used for a variety of purposes.

For any number of reasons, workers will enter the pipe. Once inside, they are faced with potential oxygen-deficient atmospheres, often caused by purging with argon or another inert gas. Welding fumes generated by the worker in the pipe, or by other workers operating outside the pipe at either end, subject the worker to toxic atmospheres.

The generally restricted dimensions of the pipe provide little room for the workers to move about and gain any degree of comfort while performing their tasks. Once inside the pipe, communication is extremely difficult. In situations where the pipe bends, communication and extrication become even more difficult. Electrical shock is another problem to which the worker is exposed. Ungrounded tools and equipment or inadequate line cords are some of the causes. As well, heat within the pipe run may cause the worker to suffer heat prostration.

Ventilation Ducts

Ventilation ducts, like pipe runs, are very common at the construction site. These sheet metal enclosures create a complex network which moves heated and cooled air and exhaust fumes to desired locations in the plant.

Ventilation ducts may require that workers enter them to cut out access holes, install essential parts of the duct, etc. Depending on where these ducts are located, oxygen deficiency could exist. They usually possess many bends, which create difficult entry and exit and which also make it difficult for workers inside the duct to communicate with those outside it. Electrical shock hazards and heat stress are other problems associated with work inside ventilation ducts.

Tanks

Tanks are another type of confined workspace commonly found in construction. They are used for a variety of purposes, including the storage of water, chemicals, etc. Tanks require entry for cleaning and repairs. Ventilation is always a problem. Oxygen-deficient atmospheres, along with toxic and explosive atmospheres created by the substances stored in the tanks, present hazards to workers. Heat, another problem in tanks, may cause heat prostration, particularly on a hot day.

Since electrical line cords are often taken into the tank, the hazard of electrical shock is always present. The nature of the tank's structure often dictates that workers must climb ladders to reach high places on the walls of the tank.

Sumps

Sumps are commonplace. They are used as collection places for water and other liquids. Workers entering sumps may encounter an oxygen-deficient atmosphere.

Also, because of the wet nature of the sump, electrical shock hazards are present when power tools are used inside. Sumps are often poorly illuminated. Inadequate lighting may create an accident situation.

Containment Cavities

These large below-grade areas are characterized by little or no air movement. Ventilation is always a problem. In addition, the possibility of oxygen deficiency exists. As well, welding and other gases may easily collect in these areas, creating toxic atmospheres. As these structures near completion, more confined spaces will exist as rooms are built off the existing structure.

Electrical Transformers

Electrical transformers are located on the jobsite. They often contain a nitrogen purge or dry air. Before they are opened, they must be well vented by having air pumped in. Workers, particularly electricians and power plant operators, will enter these transformers through hatches on top for various work-related reasons. Testing for oxygen deficiency and for toxic atmospheres is mandatory.

Heat Sinks

These larger pit areas hold cooling water in the event that there is a problem with the pumps located at the water supply to the plant--normally a river or lake--which would prevent cooling water from reaching the reactor core.

When in the pits, workers are exposed to welding fumes and electrical hazards, particularly because water accumulates in the bottom of the sink.

Generally, it is difficult to communicate with workers in the heat sink, because the rebar in the walls of the structure deaden radio signals.

Unusual Conditions

Confined Space within a Confined Space

By the very nature of construction, situations are created which illustrate one of the most hazardous confined spaces of all--a confined space within a confined space.

This situation appears as tanks within pits, pipe assemblies or vessels within pits, etc. In this situation, not only do the potential hazards associated with the outer confined space require testing, monitoring, and control, but those of the inner space also require similar procedures.

Often, only the outer space is evaluated. When workers enter the inner space, they are faced with potentially hazardous conditions. A good example of a confined space within a confined space is a vessel with a nitrogen purge inside a filtering water access pit. Workers

entering the pit and/or the vessel should do so only after both spaces have been evaluated and proper control measures established.

Hazards in One Space Entering another Space

During an examination of confined spaces in construction, one often encounters situations which are not always easy to evaluate or control. For instance, a room or area which classifies as a confined space may be relatively safe for work.

However, access passages from other areas outside or adjacent to the room could, at some point, allow the transfer of hazardous agents into the "*safe*" one. One such instance would be a pipe coming through a wall into a containment room.

Welding fumes and other toxic materials generated in one room may easily travel through the pipe into another area, causing it to change from a safe to an unsafe workplace. A serious problem with a situation such as this is that workers working in the "safe" area are not aware of the hazards leaking into their area. Thus, they are not prepared to take action to avoid or control it.

Session Conclusion

In this discussion, we have defined inherent and

induced hazards in confined spaces. We have examined typical confined spaces on construction sites and we have described representative hazards within these confined spaces.

Death trap, no way out. No shoring.

Permitted Confined Space Entry Program

Definition of Confined Spaces Requiring an Entry Permit *Confined space:*

Is large enough or so configured that an employee can bodily enter and perform work. Has limited or restricted means for entry or exit (i.e. tanks, vessels, silos, storage bins, hoppers, vaults, and pits are spaces that may have limited means of entry). Is not designed for continuous employee occupancy.

Purpose

The Permit Required Space (**PRCS**) Program is provided to protect authorized employees that will enter confined spaces and may be exposed to hazardous atmospheres, engulfment in materials, conditions which may trap or asphyxiate due to converging or sloping walls, or contains any other safety or health hazards.

Many workplaces contain confined spaces not designed for human occupancy which due to their configuration hinder employee activities including entry, work and exit. Asphyxiation is the leading cause of death in confined spaces.

Subpart P applies to all open excavations in the earth's surface.

All trenches are excavations. All excavations are not trenches.

Permit Required Confined Space Entry General Rules

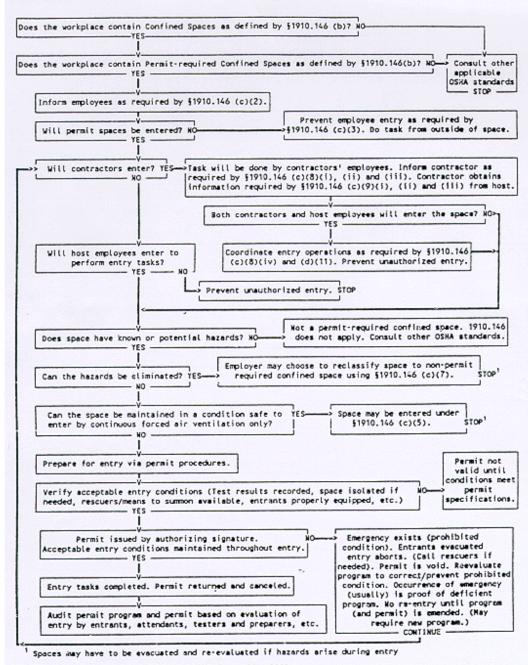
During all confined space entries, the following safety rules must be strictly enforced:

1. Only authorized and trained employees may enter a confined space or act as safety watchmen/attendants.

2. No smoking is permitted in a confined space or near entrance/exit area.

3. During confined space entries, a watchmen or attendant must be present at all times.

4. Constant visual or voice communication will be maintained between the safety watchmen and employees entering a confined space.


5. No bottom or side entry will be made or work conducted below the level any hanging material or material which could cause engulfment.

6. Air and oxygen monitoring is required before entering any permit-required confined space. Oxygen levels in a confined space must be between 19.5 and 23.5 percent. Levels above or below will require the use of an SCBA or other approved air supplied respirator. Additional ventilation and oxygen level monitoring is required when welding is performed. The monitoring will check oxygen levels, explosive gas levels and carbon monoxide levels. Entry will not be permitted if explosive gas is detected above one-half the Lower Explosive Limit (LEL).

7. To prevent injuries to others, all openings to confined spaces will be protected by a barricade when covers are removed.

Appendix A to §1910.146 Permit-Required Confined Space Decision Flow Chart

Note: Appendices A through F serve to provide information and non-mandatory guidelines to assist employers and employees in complying with the appropriate requirements of this section.

APPENDIX A TO \$1910.146-PERMIT-REQUIRED CONFINED SPACE DECISION FLOW CHART

[58 FR 4549, Jan. 14, 1993; 58 FR 34846, June 29, 1993; 63 FR 66039, Dec. 1, 1998]

Here is a small clip-on style multi-purpose gas meter. We tied a string to lower the meter in the confined space to get a gas reading before entering.

Confined Space Entry Permit Example

Date & Time Issued	Date & Time Issued				
Space I.D.		Date & time Expires Supervisor			
Equipment Affected		Task			
Standby Team					
Pre-Entry Atmospheric Checks	Time (am - pm)				
	Oxygen				
	Explosive (% LEL)				
	Toxic (PPM)				
	Testers Signature		· · · · · · · · · · · · · · · · · · ·		
Pre-entry Fluid Syste		Yes	No		
Pumps /lines blinded, blocked, disconnected					
Ventilation Source Established					
Mechanical Forced Air					
Natural Ventilation					
Post Ventilation Pre-Entry Atmospheric Checks					
Time					
Oxygen (%)					
Explosive (% LEL					
Toxic (PPM)					
Tester Signature					
Communication Procedures Established per specific Confined Space SOP					
Rescue Procedures established per specific Confined Space SOP					

Training Verification - for the following persons & space to be entered				YES	Ν	10		
All persons entering Confined Space								
All persons acting as Supervisor for the Entry								
All persons assigned backup positions								
All persons assigned to monitor access and interior activities								
All persons assigned to emerge	gency re	escue to	eam					
Equipment on Scene	YES	NO	NA			YES	NO	NA
Gas Monitor				Life Lir	ne			
Safety Harness				Hoistin Equipn	•			
Fall Arrest Gear				Powere				
SCBAs				Air Line Respira				
Protective Clothing				Elect G				
Periodic Atmospheric Checks								
Time (am - pm)								
Oxygen								
Explosive (% LEL)								
Toxic (PPM)								
Testers Signature								

A review of the work authorized by this permit and the information contained on this Entry Permit. Written instructions and safety procedures have been received and are understood. Entry cannot be approved if any squares are marked in the "**No**" column. This permit is not valid unless all appropriate items are completed.

Permit Prepared By: (Supervisor) _____

Approved By: (Unit Supervisor)

This permit to be kept at job site.

Return job site copy to Safety Office following job completion.

Copies: Safety Office, Unit Supervisor, Job site

Confined Space Duties & Responsibilities

Examples of assignments

Employees

Follow program requirements.

Report any previously un-identified hazards associated with confined spaces.

Do not enter any confined spaces that have not been evaluated for safety concerns.

Management

Provide annual Confined Space training to all employees that may need confined space training.

Ensure confined space assessments have been conducted.

Annually review this program and all Entry Permits.

Rescue or Training Department

Ensure proper training for entry & rescue teams.

Provide proper equipment for entry & rescue teams.

Ensure all permit required confined spaces are posted.

Evaluate rescue teams and service to ensure they are adequately trained and prepared.

Ensure rescue team at access during entry into spaces with Immediately Dangerous to Life or Health (IDLH) atmospheres.

Provide annual confined space awareness training to all employees that may need confined space awareness training.

Entry Supervisor

Entry supervisors are responsible for the overall permit space entry and must coordinate all entry procedures, tests, permits, equipment and other relevant activities.

The following entry supervisor duties are required:

Know the hazards that may be faced during entry, including information on the mode, signs or symptoms, and consequences of the exposure.

Verify by checking that the appropriate entries have been made on the permit, all tests specified by the permit have been conducted, and that all procedures and equipment specified by the permit are in place before endorsing the permit and allowing entry to begin.

Terminate the entry and cancel the permit when the entry is complete or there is a need for terminating the permit.

Verify that rescue services are available and that the means for summoning them are operable.

Remove unauthorized persons who enter or attempt to enter the space during entry operations.

Determine whenever responsibility for a permit space entry operation is transferred and at intervals dictated by the hazards and operations performed within the space that entry operations remain consistent with the permit terms and that acceptable entry conditions are maintained.

Entry Attendants

At least one attendant is required outside the permit space into which entry is authorized for the duration of the entry operation. Responsibilities include:

To know the hazards that may be faced during entry, including information on the mode, signs or symptoms, and consequences of the exposure

To be aware of possible behavioral effects of hazard exposure on entrants

To continuously maintain an accurate count of entrants in the permit space and ensures a means to accurately identify authorized entrants

To remain outside the permit space during entry operations until relieved by another attendant (once properly relieved, they may participate in other permit space activities, including rescue if they are properly trained and equipped).

To communicate with entrants as necessary to monitor entrant status and alert entrants of the need to evacuate.

To monitor activities inside and outside the space to determine if it is safe for entrants to remain in the space; orders the entrants to immediately evacuate if: the attendant detects a prohibited condition, detects entrant behavioral effects of hazard exposure, detects a situation outside the space that could endanger the entrants; or if the attendant cannot effectively and safely perform all the attendant duties.

To summon rescue and other emergency services as soon as the attendant determines the entrants need assistance to escape the permit space hazards.

To perform non-entry rescues as specified by that rescue procedure and entry supervisor and not to perform duties that might interfere with the attendants' primary duty to monitor and protect the entrants.

Duties of the Person Authorizing or in Charge of the Entry

The person who authorizes or is in charge of the permit entry confined space must comply with the following:

1. Make certain that all pre-entry requirements as outlined on the permit have been completed before any worker is allowed to enter the confined space.

2. Make certain that any required pre-entry conditions are present.

3. If an in-plant/facility rescue team is to be used in the event of an emergency, make sure they would be available. If your Employer does not maintain an in-plant rescue team, dial 911 on any telephone for the Rescue Squad.

4. Make sure that any communication equipment which would be used to summon either the in-plant rescue team or other emergency assistance is operating correctly.

5. Terminate the entry upon becoming aware of a condition or set of conditions whose hazard potential exceeds the limits authorized by the entry permit.

If the person who would otherwise issue an entry permit is in charge of the entry and present during the entire entry, then a written permit is not required if that person uses a checklist as provided in the section on "*Permits*".

This person may also serve as the attendant at the site.

Special Considerations During A Permit Required Entry

Certain work being performed in a permit entry confined space could cause the atmosphere in the space to change. Examples of this are welding, drilling, or sludge removal. In these situations, air monitoring of the confined space should be conducted on a continuous basis throughout the time of the entry.

If the workers leave the confined space for any significant period of time, such as for a lunch or other break, the atmosphere of the confined space must be retested before the workers reenter the confined space.

Unauthorized Persons

Take the following actions when unauthorized persons approach or enter a permit space while entry is under way:

1. Warn the unauthorized persons that they must stay away from the permit space,

2. Advise unauthorized persons that they must exit immediately if they have entered the space, and

3. Inform the authorized entrants and the entry supervisor if unauthorized persons have entered the permit space.

Entrants

All entrants must be authorized by the entry supervisor to enter permit spaces, have received the required training, have used the proper equipment, and observed the entry procedures and permit requirements.

The following entrant duties are required: Know the hazards that may be faced during entry, including information on the mode, signs or symptoms, and consequences of the exposure;

Properly use the equipment required for safe entry; Communicate with the attendant as necessary to enable the attendant to monitor the status of the entrants and to enable the attendant to alert the entrants of the need to evacuate the space if necessary;

Alert the attendant whenever; the entrant recognizes any warning signs or symptoms of exposure to a dangerous situation, or any prohibited condition is detected; and Exit the

permit space as quickly as possible whenever the attendant or entry supervisor gives an order to evacuate the permit space, the entrant recognizes any warning signs or symptoms of exposure to a dangerous situation, the entrant detects a prohibited condition, or an evacuation alarm is activated.

520

Hazards

Explosive / Flammable Atmospheres

Toxic Atmospheres

Engulfment

Asphyxiation

Entrapment

Slips & falls

Chemical Exposure

Electric Shock

Thermal / Chemical Burns

Noise & Vibration

Hazard Control

Engineering Controls

Locked entry points Temporary ventilation Temporary Lighting

Administrative Controls

Signs Employee training Entry procedures Atmospheric Monitoring Rescue procedures Use of prescribed Personal Protective Equipment

Entry Standard Operating Procedures

This program outlines: Hazards Hazard Control & Abatement Acceptable Entry Conditions Means of Entry Entry Equipment Required Emergency Procedures

Permit Required Confined Space Entry General Rules

During all confined space entries, the following safety rules must be strictly enforced:

1. Only authorized and trained employees may enter a confined space or act as safety watchman/attendant.

2. No smoking is permitted in a confined space or near entrance/exit area.

3. During confined space entries, a watchman must be present at all times.

4. Constant visual or voice communication will be maintained between the safety watchman/attendant and employees entering a confined space.

5. No bottom or side entry will be made or work conducted below the level of any hanging material or material which could cause engulfment.

6. Air and oxygen monitoring is required before entering any permit-required confined space. Oxygen levels in a confined space must be between 19.5 and 23.5 percent. Levels above or below will require the use of an SCBA or other approved air supplied respirator. Additional ventilation and oxygen level monitoring is required when welding is performed.

The monitoring will check oxygen levels, explosive gas levels and carbon monoxide levels. Entry will not be permitted if explosive gas is detected above one-half the Lower Explosive Limit (LEL), or 10% of a specific gas explosive limit.

7. To prevent injuries to others, all openings to confined spaces will be protected by a barricade when covers are removed.

Confined Space Entry Procedures

Each employee who enters or is involved in the entry must:

- 1. Understand the procedures for confined space entry
- 2. Know the Hazards of the specific space
- 3. Review the specific procedures for each entry
- 4. Understand how to use entry and rescue equipment

Confined Space Entry Permits

1203 3 EXPLOSIVES 1 DANGEROUS WHEN 1

Confined Space Entry Permits must be completed before any employee enters a permit-required confined space. The permit must be completed and signed by an authorized member of management before entry.

Permits will expire before the completion of the shift or if any pre-entry conditions change.

Permits will be maintained on file for 12 months.

Contractor Entry

All work by non-company employees that involves the entry into confined spaces will follow the procedures of this program. The information of this program and specific hazards of the confined spaces to be entered will be provided to contractor management prior to commencing entry or work.

Important Rescue Service Questions

What is the availability of the rescue service?

Is it unavailable at certain times of the day or in certain situations?

What is the likelihood that key personnel of the rescue service might be unavailable at times?

If the rescue service becomes unavailable while an entry is underway, does it have the capability of notifying the employer so that the employer can instruct the attendant to abort the entry immediately?

Confined Space Training

Training for Confined Space Entry includes:

- 1. Duties of entry supervisor, entrant and attendants
- 2. Confined space entry permits
- 3. Hazards of confined spaces
- 4. Use of air monitoring equipment
- 5. First aid and CPR training
- 6. Emergency action & rescue procedures
- 7. Confined space entry & rescue equipment
- 8. Rescue training, including entry and removal from representative spaces

Confined Space Training and Education

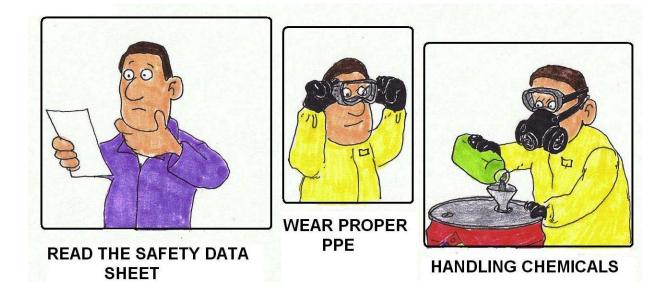
OSHA's General Industry Regulation, §1910.146 Permit-required confined spaces, contains requirements for practices and procedures to protect employees in general industry from the hazards of entry into permit-required confined spaces. This regulation does not apply to construction.

OSHA's Construction Safety and Health Regulations Part 1926 do not contain a permitrequired confined space regulation. Subpart C, §1926.21 Safety training and education specifies training for personnel who are required to enter confined spaces and defines a "*confined or enclosed space*." These requirements are shown below.

§1926.21 Safety training and education. (Partial)

(b)(6)(i) All employees required to enter into confined or enclosed spaces shall be instructed as to the nature of the hazards involved, the necessary precautions to be taken, and in the use of protective and emergency equipment required. The employer shall comply with any specific regulations that apply to work in dangerous or potentially dangerous areas.

(ii) For purposes of paragraph (b)(6)(i) of this section, "*confined or enclosed space*" means any space having a limited means of egress, which is subject to the accumulation of toxic or flammable contaminants or has an oxygen deficient atmosphere. Confined or enclosed spaces include, but are not limited to, storage tanks, process vessels, bins, boilers, ventilation or exhaust ducts, sewers, underground utility vaults, tunnels pipelines, and open top spaces more than 4 feet in depth such as pits, tubs, vaults, and vessels.


OSHA's Construction Regulations also contain requirements dealing with confined space hazards in underground construction (Subpart S), underground electric transmission and distribution work (§1926.956), excavations (Subpart P), and welding and cutting (Subpart J).

Further guidance may be obtained from American National Standard ANSI Z117.1-1989, Safety Requirements for Confined Spaces. This standard provides minimum safety requirements to be followed while entering, exiting and working in confined spaces at normal atmospheric pressure. This standard does not pertain to underground mining, tunneling, caisson work or other similar tasks that have established national consensus standards.

Chemical Name Aluminum hydroxide	Common Name	Chemical Formula
Aluminum nydroxide		AI(OH)₃
	Alum, liquid	AL ₂ (SO ₄)3 . 14(H ₂ O)
Ammonia		NH ₃
Ammonium		NH4
Bentonitic clay	Bentonite	
Calcium bicarbonate		Ca(HCO ₃)2
Calcium carbonate	Limestone	CaCO₃
Calcium chloride		CaCl ₂
Calcium Hypochlorite	HTH	Ca(OCI) ₂ . 4H ₂ O
Calcium hydroxide	Slaked Lime	Ca(OH) ₂
Calcium oxide Calcium sulfate	Unslaked (Quicklime) Gypsum	CaO CaSO₄
Carbon Carbon dioxide	Activated Carbon	C CO ₂
Carbonic acid		H2CO3
Chlorine gas		Cl ₂
Chlorine Dioxide		CIO ₂
Copper sulfate	Blue vitriol	CuSO4 . 5H2O
Dichloramine		NHCl ₂
Ferric chloride	Iron chloride	FeCl ₃
Ferric hydroxide		Fe(OH)₃
Ferric sulfate	Iron sulfate	Fe ₂ (SO ₄) ₃
Ferrous bicarbonate		Fe(HCO ₃) ₂
Ferrous hydroxide		Fe(OH) ₃
Ferrous sulfate	Copperas	FeSO ₄ .7H ₂ 0
Hydrofluorsilicic acid		H ₂ SiF ₆
Hydrochloric acid Hydrogen sulfide	Muriatic acid	HCI H₂S
Hypochlorus acid Magnesium bicarbonate		HOCL Mg(HCO₃)2
Magnesium carbonate		MgCO₃
Magnesium chloride		MgCl ₂
Magnesium hydroxide		Mg(OH) ₂
Magnesium dioxide		MgO ₂
Manganous bicarbonate		Mn(HCO₃)2
Manganous sulfate		MnSO ₄
Monochloramine		NH ₂ CI
Potassium bicarbonate		KHCO ₃
Potassium permanganate		KMnO ₄

Common Water Treatment and Distribution Chemicals

Chemical Name	Common Name	Chemical Formula
Sodium carbonate	Soda ash	Na ₂ CO ₃
Sodium chloride Sodium chlorite	Salt	NaCl NaClO ₂
Sodium fluoride Sodium fluorsilicate		NaF Na₂SiF₀
Sodium hydroxide Sodium hypochlorite Sodium Metaphosphate	Lye Hexametaphosphate	NaOH NaOCl NaPO₃
Sodium phosphate	Disodium phosphate	Na ₃ PO ₄
Sodium sulfate		Na ₂ SO ₄
Sulfuric acid		H_2SO_4

Glossary

А

ABIOGENESIS: The concept of spontaneous generation (that life can come from non-life). This idea was refuted by Pasteur.

ABIOTIC: The non-living components of an organism's environment. The term abiotic is also used to denote a process which is not facilitated by living organisms.

ABORAL: Pertaining to the region of the body opposite that of the mouth. Normally used to describe radially symmetrical animals.

ABSCISIC ACID (ABA): A plant hormone that generally acts to inhibit growth, promote dormancy, and help the plant withstand stressful conditions.

ABSENCE OF OXYGEN: The complete absence of oxygen in water described as Anaerobic.

ABSOLUTE ZERO: A theoretical condition concerning a system at zero Kelvin where a system does not emit or absorb energy (all atoms are at rest).

ABSORPTION SPECTRUM: The range of a material's ability to absorb various wavelengths of light. The absorption spectrum is studied to evaluate the function of photosynthetic pigments.

ACCESSORY PIGMENT: A photosynthetic pigment which absorbs light and transfers energy to chlorophylls during photosynthesis. Because accessory pigments have different absorption optima than chlorophylls, presence of accessory pigments allows photosynthetic systems to absorb light more efficiently than would be possible otherwise.

ACCURACY: How close a value is to the actual or true value; also see precision. How closely an instrument measures the true or actual value.

ACELLULAR: Not within cells. Sometimes used as a synonym for unicellular (but multinucleate). Unicellular also pertains to single: celled organisms.

ACETYL COA: Acetyl CoenzymeA is the entry compound for the Krebs cycle in cellular respiration; formed from a fragment of pyruvic acid attached to a coenzyme.

ACETYLCHOLINE: A neurotransmitter substance that carries information across vertebrate neuromuscular junctions and some other synapses.

ACID AND BASE ARE MIXED: When an acid and a base are mixed, an explosive reaction occurs and decomposition products are created under certain conditions.

ACID ANHYDRIDE: A compound with two acyl groups bound to a single oxygen atom.

ACID DISSOCIATION CONSTANT: An equilibrium constant for the dissociation of a weak acid. ACID RAIN: Rain that is excessively acidic due to the presence of acid: causing pollutants in the atmosphere. Pollutants include nitrogen and sulfur oxides due to burning of coal and oil.

ACID: Slowly add the acid to water while stirring. An operator should not mix acid and water or acid to a strong base.

ACIDOSIS: A condition whereby the hydrogen ion concentration of the tissues is increased (and pH decreased). Respiratory acidosis is due to the retention of CO₂; metabolic acidosis by retention of acids due either to kidney failure or diarrhea.

ACOELOMATE: Lacking a coelom.

ACQUIRED IMMUNITY: Results from exposure to foreign substances or microbes (also called natural immunity).

ACROSOME: An organelle at the tip of a sperm cell that helps the sperm penetrate the egg.

ACTH (adrenocorticotrophic hormone): A proteineinaceous hormone from the anterior pituitary that stimulates the adrenal cortex. Used to stimulate the production of cortisol.

ACTIN: A globular protein that links into chains, two of which twist helically about each other, forming microfilaments in muscle and other contractile elements in cells.

ACTINIDES: The fifteen chemical elements that are between actinium (89) and lawrencium (103). ACTION POTENTIAL: The stimulus- triggered change in the membrane potential of an excitable cell, caused by selective opening and closing of ion channels.

ACTION SPECTRUM: A graph which illustrates the relationship between some biological activity and wavelength of light.

ACTIVATED CARBON FILTRATION: Can remove organic chemicals that produce off-taste and odor. These compounds are not dangerous to health but can make the water unpleasant to drink. Carbon filtration comes in several forms, from small filters that attach to sink faucets to large

tanks that contain removable cartridges. Activated carbon filters require regular maintenance or they can become a health hazard.

ACTIVATED CHARCOAL (GAC or PAC): Granular Activated Charcoal or Powered Activated Charcoal. Used for taste and odor removal. A treatment technique that is not included in the grading of a water facility.

ACTIVATED COMPLEX: A structure that forms because of a collision between molecules while new bonds are formed.

ACTIVATED SLUDGE PROCESS: A biological wastewater treatment process in which a mixture of wastewater and biologically enriched sludge is mixed and aerated to facilitate aerobic decomposition by microbes.

ACTIVATED SLUDGE: The biologically active solids in an activated sludge process wastewater treatment plant.

ACTIVATING ENZYME: An enzyme that couples a low-energy compound with ATP to yield a highenergy derivative.

ACTIVATION ENERGY: In a chemical reaction, the initial investment required to energize the bonds of the reactants to an unstable transition state that precedes the formation of the products. The minimum energy that must be input to a chemical system.

ACTIVE SITE: That specific portion of an enzyme that attaches to the substrate by means of weak chemical bonds.

ACTIVE TRANSPORT: The movement of a substance across a biological membrane against its concentration or electrochemical gradient with the help of energy input and specific transport proteins.

ADAPTATION: Any genetically controlled characteristic that increases an organism's fitness, usually by helping the organism to survive and reproduce in the environment it inhabits.

ADAPTIVE RADIATION: This refers to the rapid evolution of one or a few forms into many different species that occupy different habitats within a new geographical area.

ADDITION REACTION: Within organic chemistry, when two or more molecules combine to make a larger one.

ADHESION: In chemistry, the phenomenon whereby one substance tends to cling to another substance. Water molecules exhibit adhesion, especially toward charged surfaces.

ADP (Adenosine diphosphate): A doubly phosphorylated organic compound that can be further phosphorylated to form ATP.

ADRENAL GLAND: An endocrine gland located adjacent to the kidney in mammals. It is composed of an outer cortex, and a central medulla, each involved in different hormone: mediated phenomena.

ADRENALIN: A hormone produced by the pituitary that stimulates the adrenal cortex. ADSORB: Hold on a surface.

ADSORPTION CLARIFIERS: The concept of the adsorption clarifier package plant was developed in the early 1980s. This technology uses an up-flow clarifier with low-density plastic bead media, usually held in place by a screen. This adsorption media is designed to enhance the sedimentation/clarification process by combining flocculation and sedimentation into one step. In this step, turbidity is reduced by adsorption of the coagulated and flocculated solids onto the adsorption media and onto the solids already adsorbed onto the media. Air scouring cleans adsorption clarifiers followed by water flushing. Cleaning of this type of clarifier is initiated more often than filter backwashing because the clarifier removes more solids. As with the tube-settler type of package plant, the sedimentation/ clarification process is followed by mixed-media filtration and disinfection to complete the water treatment.

ADSORPTION: Not to be confused with absorption. Adsorption is a process that occurs when a gas or liquid solute accumulates on the surface of a solid or a liquid (adsorbent), forming a film of molecules or atoms (the adsorbate). It is different from absorption, in which a substance diffuses into a liquid or solid to form a solution. The term sorption encompasses both processes, while desorption is the reverse process. Adsorption is present in many natural physical, biological, and chemical systems, and is widely used in industrial applications such as activated charcoal, synthetic resins, and water purification. Adsorption, ion exchange, and chromatography are sorption processes in which certain adsorbates are selectively transferred from the fluid phase to the surface

of insoluble, rigid particles suspended in a vessel or packed in a column. Similar to surface tension, adsorption is a consequence of surface energy. In a bulk material, all the bonding requirements (be they ionic, covalent, or metallic) of the constituent atoms of the material are filled by other atoms in the material. However, atoms on the surface of the adsorbent are not wholly surrounded by other adsorbent atoms, and therefore can attract adsorbates. The exact nature of the bonding depends on the details of the species involved, but the adsorption process is generally classified as physisorption (characteristic of weak van der Waals forces) or chemisorption (characteristic of covalent bonding).

ADVANCED: New, unlike the ancestral condition.

AERATION: The addition of air or oxygen to water or wastewater, usually by mechanical means, to increase dissolved oxygen levels and maintains aerobic conditions. The mixing of air into a liquid or solid.

AEROBIC DIGESTION: Sludge stabilization process involving direct oxidation of biodegradable matter and oxidation of microbial cellular material.

AEROBIC: The condition of requiring oxygen; an aerobe is an organism which can live and grow only in the presence of oxygen.

AGE STRUCTURE: The relative numbers of individuals of each age in a population. AGGLOMERATION: A jumbled cluster or mass of varied parts. The act or process of agglomerating.

AGNATHAN: A member of a jawless class of vertebrates represented today by the lampreys and hagfishes.

AGONISTIC BEHAVIOR: A type of behavior involving a contest of some kind that determines which competitor gains access to some resource, such as food or mates.

AIDS (acquired immune deficiency syndrome): A condition in which the body's helper T lymphocytes are destroyed, leaving the victim subject to opportunistic diseases.

AIR ENTRAINMENT: The dissolution or inclusion of air bubbles into water.

AIR GAP SEPARATION: A physical separation space that is present between the discharge vessel and the receiving vessel; for an example, a kitchen faucet.

AIR HOOD: The most suitable protection when working with a chemical that produces dangerous fumes.

ALCOHOL: Any of a class of organic compounds in which one or more - OH groups are attached to a carbon compound.

ALDEHYDE: An organic molecule with a carbonyl group located at the end of the carbon skeleton. ALGAE: Microscopic plants that are free-living and usually live in water. They occur as single cells floating in water, or as multicellular plants like seaweed or strands of algae that attach to rocks.

ALKALI METALS: The metals of Group 1 on the periodic table.

ALKALINE: Having a pH of more than 7. Alkaline solutions are also said to be basic.

ALKALINITY: Alkalinity or AT is a measure of the ability of a solution to neutralize acids to the equivalence point of carbonate or bicarbonate. Alkalinity is closely related to the acid neutralizing capacity (ANC) of a solution and ANC is often incorrectly used to refer to alkalinity. However, the acid neutralizing capacity refers to the combination of the solution and solids present (e.g., suspended matter, or aquifer solids), and the contribution of solids can dominate the ANC (see carbonate minerals below). The alkalinity is equal to the stoichiometric sum of the bases in solution. In the natural environment carbonate alkalinity tends to make up most of the total alkalinity due to the common occurrence and dissolution of carbonate rocks and presence of carbon dioxide in the atmosphere. Other common natural components that can contribute to alkalinity include borate, hydroxide, phosphate, silicate, nitrate, dissolved ammonia, the conjugate bases of some organic acids and sulfide. Solutions produced in a laboratory may contain a virtually limitless number of bases that contribute to alkalinity. Alkalinity is usually given in the unit mEq/L (milliequivalent per liter). Commercially, as in the pool industry, alkalinity might also be given in the unit ppm or parts per million. Alkalinity is sometimes incorrectly used interchangeably with basicity. For example, the pH of a solution can be lowered by the addition of CO₂. This will reduce the basicity; however, the alkalinity will remain unchanged.

ALKANLINE EARTH METALS: The metals of Group 2 on the periodic table.

ALLANTOIS: One of the four extraembryonic membranes found associated with developing vertebrates; it serves in gas exchange and as a repository for the embryo's nitrogenous waste. In humans, the allantois is involved in early blood formation and development of the urinary bladder. ALLELE: Alternate forms of a gene which may be found at a given location (locus) on members of a homologous set of chromosomes. Structural variations between alleles may lead to different phenotypes for a given trait.

ALLOMER: A substance that has different composition than another, but has the same crystalline structure.

ALLOMETRIC: The variation in the relative rates of growth of various parts of the body, which helps shape the organism.

ALLOPATRIC SPECIATION: A type of speciation which occurs when a population becomes segregated into two populations by some sort of geographic barrier (also called geographic speciation). This phenomenon is presumed to have been the mechanism whereby many species of organisms evolved.

ALLOPOLYPLOID: A common type of polyploid species resulting from two different species interbreeding and combining their chromosomes.

ALL-OR-NONE: (event) An action that occurs either completely or not at all, such as the generation of an action potential by a neuron.

ALLOSTERIC ENZYME: An enzyme that can exist in two or more conformations.

ALLOSTERIC SITE: A receptor on an enzyme molecule which is remote from the active site. Binding of the appropriate molecule to the allosteric site changes the conformation of the active site, making it either more or less receptive to the substrate.

ALLOTROPY: Elements that can have different structures (and therefore different forms), such as Carbon (diamonds, graphite, and fullerene).

ALPHA AND BETA RADIOACTIVITY: Represent two common forms of radioactive decay. Radioactive elements have atomic nuclei so heavy that the nucleus will break apart, or disintegrate spontaneously. When decay occurs, high-energy particles are released. These high-energy particles are called radioactivity. Although radioactivity from refined radioactive elements can be dangerous, it is rare to find dangerous levels of radioactivity in natural waters. An alpha particle is a doubly-charged helium nucleus comprised of two protons, two neutrons, and no electrons. A beta particle is a high-speed electron. Alpha particles do not penetrate matter easily, and are stopped by a piece of paper. Beta particles are much more penetrating and can pass through a millimeter of lead.

ALPHA HELIX: A spiral shape constituting one form of the secondary structure of proteins, arising from a specific hydrogen: bonding structure.

ALTERNATION OF GENERATIONS: Occurrences of a multicellular diploid form, the sporophyte, with a multicellular haploid form, the gametophyte.

ALTERNATIVE DISINFECTANTS: Disinfectants - other than chlorination (halogens) - used to treat water, e.g. ozone, ultraviolet radiation, chlorine dioxide, and chloramine. There is limited experience and scientific knowledge about the by-products and risks associated with the use of alternatives.

ALTRUISM: The willingness of an individual to sacrifice its fitness for the benefit of another.

ALUMINUM SULFATE: The chemical name for Alum. The molecular formula of Alum is $Al_2(SO_4)3\sim14H_2O$. It is a cationic polymer.

ALVEOLUS: One of the dead-end, multilobed air sacs that constitute the gas exchange surface of the lungs.

AMINO ACID: An organic molecule possessing a carboxyl (COOH) and amino group. Amino acids serve as the monomers of polypeptides and proteins.

AMINO GROUP: A functional group consisting of a nitrogen atom bonded to two hydrogens; can act as a base in solution, accepting a hydrogen ion and acquiring a charge of +1.

AMINOACYL: tRNA synthetases- A family of enzymes, at least one for each amino acid, that catalyze the attachment of an amino acid to its specific tRNA molecule.

AMMONIA: A chemical made with Nitrogen and Hydrogen and used with chlorine to disinfect water. Most ammonia in water is present as the ammonium ion rather than as ammonia.

AMMONIA: NH3 A chemical made with Nitrogen and Hydrogen and used with chlorine to

disinfect water. Most ammonia in water is present as the ammonium ion rather than as ammonia. AMMONIATOR: AA control device which meters gaseous ammonia directly into water under positive pressure.

AMOEBA: Amoeba (sometimes amœba or ameba, plural amoebae) is a genus of protozoa that moves by means of pseudopods, and is well-known as a representative unicellular organism. The word amoeba or ameba is variously used to refer to it and its close relatives, now grouped as the Amoebozoa, or to all protozoa that move using pseudopods, otherwise termed amoeboids.

(Movement) A streaming locomotion characteristic of Amoeba and other protists, as well as some individual cells, such as white blood cells, in animals.

AMP (Adenosine monophosphate): A singly phosphorylated organic compound that can be further phosphorylated to form ADP.

AMYLASE: A starch-digesting enzyme.

ANABOLISM: A metabolic pathway of biosynthesis that consumes energy to build a large molecule from simpler ones.

ANAEROBIC CONDITIONS: When anaerobic conditions exist in either the metalimnion or hypolimnion of a stratified lake or reservoir, water quality problems may make the water unappealing for domestic use without costly water treatment procedures. Most of these problems are associated with Reduction in the stratified waters.

ANAEROBIC DIGESTION: Sludge stabilization process where the organic material in biological sludges are converted to methane and carbon dioxide in an airtight reactor.

ANAEROBIC: Without oxygen. An organism which lives in the absence of oxygen is called an anaerobe. An abnormal condition in which color and odor problems are most likely to occur.

ANAEROBIC: An abnormal condition in which color and odor problems are most likely to occur.

ANAGENESIS: A pattern of evolutionary change involving the transformation of an entire population, sometimes to a state different enough from the ancestral population to justify renaming it as a separate species; also called phyletic.

ANALOGOUS: Characteristics of organisms which are similar in function (and often in structure) but different in embryological and/or evolutionary origins.

ANALYST: The analyst must have at least 2 years of college lecture and laboratory course work in microbiology or a closely related field. The analyst also must have at least 6 months of continuous bench experience with environmental protozoa detection techniques and IFA microscopy, and must have successfully analyzed at least 50 water and/or wastewater samples for *Cryptosporidium* and *Giardia*. Six months of additional experience in the above areas may be substituted for two years of college.

ANCESTRAL TRAIT: Trait shared by a group of organisms as a result of descent from a common ancestor.

ANEROID: Using no fluid, as in aneroid barometer.

ANEUPLOIDY: A chromosomal aberration in which certain chromosomes are present in extra copies or are deficient in number.

ANION: Negatively charge ions.

ANISOGAMOUS: Reproducing by the fusion of gametes that differ only in size, as opposed to gametes that are produced by oogamous species. Gametes of oogamous species, such as egg cells and sperm, are highly differentiated.

ANNUAL: A plant that completes its entire life cycle in a single year or growing season.

ANODE: The positive side of a dry cell battery or a cell.

ANOXIC: A biological environment that is deficient in molecular oxygen, but may contain chemically bound oxygen, such as nitrates and nitrites.

ANTERIOR: Referring to the head end of a bilaterally symmetrical animal.

ANTHROPOMORPHISM: Attributing a human characteristic to an inanimate object or a species other than a human.

ANTIBIOTIC: A chemical that kills or inhibits the growth of bacteria, often via transcriptional or translational regulation.

ANTIBODY: A protein, produced by the B lymphocytes of the immune system that binds to a particular antigen.

ANTICODON: The specialized base triplet on one end of a tRNA molecule that associates with a particular complementary codon on an mRNA molecule during protein synthesis.

ANTIDIURETIC HORMONE: A hormone important in osmoregulation (it acts to reduce the elimination of water from the body.

ANTIGEN: A foreign macromolecule that does not belong to the host organism and that elicits an immune response.

APOMORPHIC CHARACTER: A derived phenotypic character, or homology, that evolved after a branch diverged from a phylogenetic tree.

APOSEMATIC COLORATION: Serving as a warning, with reference particularly to colors and structures that signal possession of defensive device.

AQUEOUS SOLUTION: A solution in which water is the solvent.

AQUIFER PARAMETERS: Referring to such attributes as specific capacity, aquifer storage,

transmissivity, hydraulic conductivity, gradient, and water levels. Refers to all of the components of Darcy's Law and related parameters.

ARCHAEBACTERIA: A lineage of prokaryotes, represented today by a few groups of bacteria inhabiting extreme environments. Some taxonomists place archaebacteria in their own kingdom, separate from the other bacteria.

ARCHENTERON: The endoderm-lined cavity formed during the gastrulation process that develops into the digestive tract of the animal.

ARISTOTLE: A Greek philosopher often credited as the first to use empirical and deductive methods in logic.

AROMATICITY: Chemical property of conjugated rings that results in unusual stability. See also benzene.

ARTIFICIAL SELECTION: The selective breeding of domesticated plants and animals to encourage the occurrence of desirable traits.

AS NITROGEN: An expression that tells how the concentration of a chemical is expressed mathematically. The chemical formula for the nitrate ion is NO3, with a mass of 62. The concentration of nitrate can be expressed either in terms of the nitrate ion or in terms of the principal element, nitrogen. The mass of the nitrogen atom is 14. The ratio of the nitrate ion mass to the nitrogen atom mass is 4.43. Thus a concentration of 10 mg/L nitrate expressed as nitrogen would be equivalent to a concentration of 44.3 mg/L nitrate expressed as nitrate ion. When dealing with nitrate numbers it is very important to know how numeric values are expressed. AS: The chemical symbol of Arsenic.

ASCUS: The elongate spore sac of a fungus of the Ascomycota group.

ASEPTIC: Free from the living germs of disease, fermentation, or putrefaction.

ASEXUAL: A type of reproduction involving only one parent that produces genetically identical offspring by budding or division of a single cell or the entire organism into two or more parts.

ASSORTATIVE MATING: A type of nonrandom mating in which mating partners resemble each other in certain phenotypic characters.

ASYMMETRIC CARBON: A carbon atom covalently bonded to four different atoms or groups of atoms.

ASYNCHRONOUS: Not occurring at the same time.

ATOM: The general definition of an ion is an atom with a positive or negative charge. Electron is the name of a negatively charged atomic particle.

ATOMIC NUMBER: The number representing an element which corresponds with the number of protons within the nucleus.

ATOMIC ORBITAL: The region where the electron of the atom may be found.

ATOMIC THEORY: The physical theory of the structure, properties and behavior of the atom.

ATOMIC WEIGHT: The total atomic mass, which is the mass in grams of one mole of the atom (relative to that of 12C, which is designated as 12).

ATP (Adenosine triphosphate): A triply phosphorylated organic compound that functions as "energy currency" for organisms, thus allowing life forms to do work; it can be hydrolyzed in two steps (first to ADP and then to AMP) to liberate 7.3 Kcal of energy per mole during each hydrolysis. ATPASE: An enzyme that functions in producing or using ATP.

AUTOGENOUS MODEL: A hypothesis which suggests that the first eukaryotic cells evolved by the specialization of internal membranes originally derived from prokaryotic plasma membranes.

AUTOIMMUNE DISEASE: An immunological disorder in which the immune system goes awry and turns against itself.

AUTONOMIC NERVOUS SYSTEM: A subdivision of the motor nervous system of vertebrates that regulates the internal environment; consists of the sympathetic and parasympathetic subdivisions. AUTOPOLYPLOID: A type of polyploid species resulting from one species doubling its chromosome number to become tetraploids, which may self-fertilize or mate with other tetraploids. AUTOSOME: Chromosomes that are not directly involved in determining sex.

AUTOTROPH: An organism which is able to make organic molecules from inorganic ones either by using energy from the sun or by oxidizing inorganic substances.

AUXIN: One of several hormone compounds in plants that have a variety of effects, such as phototropic response through stimulation of cell elongation, stimulation of secondary growth, and development of leaf traces and fruit.

AUXOTROPH: A nutritional mutant that is unable to synthesize and that cannot grow on media lacking certain essential molecules normally synthesized by wild-type strains of the same species. AVOGADRO'S NUMBER: Is the number of particles in a mole of a substance (6.02x10^23).

AXON: A typically long outgrowth, or process, from a neuron that carries nerve impulses away from the cell body toward target cells.

AXONEME: An internal flagellar structure that occurs in some protozoa, such as *Giardia*, *Spironucleous*, and *Trichonmonas*.

В

BACKFLOW PREVENTION: To stop or prevent the occurrence of, the unnatural act of reversing the normal direction of the flow of liquid, gases, or solid substances back in to the public potable (drinking) water supply. See Cross-connection control.

BACKFLOW: To reverse the natural and normal directional flow of a liquid, gases, or solid substances back in to the public potable (drinking) water supply. This is normally an undesirable effect.

BACKSIPHONAGE: A liquid substance that is carried over a higher point. It is the method by which the liquid substance may be forced by excess pressure over or into a higher point.

BACTERIA: Small, one-celled animals too small to be seen by the naked eye. Bacteria are found everywhere, including on and in the human body. Humans would be unable to live without the bacteria that inhabit the intestines and assist in digesting food. Only a small percentage of bacteria cause disease in normal, healthy humans. Other bacteria can cause infections if they get into a cut or wound. Bacteria are the principal concern in evaluating the microbiological quality of drinking water, because some of the bacteria-caused diseases that can be transmitted by drinking water are potentially life-threatening.

BACTERIOPHAGE: Any of a group of viruses that infect specific bacteria, usually causing their disintegration or dissolution. A bacteriophage (from 'bacteria' and Greek phagein, 'to eat') is any one of a number of viruses that infect bacteria. The term is commonly used in its shortened form, phage. Typically, bacteriophages consist of an outer protein hull enclosing genetic material. The genetic material can be ssRNA (single stranded RNA), dsRNA, ssDNA, or dsDNA between 5 and 500 kilo base pairs long with either circular or linear arrangement. Bacteriophages are much smaller than the bacteria they destroy - usually between 20 and 200 nm in size.

BACTERIUM: A unicellular microorganism of the Kingdom Monera. Bacteria are prokaryotes; their cells have no true nucleus. Bacteria are classified into two groups based on a difference in cell walls, as determined by Gram staining.

BALANCED POLYMORPHISM: A type of polymorphism in which the frequencies of the coexisting forms do not change noticeably over many generations.

BARITE: Processed barium sulfate often used to increase drilling fluid densities in mud rotary. BAROMETER: A device used to measure the pressure in the atmosphere.

BARR BODY: The dense object that lies along the inside of the nuclear envelope in cells of female mammals, representing the one inactivated X chromosome.

BASAL BODY: A cell structure identical to a centriole that organizes and anchors the microtubule assembly of a cilium or flagellum.

BASE PAIRING: Complementary base pairing refers to the chemical affinities between specific base pairs in a nucleic acid: adenine always pairs with thymine, and guanine always pairs with cytosine. In pairing between DNA and RNA, the uracil of RNA always pairs with adenine. Complementary base pairing is not only responsible for the DNA double helix, but it is also essential for various in vitro techniques such as PCR (polymerase chain reaction). Complementary base pairing is also known as Watson-Crick pairing.

BASE: A substance that reduces the hydrogen ion concentration in a solution.

BASE: A substance that accepts a proton and has a high pH; a common example is sodium hydroxide (NaOH).

BASEMENT MEMBRANE: The floor of an epithelial membrane on which the basal cells rest. BASIDIUM: The spore-bearing structure of Basidiomycota.

BATESIAN MIMICRY: A type of mimicry in which a harmless species looks like a different species that is poisonous or otherwise harmful to predators.

B-CELL LYMPHOCYTE: A type of lymphocyte that develops in the bone marrow and later produces antibodies, which mediate humoral immunity.

BEHAVIORAL ECOLOGY: A heuristic approach based on the expectation that Darwinian fitness (reproductive success) is improved by optimal behavior.

BELT PRESS: A dewatering device utilizing two opposing synthetic fabric belts, revolving over a series of rollers to "squeeze" water from the sludge.

BENCH TEST: A small-scale test or study used to determine whether a technology is suitable for a particular application.

BENIGN TUMOR: A noncancerous abnormal growth composed of cells that multiply excessively but remain at their place of origin in the body.

BENTHIC: Pertaining to the bottom region of an aquatic environment.

BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE (BAT): A level of technology based on the best existing control and treatment measures that are economically achievable within the given industrial category or subcategory.

BEST MANAGEMENT PRACTICES (BMPs): Schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of waters of the U.S. BMPs also include treatment requirements, operating procedures and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE (BPT): A level of technology represented by the average of the best existing wastewater treatment performance levels within an industrial category or subcategory.

BEST PROFESSIONAL JUDGMENT (BPJ): The method used by a permit writer to develop technology-based limitations on a case-by-case basis using all reasonably available and relevant data.

BETA PLEATED SHEET: A zigzag shape, constituting one form of the secondary structure of proteins formed of hydrogen bonds between polypeptide segments running in opposite directions. BILATERAL SYMMETRY: The property of having two similar sides, with definite upper and lower surfaces and anterior and posterior ends. The Bilateria are members of the branch of Eumetazoa (Kingdom Animalia) which possess bilateral symmetry.

BILE: A mixture of substances containing bile salts, which emulsify fats and aid in their digestion and absorption.

BINARY FISSION: The kind of cell division found in prokaryotes, in which dividing daughter cells each receive a copy of the single parental chromosome.

BINOMIAL NOMENCLATURE: Consisting of two names. In biology, each organism is given a *genus* name and a species name (i.e., the human is Homo sapiens.

BIOCHEMICAL OXYGEN DEMAND (BOD): The BOD test is used to measure the strength of wastewater. The BOD of wastewater determines the milligrams per liter of oxygen required during stabilization of decomposable organic matter by aerobic bacteria action. Also, the total milligrams of oxygen required over a five-day test period to biologically assimilate the organic contaminants

in one liter of wastewater maintained at 20 degrees Centigrade.

BIOCHEMISTRY: The chemistry of organisms.

BIOGENESIS: A central concept of biology, that living organisms are derived from other living organisms (contrasts to the concept of abiogenesis, or spontaneous generation, which held that life could be derived from inanimate material).

BIOGEOCHEMICAL CYCLE: A circuit whereby a nutrient moves between both biotic and abiotic components of ecosystems.

BIOGEOGRAPHY: The study of the past and present distribution of species.

BIOLOGICAL MAGNIFICATION: Increasing concentration of relatively stable chemicals as they are passed up a food chain from initial consumers to top predators.

BIOLOGICAL SPECIES: A population or group of populations whose members have the potential to interbreed. This concept was introduced by Ernst Mayr.

BIOMASS: The total weight of all the organisms, or of a designated group of organisms, in a given area

BIOME: A large climatic region with characteristic sorts of plants and animals.

BIOSOLIDS: Solid organic matter recovered from municipal wastewater treatment that can be beneficially used, especially as a fertilizer. "Biosolids" are solids that have been stabilized within the treatment process, whereas "sludge" has not.

BIOSPHERE: The region on and surrounding the earth which is capable of supporting life. Theoretically, the concept may be ultimately expanded to include other regions of the universe.

BMR: The basal metabolic rate is the minimal energy (in kcal) required by a homeotherm to fuel itself for a given time. Measured within the thermoneutral zone for a postabsorptive animal at rest. BODY FEED: Coating or bulking material added to the influent of material to be treated. This adds "body" to the material during filtration cycle.

BOILING POINT ELEVATION: The process where the boiling point is elevated by adding a substance.

BOILING POINT: The temperature in which the substance starts to boil.

BOILING: The phase transition of liquid vaporizing.

BOND: The attraction and repulsion between atoms and molecules that is a cornerstone of chemistry.

Both measurements (mg/L or KH) are usually expressed "as CaCO₃" – meaning the amount of hardness expressed as if calcium carbonate was the sole source of hardness. Every bicarbonate ion only counts for half as much carbonate hardness as a carbonate ion does. If a solution contained 1 liter of water and 50 mg NaHCO₃ (baking soda), it would have a carbonate hardness of about 18 mg/L as CaCO₃. If you had a liter of water containing 50 mg of Na₂CO₃, it would have a carbonate hardness of about 29 mg/L as CaCO₃. Carbonate hardness supplements non-carbonate (a.k.a. "permanent") hardness where hard ions are associated with anions such as Chloride that do not precipitate out of solution when heated. Carbonate hardness is removed from water through the process of softening. Softening can be achieved by adding lime in the form of Ca(OH)₂, which reacts first with CO₂ to form calcium carbonate precipitate, reacts next with multivalent cations to remove carbonate hardness, then reacts with anions to replace the non-carbonate hardness due to multi-valent cations with non-carbonate hardness due to calcium. The process requires recarbonation through the addition of carbon-dioxide to lower the pH which is raised during the initial softening process.

BREAK POINT CHLORINATION: The process of chlorinating the water with significant quantities of chlorine to oxidize all contaminants and organic wastes and leave all remaining chlorine as free chlorine.

BRIDGING: The tendency of sediment, filter, or seal media to create an obstruction if installed in too small an annulus or to rapidly. Also can occur within filter packs requiring development.

BROMINE: Chemical disinfectant (HALOGEN) that kills bacteria and algae. This chemical disinfectant has been used only on a very limited scale for water treatment because of its handling difficulties. This chemical causes skin burns on contact, and a residual is difficult to obtain.

BRONSTED-LOWREY ACID: A chemical species that donates a proton.

BRONSTED-LOWREY BASE: A chemical species that accepts a proton.

BUFFER: Chemical that resists pH change, e.g. sodium bicarbonate

BUFFERED SOLTION: An aqueous solution consisting of a weak acid and its conjugate base or a weak base and its conjugate acid that resists changes in pH when strong acids or bases are added.

BULKING SLUDGE: A phenomenon that occurs in activated sludge plants whereby the sludge occupies excessive volumes and will not concentrate readily. This condition refers to a decrease in the ability of the sludge to settle and consequent loss over the settling tank weir. Bulking in activated sludge aeration tanks is caused mainly by excess suspended solids (SS) content. Sludge bulking in the final settling tank of an activated sludge plant may be caused by improper balance of the BOD load, SS concentration in the mixed liquor, or the amount of air used in aeration. A poor or slow settling activated sludge that results from the prevalence of filamentous organisms.

BURETTE (also BURET): Glassware used to dispense specific amounts of liquid when precision is necessary (e.g. titration and resource dependent reactions).

С

Ca: The chemical symbol for calcium.

CADMIUM: A contaminant that is usually not found naturally in water or in very small amounts. CAKE: Dewatered sludge material with a satisfactory solids concentration to allow handling as a solid material.

CALCIUM HARDNESS: A measure of the calcium salts dissolved in water.

CALCIUM ION: Is divalent because it has a valence of +2.

CALCIUM, MAGNESIUM AND IRON: The three elements that cause hardness in water. CaOCI2.4H2O: The molecular formula of Calcium hypochlorite.

CARBON DIOXIDE GAS: The pH will decrease and alkalinity will change as measured by the Langelier index after pumping carbon dioxide gas into water.

CARBON DIOXIDE GAS: The pH will decrease and alkalinity will change as measured by the Langelier index after pumping carbon dioxide gas into water.

CARBONATE HARDNESS: Carbonate hardness is the measure of Calcium and Magnesium and other hard ions associated with carbonate (CO32-) and bicarbonate (HCO3-) ions contained in a solution, usually water. It is usually expressed either as parts per million (ppm or mg/L), or in degrees (KH - from the German "Karbonathärte"). One German degree of carbonate hardness is equivalent to about 17.8575 mg/L. Both measurements (mg/L or KH) are usually expressed "as CaCO3" – meaning the amount of hardness expressed as if calcium carbonate was the sole source of hardness. Every bicarbonate ion only counts for half as much carbonate hardness as a carbonate ion does. If a solution contained 1 liter of water and 50 mg NaHCO3 (baking soda), it would have a carbonate hardness of about 18 mg/L as CaCO3. If you had a liter of water containing 50 mg of Na2CO3, it would have a carbonate hardness of about 29 mg/L as CaCO3. CARBONATE, BICARBONATE AND HYDROXIDE: Chemicals that are responsible for the

alkalinity of water.

CAROLUS LINNAEUS: Swedish botanist and originator of the binomial nomenclature system of taxonomic classification

CATALYST: A chemical compound used to change the rate (either to speed up or slow down) of a reaction, but is regenerated at the end of the reaction.

CATHODIC PROTECTION: An operator should protect against corrosion of the anode and/or the cathode by painting the copper cathode. Cathodic protection interrupts corrosion by supplying an electrical current to overcome the corrosion-producing mechanism. Guards against stray current corrosion.

CATION: Positively charged ion.

CAUSTIC SODA: Also known as sodium hydroxide and is used to raise pH.

CAUSTIC: NaOH (also called Sodium Hydroxide) is a strong chemical used in the treatment process to neutralize acidity, increase alkalinity or raise the pH value.

CEILING AREA: The specific gravity of ammonia gas is 0.60. If released, this gas will accumulate first at the ceiling area. Cl2 gas will settle on the floor.

CELL POTENIAL: The force in a galvanic cell that pulls electron through reducing agent to oxidizing agent.

CENTRATE: The liquid remaining after solids have been removed in a centrifuge.

CENTRIFUGAL FORCE: That force when a ball is whirled on a string that pulls the ball outward. On a centrifugal pump, it is that force which throws water from a spinning impeller.

CENTRIFUGAL PUMP: A pump consisting of an impeller fixed on a rotating shaft and enclosed in a casing, having an inlet and a discharge connection. The rotating impeller creates pressure in the liquid by the velocity derived from centrifugal force.

CENTRIFUGE: A dewatering device relying on centrifugal force to separate particles of varying density such as water and solids. Equipment used to separate substances based on density by rotating the tubes around a centered axis

CESIUM (also Caesium): Symbol Cs- A soft, silvery-white ductile metal, liquid at room temperature, the most electropositive and alkaline of the elements, used in photoelectric cells and to catalyze hydrogenation of some organic compounds.

CHAIN OF CUSTODY (COC): A record of each person involved in the possession of a sample from the person who collects the sample to the person who analyzes the sample in the laboratory.

CHELATION: A chemical process used to control scale formation in which a chelating agent "captures" scale-causing ions and holds them in solution.

CHEMICAL FEED RATE: Chemicals are added to the water in order to improve the subsequent treatment processes. These may include pH adjusters and coagulants. Coagulants are chemicals, such as alum, that neutralize positive or negative charges on small particles, allowing them to stick together and form larger particles that are more easily removed by sedimentation (settling) or filtration. A variety of devices, such as baffles, static mixers, impellers and in-line sprays, can be used to mix the water and distribute the chemicals evenly.

CHEMICAL LAW: Certain rules that pertain to the laws of nature and chemistry.

CHEMICAL OXIDIZER: KMnO4 is used for taste and odor control because it is a strong oxidizer which eliminates many organic compounds.

CHEMICAL OXIDIZER: KMnO4 or Potassium Permanganate is used for taste and odor control CHEMICAL OXYGEN DEMAND (COD): The milligrams of oxygen required to chemically oxidize the organic contaminants in one liter of wastewater.

CHEMICAL REACTION RATE: In general, when the temperature decreases, the chemical reaction rate also decreases. The opposite is true for when the temperature increases.

CHEMICAL REACTION: The change of one or more substances into another or multiple substances.

CHEMICAL SLUDGE: Sludge resulting from chemical treatment processes of inorganic wastes that are not biologically active.

CHEMISORPTION: (or chemical adsorption) Is adsorption in which the forces involved are valence forces of the same kind as those operating in the formation of chemical compounds. CHLORAMINES: A group of chlorine ammonia compounds formed when chlorine combines with organic wastes in the water. Chloramines are not effective as disinfectants and are responsible for eye and skin irritation as well as strong chlorine odors.

CHLORINATION: The process in water treatment of adding chlorine (gas or solid hypochlorite) for purposes of disinfection.

CHLORINE DEMAND: Amount of chlorine required to react on various water impurities before a residual is obtained. Also, means the amount of chlorine required to produce a free chlorine residual of 0.1 mg/l after a contact time of fifteen minutes as measured by iodmetic method of a sample at a temperature of twenty degrees in conformance with Standard methods.

CHLORINE FEED: Chlorine may be delivered by vacuum-controlled solution feed chlorinators. The chlorine gas is controlled, metered, introduced into a stream of injector water and then conducted as a solution to the point of application.

CHLORINE, FREE: Chlorine available to kill bacteria or algae. The amount of chlorine available for sanitization after the chlorine demand has been met. Also known as chlorine residual.

CHLORINE: A chemical used to disinfect water. Chlorine is extremely reactive, and when it comes in contact with microorganisms in water it kills them. Chlorine is added to swimming pools to keep the water safe for swimming. Chlorine is available as solid tablets for swimming pools. Some public water system's drinking water treatment plants use chlorine in a gas form because of the large

volumes required. Chlorine is very effective against algae, bacteria and viruses. Protozoa are resistant to chlorine because they have thick coats; protozoa are removed from drinking water by filtration.

CHRONIC: A stimulus that lingers or continues for a relatively long period of time, often one-tenth of the life span or more. Chronic should be considered a relative term depending on the life span of an organism. The measurement of chronic effect can be reduced growth, reduced reproduction, etc., in addition to lethality.

CIRCULATION: The continual flow of drilling fluid from injection to recovery and recirculation at the surface.

CLARIFIER: A settling tank used to remove suspended solids by gravity settling. Commonly referred to as sedimentation or settling basins, they are usually equipped with a motor driven chain and flight or rake mechanism to collect settled sludge and move it to a final removal point.

CLEAR WELL: A large underground storage facility sometimes made of concrete. A clear well or a plant storage reservoir is usually filled when demand is low. The final step in the conventional filtration process, the clearwell provides temporary storage for the treated water. The two main purposes for this storage are to have filtered water available for backwashing the filter and to provide detention time (or contact time) for the chlorine (or other disinfectant) to kill any microorganisms that may remain in the water.

CIO2: The molecular formula of Chlorine dioxide.

COAGULATION: The best pH range for coagulation is between 5 and 7. Mixing is an important part of the coagulation process you want to complete the coagulation process as quickly as possible. A chemical added to initially destabilize, aggregate, and bind together colloids and emulsions to improve settleability, filterability, or drainability.

COLIFORM TESTING: The effectiveness of disinfection is usually determined by Coliform bacteria testing. A positive sample is a bad thing and indicates that you have bacteria contamination.

COLIFORM: Bacteria normally found in the intestines of warm-blooded animals. Coliform bacteria are present in high numbers in animal feces. They are an indicator of potential contamination of water. Adequate and appropriate disinfection effectively destroys coliform bacteria. Public water systems are required to deliver safe and reliable drinking water to their customers 24 hours a day, 365 days a year. If the water supply becomes contaminated, consumers can become seriously ill. Fortunately, public water systems take many steps to ensure that the public has safe, reliable drinking water. One of the most important steps is to regularly test the water for coliform bacteria. Coliform bacteria are organisms that are present in the environment and in the feces of all warm-blooded animals and humans. Coliform bacteria will not likely cause illness. However, their presence in drinking water indicates that disease-causing organisms (pathogens) could be in the water system. Most pathogens that can contaminate water supplies come from the feces of humans or animals. Testing drinking water for all possible pathogens is complex, time-consuming, and expensive. It is relatively easy and inexpensive to test for coliform bacteria. If coliform bacteria are found in a water sample, water system operators work to find the source of contamination and restore safe drinking water. There are three different groups of coliform bacteria; each has a different level of risk.

COLLIOD: Mixture of evenly dispersed substances, such as many milks.

COLLOIDAL SUSPENSIONS: Because both iron and manganese react with dissolved oxygen to form insoluble compounds, they are not found in high concentrations in waters containing dissolved oxygen except as colloidal suspensions of the oxide.

COLORIMETRIC MEASUREMENT: A means of measuring an unknown chemical concentration in water by measuring a sample's color intensity.

COMBINED CHLORINE: The reaction product of chlorine with ammonia or other pollutants, also known as chloramines.

COMBUSTION: An exothermic reaction between an oxidant and fuel with heat and often light COMMUNITY WATER SYSTEM: A water system which supplies drinking water to 25 or more of the same people year-round in their residences.

COMPLIANCE CYCLE: A 9-calendar year time-frame during which a public water system is required to monitor. Each compliance cycle consists of 3 compliance periods.

COMPLIANCE PERIOD: A 3-calendar year time-frame within a compliance cycle.

COMPOSITE SAMPLE: A water sample that is a combination of a group of samples collected at various intervals during the day. A combination of individual samples of water or wastewater taken at predetermined intervals to minimize the effect of variability of individual samples. To have significant meaning, samples for laboratory tests on wastewater should be representative of the wastewater. The best method of sampling is proportional composite sampling over several hours during the day. Composite samples are collected because the flow and characteristics of the wastewater are continually changing. A composite sample will give a representative analysis of the wastewater conditions.

COMPOSTING: Stabilization process relying on the aerobic decomposition of organic matter in sludge by bacteria and fungi.

COMPOUND: A substance that is made up of two or more chemically bonded elements. CONDENSATION: The process that changes water vapor to tiny droplets or ice crystals. CONDUCTOR: Material that allows electric flow more freely.

CONTACT STABILIZATION PROCESS: Modification of the activated sludge process where raw wastewater is aerated with activated sludge for a short time prior to solids removal and continued aeration in a stabilization tank.

CONTACT TIME: If the water temperature decreases from 70°F (21°C) to 40°F (4°C). The operator needs to increase the detention time to maintain good disinfection of the water. CONTAINS THE ELEMENT CARBON: A simple definition of an organic compound.

CONTAMINANT: Any natural or man-made physical, chemical, biological, or radiological substance or matter in water, which is at a level that may have an adverse effect on public health, and which is known or anticipated to occur in public water systems.

CONTAMINATION: A degradation in the quality of groundwater in result of the it's becoming polluted with unnatural or previously non-existent constituents.

CONTROL TASTE AND ODOR PROBLEMS: KMnO4 Potassium permanganate is a strong oxidizer commonly used to control taste and odor problems.

COPPER: The chemical name for the symbol Cu.

CORROSION: The removal of metal from copper, other metal surfaces and concrete surfaces in a destructive manner. Corrosion is caused by improperly balanced water or excessive water velocity through piping or heat exchangers.

CORROSION: The removal of metal from copper, other metal surfaces and concrete surfaces in a destructive manner. Corrosion is caused by improperly balanced water or excessive water velocity through piping or heat exchangers.

CORROSIVITY: The Langelier Index measures corrosivity.

COUPON: A coupon placed to measure corrosion damage in the water mains.

COVALENT BOND: Chemical bond that involves sharing electrons.

CROSS-CONNECTION: A physical connection between a public water system and any source of water or other substance that may lead to contamination of the water provided by the public water system through backflow. Might be the source of an organic substance causing taste and odor problems in a water distribution system.

CROSS-CONTAMINATION: The mixing of two unlike qualities of water. For example, the mixing of good water with a polluting substance like a chemical.

CRYPTOSPORIDIUM: A disease-causing parasite, resistant to chlorine disinfection. It may be found in fecal matter or contaminated drinking water. Cryptosporidium is a protozoan pathogen of the Phylum Apicomplexa and causes a diarrheal illness called cryptosporidiosis. Other apicomplexan pathogens include the malaria parasite Plasmodium, and Toxoplasma, the causative agent of toxoplasmosis. Unlike Plasmodium, which transmits via a mosquito vector, Cryptosporidium does not utilize an insect vector and is capable of completing its life cycle within a single host, resulting in cyst stages which are excreted in feces and are capable of transmission to a new host.

CRYSTAL: A solid that is packed with ions, molecules or atoms in an orderly fashion.

CUVETTE: Glassware used in spectroscopic experiments. It is usually made of plastic, glass or quartz and should be as clean and clear as possible.

CYANOBACTERIA: Cyanobacteria, also known as blue-green algae, blue-green bacteria or Cyanophyta, is a phylum of bacteria that obtain their energy through photosynthesis. The name "cyanobacteria" comes from the color of the bacteria (Greek: kyanós = blue). They are a significant component of the marine nitrogen cycle and an important primary producer in many areas of the ocean, but are also found on land.

CYANURIC ACID: White, crystalline, water-soluble solid, C3H3O3N3·2H2O, used chiefly in organic synthesis. Chemical used to prevent the decomposition of chlorine by ultraviolet (UV) light.

CYST: A phase or a form of an organism produced either in response to environmental conditions or as a normal part of the life cycle of the organism. It is characterized by a thick and environmentally resistant cell wall.

D

DAILY MAXIMUM LIMITATIONS: The maximum allowable discharge of pollutants during a 24 hour period. Where daily maximum limitations are expressed in units of mass, the daily discharge is the total mass discharged over the course of the day. Where daily maximum limitations are expressed in terms of a concentration, the daily discharge is the arithmetic average measurement of the pollutant concentration derived from all measurements taken that day.

DANGEROUS CHEMICALS: The most suitable protection when working with a chemical that produces dangerous fumes is to work under an air hood.

DARCY'S LAW: (Q=KIA) A fundamental equation used in the groundwater sciences to determine aquifer characteristics, where Q=Flux, K=Hydraulic Conductivity (Permeability), I = Hydraulic Gradient (change in head), and A = Cross Sectional Area of flow.

DECANT: Separation of a liquid from settled solids by removing the upper layer of liquid after the solids have settled.

DECIBELS: The unit of measurement for sound.

DECOMPOSE: To decay or rot.

DECOMPOSTION OF ORGANIC MATERIAL: The decomposition of organic material in water produces taste and odors.

DEIONIZATION: The removal of ions, and in water's case mineral ions such as sodium, iron and calcium.

DELIQUESCENE: Substances that absorb water from the atmosphere to form liquid solutions. DEMINERALIZATION PROCESS: Mineral concentration of the feed water is the most important consideration in the selection of a demineralization process. Acid feed is the most common method of scale control in a membrane demineralization treatment system.

DENITRIFICATION: A biological process by which nitrate is converted to nitrogen gas.

DENTAL CARIES PREVENTION IN CHILDREN: The main reason that fluoride is added to a water supply.

DEPOLARIZATION: The removal of hydrogen from a cathode.

DEPOSITION: Settling of particles within a solution or mixture.

DESICCANT: When shutting down equipment which may be damaged by moisture, the unit may be protected by sealing it in a tight container. This container should contain a desiccant.

DESORPTION: Desorption is a phenomenon whereby a substance is released from or through a surface. The process is the opposite of sorption (that is, adsorption and absorption). This occurs in a system being in the state of sorption equilibrium between bulk phase (fluid, i.e. gas or liquid solution) and an adsorbing surface (solid or boundary separating two fluids). When the concentration (or pressure) of substance in the bulk phase is lowered, some of the sorbed substance changes to the bulk state. In chemistry, especially chromatography, desorption is the ability for a chemical to move with the mobile phase. The more a chemical desorbs, the less likely it will adsorb, thus instead of sticking to the stationary phase, the chemical moves up with the solvent front. In chemical separation processes, stripping is also referred to as desorption as one component of a liquid stream moves by mass transfer into a vapor phase through the liquid-vapor interface.

DETENTION LAG: Is the period of time between the moment of change in a chlorinator control system and the moment when the change is sensed by the chlorine residual indicator.

DEVELOPMENT: The cleaning of the well and bore once construction is complete. DIATOMACEOUS EARTH: A fine silica material containing the skeletal remains of algae.

DIGESTER: A tank or vessel used for sludge digestion.

DIGESTION: The biological decomposition of organic matter in sludge resulting in partial gasification, liquefaction, and mineralization of putrescible and offensive solids.

DIPOLE MOMENT: The polarity of a polar covalent bond.

DIPOLE: Electric or magnetic separation of charge.

DIRECT CURRENT: A source of direct current (DC) may be used for standby lighting in a water treatment facility. The electrical current used in a DC system may come from a battery.

DISINFECT: The application of a chemical to kill most, but not all, microorganisms that may be present. Chlorine is added to public water drinking systems drinking water for disinfection. Depending on your state rule, drinking water must contain a minimum of 0.2 mg/L free chlorine. Disinfection makes drinking water safe to consume from the standpoint of killing pathogenic microorganisms including bacteria and viruses. Disinfection does not remove all bacteria from drinking water, but the bacteria that can survive disinfection with chlorine are not pathogenic bacteria that can cause disease in normal healthy humans.

DISINFECTION BY-PRODUCTS (DBPs): The products created due to the reaction of chlorine with organic materials (e.g. leaves, soil) present in raw water during the water treatment process. The EPA has determined that these DBPs can cause cancer. Chlorine is added to drinking water to kill or inactivate harmful organisms that cause various diseases. This process is called disinfection. However, chlorine is a very active substance and it reacts with naturally occurring substances to form compounds known as disinfection byproducts (DBPs). The most common DBPs formed when chlorine is used are trihalomethanes (THMs), and haloacetic acids (HAAs). DISINFECTION: The treatment of water to inactivate, destroy, and/or remove pathogenic bacteria, viruses, protozoa, and other parasites.

DISSOLUTION or SOLVATION: The spread of ions in a monosacharide.

DISSOLVED OXYGEN: Can be added to zones within a lake or reservoir that would normally become anaerobic during periods of thermal stratification.

DISSOLVED SOLIDS: Solids in solution that cannot be removed by filtration with a 0.45 micron filter.

DISTILLATION, REVERSE OSMOSIS AND FREEZING: Processes that can be used to remove minerals from the water.

DOUBLE BOND: Sharing of two pairs of electradodes.

DRY ACID: A granular chemical used to lower pH and or total alkalinity.

Е

E. COLI, Escherichia coli: A bacterium commonly found in the human intestine. For water quality analyses purposes, it is considered an indicator organism. These are considered evidence of water contamination. Indicator organisms may be accompanied by pathogens, but do not necessarily cause disease themselves.

EARTH METAL: See alkaline earth metal.

E. COLI, Escherichia coli: A bacterium commonly found in the human intestine. For water quality analyses purposes, it is considered an indicator organism. These are considered evidence of water contamination. Indicator organisms may be accompanied by pathogens, but do not necessarily cause disease themselves.

ECDYSONE: A steroid hormone that triggers molting in arthropods.

ECOLOGICAL EFFICIENCY: The ratio of net productivity at one trophic level to net productivity at the next lower level.

ECOLOGICAL NICHE: The sum total of an organism's utilization of the biotic and abiotic resources of its environment. The fundamental niche represents the theoretical capabilities and the realized niche represents the actual role.

ECOLOGY: The study of how organisms interact with their environments.

ECOSYSTEM: The sum of physical features and organisms occurring in a given area. ECTODERM: The outermost tissue layer of an animal embryo. Also, tissue derived from an embryonic ectoderm. ECTOTHERM: An organism that uses environmental heat and behavior to regulate its body temperature.

EDWARD JENNER: A pioneer of vaccination; used vaccination with material from cowpox lesions to protect people against smallpox.

EFFECTIVENESS OF CHLORINE: The factors which influence the effectiveness of chlorination the most are pH, turbidity and temperature. Effectiveness of Chlorine decreases occurs during disinfection in source water with excessive turbidity.

EFFECTOR: The part of an organism that produces a response to a stimulus.

EFFLUENT: Partially or completely treated water or wastewater flowing out of a basin or treatment plant.

ELECTRIC CHARGE: A measured property (coulombs) that determine electromagnetic interaction

ELECTRICAL SYNAPSE: A junction between two neurons separated only by a gap junction, in which the local currents sparking the action potential pass directly between the cells.

ELECTROCARDIOGRAM: A plot of electrical activity of the heart over the cardiac cycle; measured via multiple skin electrodes.

ELECTROCHEMICAL CELL: Using a chemical reaction's current, electromotive force is made ELECTROCHEMICAL GRADIENT: Combined electrostatic and osmotic-concentration gradient, such as the chemiosmotic gradient of mitochondria and chloroplasts.

ELECTROGENIC PUMP: An ion transport protein generating voltage across a membrane. ELECTROLYTE: A solution that conducts a certain amount of current and can be split categorically as weak and strong electrolytes.

ELECTROMAGNETIC RADIATION: A type of wave that can go through vacuums as well as material and classified as a self-propagating wave.

ELECTROMAGNETIC SPECTRUM: The entire spectrum of radiation; ranges in wavelength from less than a nanometer to more than a kilometer.

ELECTROMAGNETISM: Fields that have electric charge and electric properties that change the way that particles move and interact.

ELECTROMOTIVE FORCE: A device that gains energy as electric charges pass through it. ELECTRON MICROSCOPE: A microscope that focuses an electron beam through a specimen, resulting in resolving power a thousandfold greater that of a light microscope. A transmission EM is used to study the internal structure of thin sections of cells; a scanning EM is used to study the ultrastructure of surfaces.

ELECTRON SHELLS: An orbital around the atom's nucleus that has a fixed number electrons (usually two or eight).

ELECTRON TRANSPORT CHAIN: A series of enzymes found in the inner membranes of mitochondria and chloroplasts. These are involved in transport of protons and electrons either across the membrane during ATP synthesis.

ELECTRON: A subatomic particle with a net charge that is negative. The name of a negatively charged atomic particle.

ELECTRONEGATIVITY: A property exhibited by some atoms whereby the nucleus has a tendency to pull electrons toward itself.

ELECTRONIC CHARGE UNIT: The charge of one electron (1.6021 x 10e - 19 coulomb). ELECTROSTATIC FORCE: The attraction between particles with opposite charges.

ELECTROSTATIC GRADIENT: The free-energy gradient created by a difference in charge between two points, generally the two sides of a membrane.

ELEMENT: Any substance that cannot be broken down into another substance by ordinary chemical means. An atom that is defined by its atomic number.

ELEMENTARY BUSINESS PLAN: Technical Capacity, Managerial Capacity, and Financial Capacity make up the elementary business plan. To become a new public water system, an owner shall file an elementary business plan for review and approval by state environmental agency.

ELIMINATION: The release of unabsorbed wastes from the digestive tract.

EMERGENCY RESPONSE TEAM: A local team that is thoroughly trained and equipped to deal with emergencies, e.g. chlorine gas leak. In case of a chlorine gas leak, get out of the area and notify your local emergency response team in case of a large uncontrolled chlorine leak.

EMERGENT PROGERTY: A property exhibited at one level of biological organization but not exhibited at a lower level. For example, a population exhibits a birth rate, an organism does not. EMPOROCAL FORMULA: Also called the simplest formula, gives the simplest whole :number

ratio of atoms of each element present in a compound.

EMULSION: A suspension, usually as fine droplets of one liquid in another. A mixture made up of dissimilar elements, usually of two or more mutually insoluble liquids that would normally separate into layers based on the specific gravity of each liquid.

ENDERGONIC: A phenomenon which involves uptake of energy.

ENDOCRINE: A phenomenon which relates to the presence of ductless glands of the type typically found in vertebrates. The endocrine system involves hormones, the glands which secrete them, the molecular hormone receptors of target cells, and interactions between hormones and the nervous system.

ENDOCYTOSIS: A process by which liquids or solid particles are taken up by a cell through invagination of the plasma membrane.

ENDODERM: The innermost germ layer of an animal embryo.

ENDODERMIS: A plant tissue, especially prominent in roots, that surrounds the vascular cylinder; all endodermal cells have Casparian strips.

ENDOMEMBRANE SYSTEM: The system of membranes inside a eukaryotic cell, including the membranous vesicles which associate with membrane sheets and/or tubes.

ENDOMETRIUM: The inner lining of the uterus, which is richly supplied with blood vessels that provide the maternal part of the placenta and nourish the developing embryo.

ENDONUCLEASE: An enzyme that breaks bonds within nucleic acids. A restriction endonuclease is an enzyme that breaks bonds only within a specific sequence of bases.

ENDOPLASMIC RETICULUM: A system of membrane-bounded tubes and flattened sacs, often continuous with the nuclear envelope, found in the cytoplasm of eukaryotes. Exists as rough ER, studded with ribosomes, and smooth ER, lacking ribosomes.

ENDORPHIN: A hormone produced in the brain and anterior pituitary that inhibits pain perception. ENDOSKELETON: An internal skeleton.

ENDOSPERM: A nutritive material in plant seeds which is triploid (3n) and results from the fusion of three nuclei during double fertilization.

ENDOSYMBIOTIC: 1) An association in which the symbiont lives within the host 2) A widely accepted hypothesis concerning the evolution of the eukaryotic cell: the idea that eukaryotes evolved as a result of symbiotic associations between prokaryote cells. Aerobic symbionts ultimately evolved into mitochondria; photosynthetic symbionts became chloroplasts.

ENDOTHELIUM: The innermost, simple squamous layer of cells lining the blood vessels; the only constituent structure of capillaries.

ENDOTHERMIC: In chemistry, a phenomenon in which energy is absorbed by the reactants. In physiology, this term concerns organisms whose thermal relationship with the environment is dependent substantially on internal production of heat.

ENDOTOXIN: A component of the outer membranes of certain gram-negative bacteria responsible for generalized symptoms of fever and ache.

ENERGY: A system's ability to do work. The capacity to do work by moving matter against an opposing force.

ENHANCED COAGULATION: The process of joining together particles in water to help remove organic matter.

ENHANCER: A DNA sequence that recognizes certain transcription factors that can stimulate transcription of nearby genes.

ENTAMOEBA HISTOLYTICA: Entamoeba histolytica, another water-borne pathogen, can cause diarrhea or a more serious invasive liver abscess. When in contact with human cells, these amoebae are cytotoxic. There is a rapid influx of calcium into the contacted cell, it quickly stops all membrane movement save for some surface blebbing. Internal organization is disrupted,

organelles lyse, and the cell dies. The ameba may eat the dead cell or just absorb nutrients released from the cell.

ENTERIC: Rod-shaped, gram-negative, aerobic but can live in certain anaerobic conditions; produce nitrite from nitrate, acids from glucose; include Escherichia coli, Salmonella (over 1000 types), and Shigella.

ENTEROVIRUS: A virus whose presence may indicate contaminated water; a virus that may infect the gastrointestinal tract of humans.

ENTHALPY: Measure of the total energy of a thermodynamic system (usually symbolized as H). ENTROPY: The amount of energy not available for work in a closed thermodynamic system (usually symbolized as S).

ENVELOPE: 1) (nuclear) The surface, consisting of two layers of membrane, that encloses the nucleus of eukaryotic cells. 2) (virus) A structure which is present on the outside of some viruses (exterior to the capsid).

ENVIRONMENT: Water, air, and land, and the interrelationship that exists among and between water, air and land and all living things. The total living and nonliving aspects of an organism's internal and external surroundings.

ENZYME: A protein, on the surface of which are chemical groups so arranged as to make the enzyme a catalyst for a chemical reaction. A protein that speeds up (catalyzes) a reaction.

EPICOTYL: A portion of the axis of a plant embryo above the point of attachment of the cotyledons; forms most of the shoot.

EPIDERMIS: The outermost portion of the skin or body wall of an animal.

EPINEPHRINE: A hormone produced as a response to stress; also called adrenaline.

EPIPHYTE: A plant that nourishes itself but grows on the surface of another plant for support, usually on the branches or trunks of tropical trees.

EPISOME: Genetic element at times free in the cytoplasm, at other times integrated into a chromosome.

EPISTASIS: A phenomenon in which one gene alters the expression of another gene that is independently inherited.

EPITHELIUM: An animal tissue that forms the covering or lining of all free body surfaces, both external and internal.

EPITOPE: A localized region on the surface of an antigen that is chemically recognized by antibodies; also called antigenic determinant.

EPPENDORF TUBE: Generalized and trademarked term used for a type of tube; see microcentrifuge.

EQUATION: A precise representation of the outcome of a chemical reaction, showing the reactants and products, as well as the proportions of each.

EQUILIBRIUM: In a reversible reaction, the point at which the rate of the forward reaction equals that of the reverse reaction. (Constant) At equilibrium, the ratio of products to reactants. (potential) The membrane potential for a given ion at which the voltage exactly balances the chemical diffusion gradient for that ion.

ERNST MAYR: Formulated the biological species concept.

ERYTHROCYTE: A red blood corpuscle.

ESOPHAGUS: An anterior part of the digestive tract; in mammals it leads from the pharynx to the stomach.

ESSENTIAL: 1) An amino or fatty acid which is required in the diet of an animal because it cannot be synthesized. 2) A chemical element required for a plant to grow from a seed and complete the life cycle.

ESTIVATION: A physiological state characterized by slow metabolism and inactivity, which permits survival during long periods of elevated temperature and diminished water supplies.

ESTRADIOL: 1,3,5(10)-estratriene- 3,17 beta-diol C18H24O2. This is the natural hormone - present in pure form in the urine of pregnant mares and in the ovaries of pigs.

ESTROGEN: Any of a group of vertebrate female sex hormones.

ESTROUS CYCLE: In female mammals, the higher primates excepted, a recurrent series of physiological and behavioral changes connected with reproduction.

ESTRUS: The limited period of heat or sexual receptivity that occurs around ovulation in female mammals having estrous cycles.

ESTUARY: That portion of a river that is close enough to the sea to be influenced by marine tides. ETHYLENE: The only gaseous plant hormone, responsible for fruit ripening, growth inhibition, leaf abscission, and aging.

EUBACTERIA: The lineage of prokaryotes that includes the cyanobacteria and all other contemporary bacteria except archaebacteria.

EUCHROMATIN: The more open, unraveled form of eukaryotic chromatin, which is available for transcription.

EUCOELOMATE: An animal whose body cavity is completely lined by mesoderm, the layers of which connect dorsally and ventrally to form mesenteries.

EUGLENA: Euglena are common protists, of the class Euglenoidea of the phylum Euglenophyta. Currently, over 1000 species of Euglena have been described. Marin et al. (2003) revised the genus so and including several species without chloroplasts, formerly classified as Astasia and Khawkinea. Euglena sometimes can be considered to have both plant and animal features. Euglena gracilis has a long hair-like thing that stretches from its body. You need a very powerful microscope to see it. This is called a flagellum, and the euglena uses it to swim. It also has a red eyespot. Euglena gracilis uses its eyespot to locate light. Without light, it cannot use its chloroplasts to make itself food.

EUKARYOTE: A life form comprised of one or more cells containing a nucleus and membrane bound organelles. Included are members of the Kingdoms Protista, Fungi, Plantae and Animalia. EUMETAZOA: Members of the subkingdom that includes all animals except sponges.

EUTROPHIC: A highly productive condition in aquatic environments which owes to excessive concentrations of nutrients which support the growth of primary producers.

EVAGINATED: Folded or protruding outward.

EVAPORATIVE COOLING: The property of a liquid whereby the surface becomes cooler during evaporation, owing to the loss of highly kinetic molecules to the gaseous state.

EVOLUTION: A theory that all of the changes that have transformed life on earth from its earliest beginnings to the diversity that characterizes it today. As used in biology, the term evolution means descent with change. See Intelligent Design.

EVOLUTION: Any process of formation or growth; development: the evolution of a language; the evolution of the airplane. A product of such development; something evolved: The exploration of space is the evolution of decades of research.

EXCITABLE CELLS: A cell, such as a neuron or a muscle cell that can use changes in its membrane potential to conduct signals.

EXCITATORY POSTSYNAPTIC POTENTIAL: An electrical change (depolarization) in the membrane of a postsynaptic neuron caused by the binding of an excitatory neurotransmitter from a presynaptic cell to a postsynaptic receptor. This phenomenon facilitates generation of an action potential in the PSP.

EXCRETION: Release of materials which arise in the body due to metabolism (e.g., CO_2 , NH_3 , H_20).

EXERGONIC: A phenomenon which involves the release of energy.

EXOCYTOSIS: A process by which a vesicle within a cell fuses with the plasma membrane and releases its contents to the outside.

EXON: A part of a primary transcript (and the corresponding part of a gene) that is ultimately either translated (in the case of mRNA) or utilized in a final product, such as tRNA.

EXOSKELETON: An external skeleton, characteristic of members of the phylum, Arthropoda. EXOTHERMIC: A process or reaction that is accompanied by the creation of heat.

EXOTOXIN: A toxic protein secreted by a bacterial cell that produces specific symptoms even in the absence of the bacterium.

EXPONENTIAL: (population growth) The geometric increase of a population as it grows in an ideal, unlimited environment.

EXTRAEMBRYONIC MEMBRANES: Four membranes (yolk sac, amnion, chorion, allantois) that support the developing embryo in reptiles, birds, and mammals.

EXTRINSIC: External to, not a basic part of; as in extrinsic isolating mechanism.

F

F PLASMID: The fertility factor in bacteria, a plasmid that confers the ability to form pili for conjugation and associated functions required for transfer of DNA from donor to recipient. F: The chemical symbol of Fluorine.

F1 GENERATION: The first filial or hybrid offspring in a genetic cross-fertilization.

F2 GENERATION: Offspring resulting from interbreeding of the hybrid F1 generation.

FACILITATED DIFFUSION: Passive movement through a membrane involving a specific carrier protein; does not proceed against a concentration gradient.

FACULTATIVE: An organism which exhibits the capability of changing from one habit or metabolic pathway to another, when conditions warrant. (anaerobe) An organism that makes ATP by aerobic respiration if oxygen is present but that switches to fermentation under anaerobic conditions. FARADAY CONSTANT: A unit of electrical charge widely used in electrochemistry and equal to ~ 96,500 coulombs. It represents 1 mol of electrons, or the Avogadro number of electrons:

6.022 × 1023 electrons. F = 96 485.339 9(24) C/mol.

FARADAY'S LAW OF ELECTROLYSIS: A two part law that Michael Faraday published about electrolysis. The mass of a substance altered at an electrode during electrolysis is directly proportional to the quantity of electricity transferred at that electrode. The mass of an elemental material altered at an electrode is directly proportional to the element's equivalent weight. FAT: A biological compound consisting of three fatty acids linked to one glycerol molecule.

FATE MAP: A means of tracing the fates of cells during embryonic development.

FATTY ACID: A long carbon chain carboxylic acid. Fatty acids vary in length and in the number and location of double bonds; three fatty acids linked to a glycerol molecule form fat.

FAUCET WITH AN AERATOR: When collecting a water sample from a distribution system, a faucet with an aerator should not be used as a sample location.

FAUNA: The animals of a given area or period.

FEATURE DETECTOR: A circuit in the nervous system that responds to a specific type of feature, such as a vertically moving spot or a particular auditory time delay.

FECAL COLIFORM: A group of bacteria that may indicate the presence of human or animal fecal matter in water. Total coliform, fecal coliform, and E. coli are all indicators of drinking water quality. The total coliform group is a large collection of different kinds of bacteria. Fecal coliforms are types of total coliform that mostly exist in feces. E. coli is a sub-group of fecal coliform. When a water sample is sent to a lab, it is tested for total coliform. If total coliform is present, the sample will also be tested for either fecal coliform or E. coli, depending on the lab testing method.

FECES: Indigestible wastes discharged from the digestive tract.

FEEDBACK: The process by which a control mechanism is regulated through the very effects it brings about. Positive feedback is when the effect is amplified; negative feedback is when the effect tends toward restoration of the original condition. Feedback inhibition is a method of metabolic control in which the end-product of a metabolic pathway acts as an inhibitor of an enzyme within that pathway.

FERMENTATION: Anaerobic production of alcohol, lactic acid or similar compounds from carbohydrate resulting from glycolysis.

FERRIC CHLORIDE: An iron salt commonly used as a coagulant. Chemical formula is FeCl3. FIBRIN: The activated form of the blood: clotting protein fibrinogen, which aggregates into threads that form the fabric of the clot.

FIBROBLAST: A type of cell in loose connective tissue that secretes the protein ingredients of the extracellular fibers.

FIBRONECTINS: A family of extracellular glycoproteins that helps embryonic cells adhere to their substrate as they migrate.

FILTER AID: A polymer or other material added to improve the effectiveness of the filtration process.

FILTER CAKE: The layer of solids that is retained on the surface of a filter.

FILTER CLOGGING: An inability to meet demand may occur when filters are clogging.

FILTER PRESS: A dewatering device where sludge is pumped onto a filtering medium and water is forced out of the sludge, resulting in a "cake".

FILTER: A device utilizing a granular material, woven cloth or other medium to remove pollutants from water, wastewater or air.

FILTRATE: Liquid remaining after removal of solids with filtration.

FILTRATION METHODS: The conventional type of water treatment filtration method includes coagulation, flocculation, sedimentation, and filtration. Direct filtration method is similar to conventional except that the sedimentation step is omitted. Slow sand filtration process does not require pretreatment, has a flow of 0.1 gallons per minute per square foot of filter surface area, and is simple to operate and maintain. The Diatomaceous earth method uses a thin layer of fine siliceous material on a porous plate. This type of filtration medium is only used for water with low turbidity. Sedimentation, adsorption, and biological action treatment methods are filtration processes that involve a number of interrelated removal mechanisms. Demineralization is primarily used to remove total dissolved solids from industrial wastewater, municipal water, and seawater.

FILTRATION RATE: A measurement of the volume of water applied to a filter per unit of surface area in a given period of time.

FILTRATION: The process of passing water through materials with very small holes to strain out particles. Most conventional water treatment plants used filters composed of gravel, sand, and anthracite. These materials settle into a compact mass that forms very small holes. Particles are filtered out as treated water passes through these holes. These holes are small enough to remove microorganisms including algae, bacteria, and protozoans, but not viruses. Viruses are eliminated from drinking water through the process of disinfection using chlorine. A series of processes that physically removes particles from water. A water treatment step used to remove turbidity, dissolved organics, odor, taste and color.

FINISHED WATER: Treated drinking water that meets minimum state and federal drinking water regulations.

FLOC SHEARING: Likely to happen to large floc particles when they reach the flocculation process.

FITNESS: The extent to which an individual passes on its genes to the next generation. Relative fitness is the number of offspring of an individual compared to the mean.

FIXATION: 1) Conversion of a substance into a biologically more usable form, for example, CO_2 fixation during photosynthesis and N_2 fixation. 2) Process of treating living tissue for microscopic examination.

FIXED ACTION PATTERN (FAP): A highly: stereotyped behavior that is innate and must be carried to completion once initiated.

FLACCID: Limp; walled cells are flaccid in isotonic surroundings, where there is no tendency for water to enter.

FLAGELLIN: The protein from which prokaryotic flagella are constructed.

FLAGELLUM: A long whip-like appendage that propels cells during locomotion in liquid solutions. The prokaryote flagellum is comprised of a protein, flagellin. The eukaryote flagellum is longer than a cilium, but as a similar internal structure of microtubules in a"9 + 2" arrangement.

FLAME CELL: A flagellated cell associated with the simplest tubular excretory system, present in flatworms: it acts to directly regulate the contents of the extracellular fluid.

FLOC SHEARING: Likely to happen to large floc particles when they reach the flocculation process.

FLOC SHEARING: Likely to happen to large floc particles when they reach the flocculation process.

FLOCCULANTS: Flocculants, or flocculating agents, are chemicals that promote flocculation by causing colloids and other suspended particles in liquids to aggregate, forming a floc. Flocculants are used in water treatment processes to improve the sedimentation or filterability of small particles. For example, a flocculant may be used in swimming pool or drinking water filtration to aid removal of microscopic particles which would otherwise cause the water to be cloudy and which would be difficult or impossible to remove by filtration alone. Many flocculants are multivalent cations such as aluminum, iron, calcium or magnesium. These positively charged molecules interact with negatively charged particles and molecules to reduce the barriers to aggregation. In addition, many of these chemicals, under appropriate pH and other conditions

such as temperature and salinity, react with water to form insoluble hydroxides which, upon precipitating, link together to form long chains or meshes, physically trapping small particles into the larger floc.

FLOCCULATION BASIN: A compartmentalized basin with a reduction of speed in each compartment. This set-up or basin will give the best overall results.

FLOCCULATION: The process of bringing together destabilized or coagulated particles to form larger masses that can be settled and/or filtered out of the water being treated. Conventional coagulation–flocculation-sedimentation practices are essential pretreatments for many water purification systems—especially filtration treatments. These processes agglomerate suspended solids together into larger bodies so that physical filtration processes can more easily remove them. Particulate removal by these methods makes later filtering processes far more effective. The process is often followed by gravity separation (sedimentation or flotation) and is always followed by filtration. A chemical coagulant, such as iron salts, aluminum salts, or polymers, is added to source water to facilitate bonding among particulates. Coagulants work by creating a chemical reaction and eliminating the negative charges that cause particles to repel each other. The coagulant-source water mixture is then slowly stirred in a process known as flocculation. This water churning induces particles to collide and clump together into larger and more easily removable clots, or "flocs." The process requires chemical knowledge of source water

characteristics to ensure that an effective coagulant mix is employed. Improper coagulants make these treatment methods ineffective. The ultimate effectiveness of coagulation/flocculation is also determined by the efficiency of the filtering process with which it is paired.

FLOOD RIM: The point of an object where the water would run over the edge of something and begin to cause a flood.

FLORA: The plants of a given area or period.

FLOW CYTOMETER: A particle-sorting instrument capable of counting protozoa.

FLOW MUST BE MEASURED: A recorder that measures flow is most likely to be located in a central location.

FLUID FEEDER: An animal that lives by sucking nutrient-rich fluids from another living organism. FLUID MOSAIC MODEL: The currently accepted model of cell membrane structure, which envisions the membrane as a mosaic of individually inserted protein molecules drifting laterally in a fluid bilayer of phospholipids.

FLUORIDE FEEDING: Always review fluoride feeding system designs and specifications to determine whether locations for monitoring readouts and dosage controls are convenient to the operation center and easy to read and correct.

FLUORIDE: High levels of fluoride may stain the teeth of humans. This is called Mottling. This chemical must not be overfed due to a possible exposure to a high concentration of the chemical. The most important safety considerations to know about fluoride chemicals are that all fluoride chemicals are extremely corrosive. These are the substances most commonly used to furnish fluoride ions to water: Sodium fluoride, Sodium silicofluoride and Hydrofluosilicic acid.

FLUX: The term flux describes the rate of water flow through a semipermeable membrane. When the water flux decreases through a semipermeable membrane, it means that the mineral concentration of the water is increasing.

FLY ASH: The noncombustible particles in flue gas. Often used as a body feed or solidification chemical.

FOLLICLE STIMULATING HORMONE (FSH): A gonadotropic hormone of the anterior pituitary that stimulates growth of follicles in the ovaries of females and function of the seminiferous tubules in males.

FOLLICLE: A jacket of cells around an egg cell in an ovary.

FOOD CHAIN: Sequence of organisms, including producers, consumers, and decomposers, through which energy and materials may move in a community.

FOOD WEB: The elaborate, interconnected feeding relationships in an ecosystem.

FOOT CANDLE: Unit of illumination; the illumination of a surface produced by one standard candle at a distance of one foot.

FORMATION OF TUBERCLES: This condition is of the most concern regarding corrosive water effects on a water system. It is the creation of mounds of rust inside the water lines.

Formation: A series of layers, deposits, or bodies of rock, which are geologically similar and related in depositional environment or origin. A formation can be clearly distinguished relative to bounding deposits or formations due to its particular characteristics and composition.

FORMULA: A precise representation of the structure of a molecule or ion, showing the proportion of atoms which comprise the material.

FOUNDER EFFECT: The difference between the gene pool of a population as a whole and that of a newly isolated population of the same species.

FRACTIONATION: An experimental technique which involves separation of parts of living tissue from one another using centrifugation.

Fracture: A discrete break in a rock or formation.

FRAGMENTATION: A mechanism of asexual reproduction in which the parent plant or animal separates into parts that reform whole organisms.

FRAMESHIFT MUTATION: A mutation occurring when the number of nucleotides inserted or deleted is not a multiple of 3, thus resulting in improper grouping into codons.

FREE CHLORINE RESIDUAL: Regardless of whether pre-chloration is practiced or not, a free chlorine residual of at least 10 mg/L should be maintained in the clear well or distribution reservoir immediately downstream from the point of post-chlorination. The reason for chlorinating past the breakpoint is to provide protection in case of backflow.

FREE CHLORINE: In disinfection, chlorine is used in the form of free chlorine or as hypochlorite ion.

FREE ENERGY OF ACTIVATION: See Activation energy.

FREE ENERGY: Usable energy in a chemical system; energy available for producing change. FREE OIL: Non-emulsified oil that separates from water, in a given period of time.

FREEZING: Phase transition from liquid to solid.

FREQUENCY DEPENDENT SELECTION: A decline in the reproductive success of a morph resulting from the morph's phenotype becoming too common in a population; a cause of balanced polymorphism in populations.

FREQUENCY: Number of cycles per unit of time. Unit: 1 hertz = 1 cycle per 1 second.

FUNCTIONAL GROUP: One of several groups of atoms commonly found in organic molecules. A functional group contributes somewhat predictable properties to the molecules which possess them.

FUNDAMENTAL NICHE: The total resources an organism is theoretically capable of utilizing.

G

G: (protein) A membrane protein that serves as an intermediary between hormone receptors and the enzyme adenylate cyclase, which converts ATP to cAMP in the second messenger system in non-steroid hormone action. Depending on the system, G proteins either increase or decrease cAMP production.

G1 PHASE: The first growth phase of the cell cycle, consisting of the portion of interphase before DNA synthesis is initiated.

G2 PHASE: The second growth phase of the cell cycle, consisting of the portion of interphase after DNA synthesis but before mitosis.

GAIA HYPOTHESIS: An idea, first formulated by James E. Lovelock in 1979, which suggests that the biosphere of the earth exists as a "superorganism" which exhibits homeostatic self- regulation of the environment-biota global system.

GALVANIC CELL: Battery made up of electrochemical with two different metals connected by salt bridge.

GAMETANGIUM: The reproductive organ of bryophytes, consisting of the male antheridium and female archegonium; a multi-chambered jacket of sterile cells in which gametes are formed.

GAMETE: A sexual reproductive cell that must usually fuse with another such cell before development begins; an egg or sperm.

GAMETOPHYTE: A haploid plant that can produce gametes.

GANGLION: A structure containing a group of cell bodies of neurons.

GAP JUNCTION: A narrow gap between plasma membranes of two animal cells, spanned by protein channels. They allow chemical substances or electrical signals to pass from cell to cell.

GAS: Particles that fill their container though have no definite shape or volume.

GASTRULA: A two-layered, later three-layered, animal embryonic stage.

GASTRULATION: The process by which a blastula develops into a gastrula, usually by an involution of cells.

GATED ION CHANNEL: A membrane channel that can open or close in response to a signal, generally a change in the electrostatic gradient or the binding of a hormone, transmitter, or other molecular signal.

GEL ELECTROPHORESIS: In general, electrophoresis is a laboratory technique used to separate macromolecules on the basis of electric charge and size; the technique involves application of an electric field to a population of macromolecules which disperse according to their electric mobilities. In gel electrophoresis, the porous medium through which the macromolecules move is a gel.

GEL: Colloid in which the suspended particles form a relatively orderly arrangement.

GENE AMPLIFICATION: Any of the strategies that give rise to multiple copies of certain genes, thus facilitating the rapid synthesis of a product (such as rRna for ribosomes) for which the demand is great.

GENE CLONING: Formation by a bacterium, carrying foreign genes in a recombinant plasmid, of a clone of identical cells containing the replicated foreign genes.

GENE DELIVERY: This is a general term for the introduction of new genetic elements into the genomes of living cells. The delivery problem is essentially conditioned by the fact that the new genetic elements are usually large, and by the presence of the outer cell membrane and the nuclear membrane acting as barriers to incorporation of the new DNA into the genome already present in the nucleus. Viruses possess various natural biochemical methods for achieving gene delivery; artificial gene delivery is one of the essential problems of "genetic engineering". The most important barrier is apparently the outer cell membrane, which is essentially a lipid barrier, and introduction of any large complex into the cell requires a fusion of one kind or another with this membrane. Liposomes, which consist of lipid membranes themselves, and which can fuse with outer cell membranes, are thus potential vehicles for delivery of many substances, including DNA.

GENE FLOW: The movement of genes from one part of a population to another, or from one population to another, via gametes.

GENE POOL: The sum total of all the genes of all the individuals in a population.

GENE REGULATION: Any of the strategies by which the rate of expression of a gene can be regulated, as by controlling the rate of transcription.

GENE: The hereditary determinant of a specified characteristic of an individual; specific sequences of nucleotides in DNA.

GENETIC DRIFT: Change in the gene pool as a result of chance and not as a result of selection, mutation, or migration.

GENETIC RECOMBINATION: The general term for the production of offspring that combine traits of the two parents.

GENETICS: The science of heredity; the study of heritable information.

GENOME: The cell's total complement of DNA.

GENOMIC EQUIVALENCE: The presence of all of an organism's genes in all of its cells.

GENOMIC IMPRINTING: The parental effect on gene expression. Identical alleles may have different effects on offspring depending on whether they arrive in the zygote via the ovum or via the sperm.

GENOMIC LIBRARY: A set of thousands of DNA segments from a genome, each carried by a plasmid or phage.

GENOTYPE: The particular combination of genes present in the cells of an individual.

GENUS: A taxonomic category above the species level, designated by the first word of a species' binomial Latin name.

GEOCHEMISTRY: The chemistry of and chemical composition of the Earth.

GIARDIA LAMBLIA: Giardia lamblia (synonymous with Lamblia intestinalis and Giardia duodenalis) is a flagellated protozoan parasite that colonizes and reproduces in the small intestine, causing giardiasis. The giardia parasite attaches to the epithelium by a ventral adhesive disc, and reproduces via binary fission. Giardiasis does not spread via the bloodstream, nor does it spread to other parts of the gastro-intestinal tract, but remains confined to the lumen of the

small intestine. Giardia trophozoites absorb their nutrients from the lumen of the small intestine, and are anaerobes.

GIARDIA LAMLIA: Giardia lamblia (synonymous with Lamblia intestinalis and Giardia duodenalis) is a flagellated protozoan parasite that colonizes and reproduces in the small intestine, causing giardiasis. The giardia parasite attaches to the epithelium by a ventral adhesive disc, and reproduces via binary fission. Giardiasis does not spread via the bloodstream, nor does it spread to other parts of the gastro-intestinal tract, but remains confined to the lumen of the small intestine. Giardia trophozoites absorb their nutrients from the lumen of the small intestine, and are anaerobes.

GIARDIASAS, HEPATITIS OR TYPHOID: Diseases that may be transmitted through the contamination of a water supply but not AIDS.

GIBBS ENERGY: Value that indicates the spontaneity of a reaction (usually symbolized as G).

GIS – GRAPHIC INFORMATION SYSTEM: Detailed information about the physical locations of structures such as pipes, valves, and manholes within geographic areas with the use of satellites. GLIAL CELL: A non-conducting cell of the nervous system that provides support, insulation, and protection for the neurons.

GLIDING: Rod-shaped, gram-negative, mostly aerobic; glide on secreted slimy substances; form colonies, frequently with complex fruiting structures.

GLOMERULUS: A capillary bed within Bowman's capsule of the nephron; the site of ultrafiltration. GLUCOSE: A six carbon sugar which plays a central role in cellular metabolism.

GLYCOCALYX: The layer of protein and carbohydrates just outside the plasma membrane of an animal cell; in general, the proteins are anchored in the membrane, and the carbohydrates are bound to the proteins.

GLYCOGEN: A long, branched polymer of glucose subunits that is stored in the muscles and liver of animals and is metabolized as a source of energy.

GLYCOLYSIS: A metabolic pathway which occurs in the cytoplasm of cells and during which glucose is oxidized anaerobically to form pyruvic acid.

GLYCOPROTEIN: A protein with covalently linked sugar residues. The sugars may be bound to OH side chains of the polypeptide (O: linked) or the amide nitrogen of asparagine side chains (N: linked).

GLYCOSIDIC: A type of bond which links monosaccharide subunits together in di- or polysaccharides.

GLYOXYSOME: A type of microbody found in plants, in which stored lipids are converted to carbohydrates.

GOLGI APPARATUS: A system of concentrically folded membranes found in the cytoplasm of eukaryotic cells. Plays a role in the production and release of secretory materials such as the digestive enzymes manufactured in the pancreas.

GONADOTROPIN: Refers to a member of a group of hormones capable of promoting growth and function of the gonads. Includes hormones such as follicle stimulating hormone (FSH) and luteinizing hormone (LH) which are stimulatory to the gonads.

GOOD CONTACT TIME, pH and LOW TURBIDITY: These are factors that are important in providing good disinfection when using chlorine.

GPM: Gallons per minute.

GRAB SAMPLE: A sample which is taken from a water or wastestream on a one-time basis with no regard to the flow of the water or wastestream and without consideration of time. A single grab sample should be taken over a period of time not to exceed 15 minutes. A single water or wastewater sample taken at a time and place representative of total discharge.

GRADED POTENTIAL: A local voltage change in a neuron membrane induced by stimulation of a neuron, with strength proportional to the strength of the stimulus and lasting about a millisecond. GRANUM: A stack-like grouping of photosynthetic membranes in a chloroplast

GRAVITROPISM: A response of a plant or animal in response to gravity.

GRAVITY BELT THICKENER: A sludge dewatering device utilizing a filter belt to promote gravity drainage of water. Usually precedes additional dewatering treatment.

GRAVITY FILTER: A filter that operates at atmospheric pressure.

GRAVITY THICKENING: A sedimentation basin designed to operate at high solids loading rates.

GREENHOUS EFFECT: The warming of the Earth due to atmospheric accumulation of carbon dioxide which absorbs infrared radiation and slows its escape from the irradiated Earth.

GREGOR MENDEL: The first to make quantitative observations of the patterns of inheritance and proposing plausible explanations for them.

GROWTH FACTOR: A protein that must be present in a cell's environment for its normal growth and development.

GT: Represents (Detention time) x (mixing intensity) in flocculation.

GUARD CELL: A specialized epidermal cell that regulates the size of stoma of a leaf.

GYMNOSPERM: A vascular plant that bears naked seeds not enclosed in any specialized chambers.

Н

H2SO4: The molecular formula of Sulfuric acid.

HABIT: In biology, the characteristic form or mode of growth of an organism.

HABITAT: The kind of place where a given organism normally lives.

HABITUATION: The process that results in a long-lasting decline in the receptiveness of interneurons to the input from sensory neurons or other interneurons (sensitization, adaptation). HALF: The average amount of time it takes for one-half of a specified quantity of a substance to decay or disappear.

HALIDES: A halide is a binary compound, of which one part is a halogen atom and the other part is an element or radical that is less electronegative than the halogen, to make a fluoride, chloride, bromide, iodide, or astatide compound. Many salts are halides. All Group 1 metals form halides with the halogens and they are white solids. A halide ion is a halogen atom bearing a negative charge. The halide anions are fluoride (F), chloride (CI), bromide (Br), iodide (I) and astatide (At). Such ions are present in all ionic halide salts.

HALL EFFECT: Refers to the potential difference (Hall voltage) on the opposite sides of an electrical conductor through which an electric current is flowing, created by a magnetic field applied perpendicular to the current. Edwin Hall discovered this effect in 1879.

HALOACETIC ACIDS: Haloacetic acids are carboxylic acids in which a halogen atom takes the place of a hydrogen atom in acetic acid. Thus, in a monohaloacetic acid, a single halogen would replace a hydrogen atom. For example, chloroacetic acid would have the structural formula CH2CICO2H. In the same manner, in dichloroacetic acid two chlorine atoms would take the place of two hydrogen atoms (CHCI2CO2H).

HALOGENS: Group 7 on the Periodic Table and are all non-metals.

HAPLOID: The condition of having only one kind of a given type of chromosome.

HARD WATER: Hard water causes a buildup of scale in household hot water heaters. Hard water is a type of water that has high mineral content (in contrast with soft water). Hard water primarily consists of calcium (Ca2+), and magnesium (Mg2+) metal cations, and sometimes other dissolved compounds such as bicarbonates and sulfates. Calcium usually enters the water as either calcium carbonate (CaCO3), in the form of limestone and chalk, or calcium sulfate (CaSO4), in the form of other mineral deposits. The predominant source of magnesium is dolomite (CaMg(CO3)2). Hard water is generally not harmful. The simplest way to determine the hardness of water is the lather/froth test: soap or toothpaste, when agitated, lathers easily in soft water but not in hard water. More exact measurements of hardness can be obtained through a wet titration. The total water 'hardness' (including both Ca2+ and Mg2+ ions) is read as parts per million or weight/volume (mg/L) of calcium carbonate (CaCO3) in the water. Although water hardness usually only measures the total concentrations of calcium and magnesium (the two most prevalent, divalent metal ions), iron, aluminum, and manganese may also be present at elevated levels in some geographical locations.

HARDNESS: A measure of the amount of calcium and magnesium salts in water. More calcium and magnesium lead to greater hardness. The term "hardness" comes from the fact that it is hard to get soap suds from soap or detergents in hard water. This happens because calcium and magnesium react strongly with negatively-charged chemicals like soap to form insoluble compounds.

HARDY-WEINBERG THEOREM: An axiom maintaining that the sexual shuffling of genes alone cannot alter the overall genetic makeup of a population.

HARTSHORN: The antler of a hart, formerly used as a source of ammonia. Ammonium carbonate.

HAUSTORIUM: In parasitic fungi, a nutrient-absorbing hyphal tip that penetrates the tissues of the host but remains outside the host cell membranes.

HAVERSIAN SYSTEM: One of many structural units of vertebrate bone, consisting of concentric layers of mineralize bone matrix surrounding lacunae, which contain osteocytes, and a central canal, which contains blood vessels and nerves.

HAZARDS OF POLYMERS: Slippery and difficult to clean-up are the most common hazards associated with the use of polymers in a water treatment plant.

HEAD: The measure of the pressure of water expressed in feet of height of water. 1 PSI = 2.31 feet of water or 1 foot of head equals about a half a pound of pressure or .433 PSI. There are various types of heads of water depending upon what is being measured. Static (water at rest) and Residual (water at flow conditions).

HEADWORKS: The facility at the "head" of the water source where water is first treated and routed into the distribution system.

HEALTH ADVISORY: An EPA document that provides guidance and information on

contaminants that can affect human health and that may occur in drinking water, but which the EPA does not currently regulate in drinking water.

HEAT OF VAPORIZATION: The amount of energy absorbed by a substance when it changes state to a gas. Water absorbs approximately 580 calories per gram when it changes from liquid water to water vapor.

HEAT: The total amount of kinetic energy due to molecular motion in a body of matter. Heat is energy in its most random form.

HEAT: Energy transferred from one system to another by thermal interaction.

HELPER T CELL: A type of T cell that is required by some B cells to help them make antibodies or that helps other T cells respond to antigens or secrete lymphokines or interleukins.

HEMAGGLUTININ: A surface antigen on influenza viruses which controls infectivity by associating with receptors on host erythrocytes or other cells.

HEMATOPOIESIS: The formation of blood.

HEMATOPOIETIC STEM CELLS: Cells found in the bone marrow of adult mammals which give rise to erythroid stem cells, lymphoid stem cells, and myeloid stem cells. Such cells give rise to erythrocytes and a variety of types of lymphocytes and leucocytes.

HÉMOGLOBIN: An iron-containing respiratory pigment found in many organisms.

HEMOLYMPH: In invertebrates with open circulatory systems, the body fluid that bathes tissues. HEMOPHILIA: A genetic disease resulting from an abnormal sex-linked recessive gene,

characterized by excessive bleeding following injury. HEPATIC: Pertaining to the liver.

HEREDITY: A biological phenomenon whereby characteristics are transmitted from one generation to another by virtue of chemicals (i.e. DNA) transferred during sexual or asexual reproduction.

HERPESVIRUS: A double stranded DNA virus with an enveloped, icosahedral capsid.

HERTZ: The term used to describe the frequency of cycles in an alternating current (AC) circuit. A unit of frequency equal to one cycle per second.

HETEROCHROMATIN: Non-transcribed eukaryotic chromatin that is so highly compacted that it is visible with a light microscope during interphase.

HETEROCHRONY: Evolutionary changes in the timing or rate of development.

HETEROCYST: A specialized cell that engages in nitrogen fixation on some filamentous cyanobacteria.

HETEROGAMY: The condition of producing gametes of two different types (contrast with isogamy).

HETEROMORPHIC: A condition in the life cycle of all modern plants in which the sporophyte and gametophyte generations differ in morphology.

HETEROSPOROUS: Referring to plants in which the sporophyte produces two kinds of spores that develop into unisexual gametophytes, either male or female.

HETEROTROPH: An organism dependent on external sources of organic compounds as a means of obtaining energy and/or materials. Such an organism requires carbon ("food") from its environment in an organic form. (synonym-organotroph).

HETEROTROPHIC PLATE COUNT: A test performed on drinking water to determine the total number of all types of bacteria in the water.

HETEROZYGOTE ADVANTAGE: A mechanism that preserves variation in eukaryotic gene pools by conferring greater reproductive success on heterozygotes over individuals homozygous for any one of the associated alleles.

HETEROZYGOUS: The condition whereby two different alleles of the gene are present within the same cell.

HF: The molecular formula of Hydrofluoric acid.

HIGH TURBIDITY CAUSING INCREASED CHLORINE DEMAND: May occur or be caused by the inadequate disinfection of water.

HISTAMINE: A substance released by injured cells that causes blood vessels to dilate during an inflammatory response.

HISTOLOGY: The study of tissues.

HISTONE: A type of protein characteristically associated with the chromosomes of eukaryotes.

HIV-1: Acute human immunodeficiency virus type 1 is the subtype of HIV (human immune deficiency virus) that causes most cases of AIDS in the Western Hemisphere, Europe, and Central, South, and East Africa. HIV is a retrovirus (subclass lentivirus), and retroviruses are single: stranded RNA viruses that have an enzyme called reverse transcriptase. With this enzyme the viral RNA is used as a template to produce viral DNA from cellular material. This DNA is then incorporated into the host cell's genome, where it codes for the synthesis of viral components. An HIV-1 infection should be distinguished from AIDS. Acquired immunodeficiency syndrome (AIDS) is a secondary immunodeficiency syndrome resulting from HIV infection and characterized by opportunistic infections, malignancies, neurologic dysfunction, and a variety of other syndromes.

HOLOBLASTIC: A type of cleavage in which there is complete division of the egg, as in eggs having little yolk (sea urchin) or a moderate amount of yolk (frog).

HOME RANGE: An area within which an animal tends to confine all or nearly all its activities for a long period of time.

HOMEOBOX: Specific sequences of DNA that regulate patterns of differentiation during development of an organism.

HOMEOSTASIS: A phenomenon whereby a state or process (for example, within an organism) is regulated automatically despite the tendency for fluctuations to occur.

HOMEOTHEMIC: Capable of regulation of constancy with respect to temperature.

HOMEOTIC GENES: Genes that control the overall body plan of animals by controlling the developmental fate of groups of cells.

HOMEOTIC: (mutation) A mutation in genes regulated by positional information that results in the abnormal substitution of one type of body part in place of another.

HOMOLOGOUS CHROMOSOMES: Chromosomes bearing genes for the same characters.

HOMOLOGOUS STRUCTURES: Characters in different species which were inherited from a common ancestor and thus share a similar ontogenetic pattern.

HOMOLOGY: Similarity in characteristics resulting from a shared ancestry.

HOMOPLASY: The presence in several species of a trait not present in their most common ancestor. Can result from convergent evolution, reverse evolution, or parallel evolution.

HOMOSPOROUS: Referring to plants in which a single type of spore develops into a bisexual gametophyte having both male and female sex organs.

HOMOZYGOUS: Having two copies of the same allele of a given gene.

HORMONE: A control chemical secreted in one part of the body that affects other parts of the body.

HOST RANGE: The limited number of host species, tissues, or cells that a parasite (including viruses and bacteria) can infect.

HUMORAL IMMUNITY: The type of immunity that fights bacteria and viruses in body fluids with antibodies that circulate in blood plasma and lymph, fluids formerly called humors.

HYBIRD VIGOR: Increased vitality (compared to that of either parent stock) in the hybrid offspring of two different, inbred parents.

HYBIRD: In evolutionary biology, a cross between two species. In genetics, a cross between two genetic types.

HYBIRDIZATION: The process whereby a hybrid results from interbreeding two species; 2) DNA hybridization is the comparison of whole genomes of two species by estimating the extent of hydrogen bonding that occurs between single-stranded DNA obtained from the two species.

HYBRIDOMA: A hybrid cell that produces monoclonal antibodies in culture, formed by the fusion of a myeloma cell with a normal antibody-producing lymphocyte.

HYDRATED LIME: The calcium hydroxide product that results from mixing quicklime with water. Chemical formula is CaOH2.

HYDRATION SHELL: A "covering" of water molecules which surrounds polar or charged substances in aqueous solutions. The association is due to the charged regions of the polar water molecules themselves.

hydraulic conductivity: A primary factor in Darcy's Law, the measure of a soil or formations ability to transmit water, measured in gallons per day (gpd) See also Permeability and Darcy's Law. HYDRIDES: Hydride is the name given to the negative ion of hydrogen, H. Although this ion does not exist except in extraordinary conditions, the term hydride is widely applied to describe compounds of hydrogen with other elements, particularly those of groups 1–16. The variety of compounds formed by hydrogen is vast, arguably greater than that of any other element. Various metal hydrides are currently being studied for use as a means of hydrogen storage in fuel cell-powered electric cars and batteries. They also have important uses in organic chemistry as powerful reducing agents, and many promising uses in hydrogen economy.

HYDROCARBON: Any compound made of only carbon and hydrogen.

HYDROCHLORIC AND HYPOCHLOROUS ACIDS: HCL and HOCL: The compounds that are formed in water when chlorine gas is introduced.

HYDROFLUOSILICIC ACID: (H2SiF6) a clear, fuming corrosive liquid with a pH ranging from 1 to 1.5. Used in water treatment to fluoridate drinking water.

HYDROGEN BOND: A type of bond formed when the partially positive hydrogen atom of a polar covalent bond in one molecule is attracted to the partially negative atom of a polar covalent bond in another.

HYDROGEN ION: A single proton with a charge of +1. The dissociation of a water molecule (H2O) leads to the generation of a hydroxide ion (OH-) and a hydrogen ion (H+).

HYDROGEN SULFIDE OR CHLORINE GAS: These chemicals can cause olfactory fatigue.

HYDROGEN SULFIDE: A toxic gas formed by the anaerobic decomposition of organic matter. Chemical formula is H2S.

Hydrologic Cycle: (Water Cycle) The continual process of precipitation (rain and snowfall),

evaporation (primarily from the oceans), peculation (recharge to groundwater), runoff (surface water), and transpiration (plants) constituting the renew ability and recycling of each component.

HYDROLYSIS: The chemical reaction that breaks a covalent bond through the addition of hydrogen (from a water molecule) to the atom forming one side of the original bond, and a hydroxyl group to the atom on the other side.

HYDROPHILIC: Having an affinity for water.

HYDROPHOBIC INTERACTION: A type of weak chemical bond formed when molecules that do not mix with water coalesce to exclude the water.

HYDROPHOBIC: The physicochemical property whereby a substance or region of a molecule resists association with water molecules. Does not mix readily with water.

HYDROSTATIC: Pertaining to the pressure and equilibrium of fluids. A hydrostatic skeleton is a skeletal system composed of fluid held under pressure in a closed body compartment; the main skeleton of most cnidarians, flatworms, nematodes, and annelids.

HYDROXYL GROUP: A functional group consisting of a hydrogen atom joined to an oxygen atom by a polar covalent bond. Molecules possessing this group are soluble in water and are called alcohols. HYDROXYL ION: The OH- ion.

HYGROSCOPIC: Absorbing or attracting moisture from the air.

HYPEROSMOTIC: A solution with a greater solute concentration than another, a hypoosmotic solution. If the two solutions are separated from one another by a membrane permeable to water, water would tend to move from the hypo- to the hyperosmotic side.

HYPERPOLARIZATION: An electrical state whereby the inside of the cell is made more negative relative to the outside than was the case at resting potential. A neuron membrane is hyperpolarized if the voltage is increased from the resting potential of about -70 mV, reducing the chance that a nerve impulse will be transmitted.

HYPERTROPHY: Abnormal enlargement, excessive growth.

HYPHA: A fungal filament.

HYPOCHLORITE (OCL-) AND ORGANIC MATERIALS: Heat and possibly fire may occur when hypochlorite is brought into contact with an organic material.

HYPOCHLORITE AND ORGANIC MATERIALS: Heat and possibly fire may occur when hypochlorite is brought into contact with an organic material.

HYPOCOTYL: The portion of the axis of a plant embryo below the point of attachment of the cotyledons; forms the base of the shoot and the root.

HYPOLIMNION: The layer of water in a thermally stratified lake that lies below the thermocline, is noncirculating, and remains perpetually cold.

HYPOOSMOTIC SOLUTION: A solution with a lesser solute concentration than another, a hyperosmotic solution. If the two solutions are separated from one another by a membrane permeable to water, water would tend to move from the hypo- to the hyperosmotic side.

HYPOTHESIS: A formal statement of supposition offered to explain observations. Note that a hypothesis is only useful if it can be tested. Even if correct, it is not scientifically useful if untestable. HYPOTHETICO-DEDUCTIVE: A method used to test hypotheses. If deductions formulated from the hypothesis are tested and proven false, the hypothesis is rejected.

I

IMAGINAL DISK: An island of undifferentiated cells in an insect larva, which are committed (determined) to form a particular organ during metamorphosis to the adult.

IMBIBITION: The soaking of water into a porous material that is hydrophilic.

IMMUNE RESPONSE: 1) A primary immune response is the initial response to an antigen, which appears after a lag of a few days. 2) A secondary immune response is the response elicited when the animal encounters the same antigen at a later time. The secondary response is normally more rapid, of greater magnitude and of longer duration than the primary response.

IMMUNOGLOBULINE: The class of proteins comprising the antibodies.

IMMUNOLOGICAL: 1) Immunological distance is the amount of difference between two proteins as measured by the strength of the antigen: antibody reaction between them. 2) Immunological tolerance is a mechanism by which an animal does not mount an immune response to the antigenic determinants of its own macromolecules.

IMMUNOMAGNETIC SEPARATION (IMS): A purification procedure that uses microscopic, magnetically responsive particles coated with an antibodies targeted to react with a specific pathogen in a fluid stream. Pathogens are selectively removed from other debris using a magnetic field.

IMPERVIOUS: Not allowing, or allowing only with great difficulty, the movement of water.

IMPRINTING: A type of learned behavior with a significant innate component, acquired during a limited critical period.

In practice, water with an LSI between -0.5 and +0.5 will not display enhanced mineral dissolving or scale forming properties. Water with an LSI below -0.5 tends to exhibit noticeably increased dissolving abilities while water with an LSI above +0.5 tends to exhibit noticeably increased scale forming properties.

In Series: Several components being connected one to the other without a bypass, requiring each component to work dependent on the one before it.

IN SERIES: Several components being connected one to the other without a bypass, requiring each component to work dependent on the one before it.

IN SITU: Treatment or disposal methods that do not require movement of contaminated material.

IN VITRO FERTILIZATION: Fertilization of ova in laboratory containers followed by artificial implantation of the early embryo in the mother's uterus.

INCINERATION: The process of reducing the volume of a material by burning and reducing to ash if possible.

INCLINED PLATE SEPARATOR: A series of parallel inclined plates that can be used to increase the efficiency of clarifiers and gravity thickeners.

INCOMPLETE DOMINANCE: A type of inheritance in which F1 hybrids have an appearance that is intermediate between the phenotypes of the parental varieties.

INDETERMINATE: 1) A type of cleavage exhibited during the embryonic development in deuterostomes, in which each cell produced by early cleavage divisions retains the capacity to develop into a complete embryo; 2) A type of growth exhibited by plants: they continue to grow as long as they live, because they always retain meristematic cells capable of undergoing mitosis.

INDICATOR: A special compound added to solution that changes color depending on the acidity of the solution; different indicators have different colors and effective pH ranges.

INDIRECT REUSE: The beneficial use of reclaimed water into natural surface waters or groundwater.

INDUCED FIT: The change in shape of the active site of an enzyme so that it binds more snugly to the substrate, induced by entry of the substrate.

INDUCTION: 1) The ability of one group of embryonic cells to influence the development of another. 2) A method in logic which proceeds from the specific to general and develops a general statement which explains all of the observations. Commonly used to formulate scientific hypotheses.

INDUSTRIAL MELANISM: Melanism which has resulted from blackening of environmental surfaces (tree bark, etc.) by industrial pollution. This favors survival of melanic forms such as moths which rest on tree bark and are less likely to be seen by predators.

INDUSTRIAL WASTEWATER: Liquid wastes resulting from industrial processes.

INFECTIOUS PATHOGENS/MICROBES/GERMS: Are considered disease-producing bacteria, viruses and other microorganisms.

INFECTIOUS: 1) An infectious disease is a disease caused by an infectious microbial or parasitic agent. 2) Infectious hepatitis is the former name for hepatitis A. 3) Infectious mononucleosis is an acute disease that affects many systems, caused by the Epstein: Barr virus.

Infiltration: The percolation of fluid into soil or formation. See also percolation.

INFLAMMATORY RESPONSE: A line of defense triggered by penetration of the skin or mucous membranes, in which small blood vessels in the vicinity of an injury dilate and become leakier, enhancing infiltration of leukocytes; may also be widespread in the body.

INFLUENT: Water or wastewater flowing into a basin or treatment plant.

INFORMATION COLLECTION RULE: ICR EPA collected data required by the Information Collection Rule (May 14, 1996) to support future regulation of microbial contaminants,

disinfectants, and disinfection byproducts. The rule was intended to provide EPA with information on chemical byproducts that form when disinfectants used for microbial control react with

chemicals already present in source water (disinfection byproducts (DBPs)); disease-causing microorganisms (pathogens), including Cryptosporidium; and engineering data to control these contaminants.

INGESTION: A heterotrophic mode of nutrition in which other organisms or detritus are eaten whole or in pieces.

INHIBITORY POSTSYNAPTIC POTENTIAL: An electrical charge (hyperpolarization) in the membrane of a postsynaptic neuron caused by the binding of an inhibitory neurotransmitter from a presynaptic cell to a postsynaptic receptor.

INITIAL MONITORING YEAR: An initial monitoring year is the calendar year designated by the Department within a compliance period in which a public water system conducts initial monitoring at a point of entry.

INITIAL PRECISION AND RECOVERY (IPR): Four aliquots of spiking suspension analyzed to establish the ability to generate acceptable precision and accuracy. An IPR is performed prior to the first time this method is used and any time the method or instrumentation is modified.

INNER CELL MASS: A cluster of cells in a mammalian blastocyst that protrudes into one end of the cavity and subsequently develops into the embryo proper and some of the extraembryonic membranes.

INORGANIC CHEMISTRY: A part of chemistry concerned with inorganic compounds.

INORGANIC COMPOUND: Compounds that contain no carbon or contain only carbon bound to elements other than hydrogen.

INORGANIC COMPOUND: Compounds that do not contain carbon, though there are exceptions. INORGANIC CONTAMINANTS: Mineral-based compounds such as metals, nitrates, and

asbestos. These contaminants are naturally-occurring in some water, but can also get into water through farming, chemical manufacturing, and other human activities. EPA has set legal limits on 15 inorganic contaminants.

INORGANIC IONS: Present in all waters. Inorganic ions are essential for human health in small quantities, but in larger quantities they can cause unpleasant taste and odor or even illness. Most community water systems will commonly test for the concentrations of seven inorganic ions: nitrate, nitrite, fluoride, phosphate, sulfate, chloride, and bromide. Nitrate and nitrite can cause an illness in infants called methemoglobinemia. Fluoride is actually added to the drinking water in some public water systems to promote dental health. Phosphate, sulfate, chloride, and bromide have little direct effect on health, but high concentrations of inorganic ions can give water a salty or briny taste.

INOSITOL TRIPHOSPHATE: The second messenger, which functions as an intermediate between certain non-steroid hormones and the third messenger, a rise in cytoplasmic Ca++ concentration. INSERTION: A mutation involving the addition of one or more nucleotide pairs to a gene.

INSIGHT LEARNING: The ability of an animal to perform a correct or appropriate behavior on the first attempt in a situation with which it has had no prior experience.

INSOLUBLE COMPOUNDS: are types of compounds cannot be dissolved. When iron or manganese reacts with dissolved oxygen (DO) insoluble compound are formed.

INSULATOR: Material that resists the flow of electric current.

INSULIN: The vertebrate hormone that lowers blood sugar levels by promoting the uptake of glucose by most body cells and promoting the synthesis and storage of glycogen in the liver; also stimulates protein and fat synthesis; secreted by endocrine cells of the pancreas called islets of Langerhans.

INTAKE FACILITIES: One of the more important considerations in the construction of intake facilities is the ease of operation and maintenance over the expected lifetime of the facility. Every intake structure must be constructed with consideration for operator safety and for cathodic protection.

INTEGRAL PROTEIN: A protein of biological membranes that penetrates into or spans the membrane.

INTERBREED: To breed with another kind or species; hybridize.

INTERFERON: A chemical messenger of the immune system, produced by virus: infected cells and capable of helping other cells resist the virus.

INTERLEUKIN: 1: A chemical regulator (cytokine) secreted by macrophages that have ingested a pathogen or foreign molecule and have bound with a helper T cell; stimulates T cells to grow and divide and elevates body temperature. Interleukin: 2, secreted by activated T cells, stimulates helper T cells to proliferate more rapidly.

INTERMEDIATE FILAMENT: A component of the cytoskeleton that includes all filaments intermediate in size between microtubules and microfilaments.

INTERNEURON: An association neuron; a nerve cell within the central nervous system that forms synapses with sensory and motor neurons and integrates sensory input and motor output.

INTERNODE: The segment of a plant stem between the points where leaves are attached.

INTERSTITIAL CELLS: Cells scattered among the seminiferous tubules of the vertebrate testis that secrete testosterone and other androgens, the male sex hormones.

INTERSTITIAL FLUID: The internal environment of vertebrates consisting of the fluid filling the spaces between cells.

INTERTIDAL ZONE: The shallow zone of the ocean where land meets water.

INTRINSIC RATE OF INCREASE: The difference between number of births and number of deaths, symbolized as rmax; maximum population growth rate.

INTROGRESSION: Transplantation of genes between species resulting from fertile hybrids mating successfully with one of the parent species.

INTRON: The noncoding, intervening sequence of coding region (exon) in eukaryotic genes.

INVAGINATION: The buckling inward of a cell layer, caused by rearrangements of microfilaments and microtubules; an important phenomenon in embryonic development.

INVERSION: 1) An aberration in chromosome structure resulting from an error in meiosis or from mutagens; reattachment in a reverse orientation of a chromosomal fragment to the chromosome from which the fragment originated. 2) A phenomenon which occurs during early development of sponges at which time the external ciliated cells become inward-directed.

INVERTEBRATE: An animal without a backbone; invertebrates make up about 95% of animal species.

ION EXCHANGE: An effective treatment process used to remove iron and manganese in a water supply. The hardness of the source water affects the amount of water an ion exchange softener may treat before the bed requires regeneration.

ION: A charged chemical formed when an atom or group of atoms has more or less electrons than protons (rather than an equal number). A molecule that has gained or lost one or more electrons. IONIC BOND: A chemical bond due to attraction between oppositely charged ions. IONIZATION: The breaking up of a compound into separate ions.

IRON AND MANGANESE: Fe and Mn In water they can usually be detected by observing the color of the inside walls of filters and the filter media. If the raw water is pre-chlorinated, there will be black stains on the walls below the water level and a black coating over the top portion of the sand filter bed. When significant levels of dissolved oxygen are present, iron and manganese exist in an oxidized state and normally precipitate into the reservoir bottom sediments. The presence of iron and manganese in water promote the growth of Iron bacteria. Only when a water

sample has been acidified then you can perform the analysis beyond the 48 hour holding time. Iron and Manganese in water may be detected by observing the color of the of the filter media. Maintaining a free chlorine residual and regular flushing of water mains may control the growth of iron bacteria in a water distribution system.

IRON AND MANGANESE: In water they can usually be detected by observing the color of the inside walls of filters and the filter media. If the raw water is pre-chlorinated, there will be black stains on the walls below the water level and a black coating over the top portion of the sand filter bed. When significant levels of dissolved oxygen are present, iron and manganese exist in an oxidized state and normally precipitate into the reservoir bottom sediments. The presence of iron and manganese in water promote the growth of Iron bacteria. Only when a water sample has been acidified then you can perform the analysis beyond the 48 hour holding time. Iron and Manganese in water may be detected by observing the color of the of the filter media. Maintaining a free chlorine residual and regular flushing of water mains may control the growth of iron bacteria in a water distribution system.

IRON BACTERIA: Perhaps the most troublesome consequence of iron and manganese in the water is they promote the growth of a group of microorganism known as Iron Bacteria.

IRON FOULING: You should look for an orange color on the resin and backwash water when checking an ion exchange unit for iron fouling

IRON: Fe The elements iron and manganese are undesirable in water because they cause stains and promote the growth of iron bacteria.

IRRUPTION: A rapid increase in population density often followed by a mass emigration.

ISOGAMY: A condition in which male and female gametes are morphologically indistinguishable. ISOMER: Molecules consisting of the same numbers and kinds of atoms, but differing in the way in which the atoms are combined.

ISOSMOTIC: Solutions of equal concentration with respect to osmotic pressure.

ISOTOPE: An atomic form of an element, containing a different number of neutrons than another isotope. Isotopes vary from one another with respect to atomic mass.

It is also worth noting that the LSI is temperature sensitive. The LSI becomes more positive as the water temperature increases. This has particular implications in situations where well water is used. The temperature of the water when it first exits the well is often significantly lower than the

temperature inside the building served by the well or at the laboratory where the LSI measurement is made.

IUPAC: International Union of Pure and Applied Chemistry

J

JODIUM: Latin name of the halogen element iodine.

JOULE: The SI unit of energy, defined as a newton-meter.

JUXTAGLOMERULAR APPARATUS (JGA): Specialized tissue located near the afferent arteriole that supplies blood to the kidney glomerulus; JGA raises blood pressure by producing renin, which activates angiotensin.

Κ

K- SELECTION: The concept that life history of the population is centered upon producing relatively few offspring that have a good chance of survival.

KARYOGAMY: The fusion of nuclei of two cells, as part of syngamy.

KARYOTYPE: A method of classifying the chromosomes of a cell in relation to number, size and type.

KEYSTONE PREDATOR: A species that maintains species richness in a community through predation of the best competitors in the community, thereby maintaining populations of less competitive species.

KILL = C X T: Where other factors are constant, the disinfecting action may be represented by: Kill=C x T. Kill=C x T. C= Chlorine T= Contact time.

KILOCALORIE: A thousand calories; the amount of heat energy required to raise the temperature of 1 kilogram of water by primary C.

KIN SELECTION: A phenomenon of inclusive fitness, used to explain altruistic behavior between related individuals.

KINESIS: A change in activity rate in response to a stimulus.

KINETIC ENERGY: The ability of an object to do work by virtue of its motion. The energy terms that are used to describe the operation of a pump are pressure and head. The energy of motion. Moving matter does work by transferring some of its kinetic energy to other matter.

KINETICS: A sub-field of chemistry specializing in reaction rates.

KINETOCHORE: A specialized region on the centromere that links each sister chromatid to the mitotic spindle.

KINGDOM: A taxonomic category, the second broadest after domain.

KREBS CYCLE: A chemical cycle involving eight steps that completes the metabolic breakdown of glucose molecules to carbon dioxide; occurs within the mitochondrion; the second major stage in cellular respiration. Also called citric acid cycle or tricarboxylic acid (TCA) cycle.

L

L.O.T.O.: If a piece of equipment is locked out, the key to the lock-out device the key should be held by the person who is working on the equipment. The tag is an identification device and the lock is a physical restraint.

LABORATORY BLANK: See Method blank

LABORATORY CONTROL SAMPLE (LCS): See Ongoing precision and recovery (OPR) standard LACRIMATION: The secretion of tears, esp. in abnormal abundance Also, lachrymation, lachrimation.

LACTEAL: A tiny lymph vessel extending into the core of the intestinal villus and serving as the destination for absorbed chylomicrons.

LACTIC ACID: Gram-positive, anaerobic; produce lactic acid through fermentation; include Lactobacillus, essential in dairy product formation, and Streptococcus, common in humans.

LAGGING STRAND: A discontinuously synthesized DNA strand that elongates in a direction away from the replication fork.

LAMARCK: Proposed, in the early 1800s, that evolutionary change may occur via the inheritance of acquired characteristics. This idea, which has since been discredited, holds that the changes in characteristics which occur during an individual's life can be passed on to its offspring.

LAND APPLICATION: The disposal of wastewater or municipal solids onto land under controlled conditions.

LAND DISPOSAL: Application of municipal wastewater solids to the soil without production of usable agricultural products.

LANDFILL: A land disposal site that employs an engineering method of solid waste disposal to minimize environmental hazards and protect the quality of surface and subsurface waters. LANGELIER INDEX: A measurement of Corrosivity. The water is becoming corrosive in the distribution system causing rusty water if the Langelier index indicates that the pH has decreased from the equilibrium point. Mathematically derived factor obtained from the values of calcium hardness, total alkalinity, and pH at a given temperature. A Langelier index of zero indicates perfect water balance (i.e., neither corroding nor scaling). The Langelier Saturation Index (sometimes Langelier Stability Index) is a calculated number used to predict the calcium carbonate stability of water. It indicates whether the water will precipitate, dissolve, or be in equilibrium with calcium carbonate. Langelier developed a method for predicting the pH at which water is saturated in calcium carbonate (called pHs). The LSI is expressed as the difference between the actual system pH and the saturation pH.

LANTHANIDES: Elements 57 through 71.

LARVA (pl. larvae): A free-living, sexually immature form in some animal life cycles that may differ from the adult in morphology, nutrition, and habitat.

LATERAL LINE SYSTEM: A mechanoreceptor system consisting of a series of pores and receptor units (neuromasts) along the sides of the body of fishes and aquatic amphibians; detects water movements made by an animal itself and by other moving objects.

LATERAL MERISTEMS: The vascular and cork cambia, cylinders of dividing cells that run most of the length of stems and roots and are responsible for secondary growth.

LATTICE: Unique arrangement of atoms or molecules in a crystalline liquid or solid.

LAW OF INDEPENDENT ASSORTMENT: Mendel's second law, stating that each allele pair segregates independently during gamete formation; applies when genes for two traits are located on different pairs of homologous chromosomes.

LAW OF MOTION: An object in motion stay in motion an object in rest stays in rest unless an unbalanced force acts on it.

LAW OF SEGREGATION: Mendel's first law, stating that allele pairs separate during gamete formation, and then randomly re-form pairs during the fusion of gametes at fertilization.

LEACHATE: Fluid that trickles through solid materials or wastes and contains suspended or dissolved materials or products of the solids.

LEACHING: A chemical reaction between water and metals that allows for removal of soluble materials.

LEAD AND COPPER: Initial tap water monitoring for lead and copper must be conducted during 2 consecutive 6-month periods.

LEADING STRAND: The new continuously complementary DNA strand synthesized along the template strand in the 5' --- > 3' direction.

LEUKOCYTE: A white blood cell; typically functions in immunity, such as phagocytosis or antibody production.

LEVELS OF ORGANIZATION: A basic concept in biology is that organization is based on a hierarchy of structural levels, with each level building on the levels below it.

LICHEN: An organism formed by the symbiotic association between a fungus and a photosynthetic alga.

LIFE: (table) A table of data summarizing mortality in a population.

LIGAMENT: A type of fibrous connective tissue that joins bones together at joints.

LIGAND: A ligand is a molecule that binds specifically to a receptor site of another molecule. A ligase is an enzyme which catalyzes such a reaction. For example, a DNA ligase is an enzyme which catalyzes the covalent bonding of the 3' end of a new DNA fragment to the 5' end of a growing chain.

LIGASE: Ligases are enzymes that catalyze the "stitching together" of polymer fragments. DNA ligase, for example, catalyzes phosphodiester bond formation between two DNA fragments, and

this enzyme is involved in normal DNA replication, repair of damaged chromosomes, and various in vitro techniques in genetic engineering that involve linking DNA fragments.

LIGHT: Portion of the electromagnetic spectrum which is visible to the naked eye. Also called "visible light."

LIGNIN: A hard material embedded in the cellulose matrix of vascular plant cell walls that functions as an important adaptation for support in terrestrial species.

LIMBIC SYSTEM: A group of nuclei (clusters of nerve cell bodies) in the lower part of the mammalian forebrain that interact with the cerebral cortex in determining emotions; includes the hippocampus and the amygdala.

LIME SODA SOFTENING: In a lime soda softening process, to the pH of the water is raised to 11.0. In a lime softening process, excess lime is frequently added to remove Calcium and Magnesium Bicarbonate. The minimum hardness which can be achieved by the lime-soda ash process is 30 to 40 mg/L as calcium carbonate. The hardness due to noncarbonate hardness is most likely to determine the choice between lime softening and ion exchange to remove hardness.

LIME SOFTENING: Lime softening is primarily used to "soften" water-that is to remove calcium and magnesium mineral salts. But it also removes harmful toxins like radon and arsenic. Though there is no consensus, some studies have even suggested that lime softening is effective at removal of Giardia. Hard water is a common condition responsible for numerous problems. Users often recognize hard water because it prevents their soap from lathering properly. However, it can also cause buildup ("scale") in hot water heaters, boilers, and hot water pipes. Because of these inconveniences, many treatment facilities use lime softening to soften hard water for consumer use. Before lime softening can be used, managers must determine the softening chemistry required. This is a relatively easy task for groundwater sources, which remain more constant in their composition. Surface waters, however, fluctuate widely in quality and may require frequent changes to the softening chemical mix. In lime softening, lime and sometimes sodium carbonate are added to the water as it enters a combination solids contact clarifier. This raises the pH (i.e., increases alkalinity) and leads to the precipitation of calcium carbonate. Later, the pH of the effluent from the clarifier is reduced again, and the water is then filtered through a granular media filter. The water chemistry requirements of these systems require knowledgeable operators, which may make lime softening an economic challenge for some very small systems.

LIME STABILIZATION: The addition of lime to untreated sludge to raise the pH to 12 for a minimum of 2 hours to chemically inactivate microorganisms.

LIME: Is a chemical that may be added to water to reduce the corrosivity. When an operator adds lime to water, Calcium and magnesium become less soluble. The term generally used to describe ground limestone (calcium carbonate), hydrated lime (calcium hydroxide), or burned lime (calcium oxide).

LINKED GENES: Genes that are located on the same chromosomes.

LIPID: One of a family of compounds, including fats, phospholipids, and steroids, that are insoluble in water.

LIPOPROTEIN: A protein bonded to a lipid; includes the low-density lipoproteins (LDLS) and highdensity lipoproteins (HDLS) that transport fats and cholesterol in the blood.

LIPOSOME: Liposomes are vesicles (spherules) in which the lipid molecules are spontaneously arranged into bilayers with hydrophilic groups exposed to water molecules both outside the vesicle and in the core.

LIQUID: A state of matter which takes the shape of its container.

LISTED HAZARDOUS WASTE: The designation for a waste material that appears on an EPA list of specific hazardous wastes or hazardous waste categories.

LOCUS: A particular place along the length of a certain chromosome where a specified allele is located.

LOGISTIC POPULATION GROWTH: A model describing population growth that levels off as population size approaches carrying capacity.

LONDON DISERSION FORCES: A weak intermolecular force.

LSI = pH - pHs

LSI = pH (measured) - pHs

LYMPHOCYTE: Lymphocytes (lymph cells, lympho- leukocytes) are a type of leukocyte (white blood cell) responsible for the immune response. There are two classes of lymphocytes: 1) the B-cells, when presented with a foreign chemical entity (antigen), change into antibody producing plasma cells; and, 2) the T- cells interact directly with foreign invaders such as bacteria and viruses. The T- cells express various surface marker macromolecules. For example, CD4+ is the notation for a specific expressed T- cell surface marker that can be identified by assay.

LYSIS: The destruction of a cell by rupture of the plasma membrane.

LYSOGENIC CYCLE: A type of viral replication cycle in which the viral genome becomes incorporated into the bacterial host chromosome as a prophage.

LYSOSOME: A membrane-bounded organelle found in eukaryotic cells (other than plants). Lysosomes contain a mixture of enzymes that can digest most of the macromolecules found in the rest of the cell. An enzyme in perspiration, tears, and saliva that attacks bacterial cell walls.

LYTIC CYCLE: A type of viral replication cycle resulting in the release of new phages by death or lysis of the host cell.

Μ

M PHASE: The mitotic phase of the cell cycle, which includes mitosis and cytokinesis.

M.S.D.S.: Material Safety Data Sheet, now S.D.S. (Safety Data Sheet). A safety document must an employer provide to an operator upon request.

MACROEVOLUTION: Evolutionary change on a grand scale, encompassing the origin of novel designs, evolutionary trends, adaptive radiation, and mass extinction.

MACROMOLECULE: A giant molecule of living matter formed by the joining of smaller molecules, usually by condensation synthesis. Polysaccharides, proteins, and nucleic acids are macromolecules.

MACROPHAGE: An amoeboid cell that moves through tissue fibers, engulfing bacteria and dead cells by phagocytosis.

MAGNESIUM HARDNESS: Measure of the magnesium salts dissolved in water – it is not a factor in water balance.

MAJOR HISTOCOMPATIBILITY COMPLEX: A large set of cell surface antigens encoded by a family of genes. Foreign MHC markers trigger T-cell responses that may lead to rejection of transplanted tissues and organs.

MAKEUP WATER: Fluid introduced in a recirculating stream to maintain an equilibrium of temperature, solids concentration or other parameters. Also refers to the quantity of water required to make a solution.

MALIGNANT TUMOR: A cancerous growth; an abnormal growth whose cells multiply excessively, have altered surfaces, and may have unusual numbers of chromosomes and/or aberrant metabolic processes.

MALPHIGHIAN TUBULE: A unique excretory organ of insects that empties into the digestive tract, removes nitrogenous wastes from the blood, and functions in osmoregulation.

MANTLE: A heavy fold of tissue in mollusks that drapes over the visceral mass and may secrete a shell.

MARBLE AND LANGELIER TESTS: Are used to measure or determine the corrosiveness of a water source.

MASS NUMBER: The sum of the number of protons plus the number of neutrons in the nucleus of an atom; unique for each element and designated by a superscript to the left of the elemental symbol.

MATRIX SPIKE (MS): A sample prepared by adding a known quantity of organisms to a specified amount of sample matrix for which an independent estimate of target analyte concentration is available. A matrix spike is used to determine the effect of the matrix on a method's recovery efficiency.

MATRIX: The nonliving component of connective tissue, consisting of a web of fibers embedded in homogeneous ground substance that may be liquid, jellylike, or solid.

MATTER: Anything that takes up space and has mass.

MAXIMUM CONTAMINANT LEVEL (MCLs): The maximum allowable level of a contaminant that federal or state regulations allow in a public water system. If the MCL is exceeded, the water system must treat the water so that it meets the MCL.

MAXIMUM CONTAMINANT LEVEL GOAL (MCLG): The level of a contaminant at which there would be no risk to human health. This goal is not always economically or technologically feasible, and the goal is not legally enforceable.

MCL for TURBIDITY: Turbidity is undesirable because it causes health hazards. An MCL for turbidity was established by the EPA because turbidity does not allow for proper disinfection. MEASURE CORROSION DAMAGE: A coupon such as a strip of metal and is placed to measure corrosion damage in the distribution system in a water main.

MECHANICAL SEAL: A mechanical device used to control leakage from the stuffing box of a pump. Usually made of two flat surfaces, one of which rotates on the shaft. The two flat surfaces are of such tolerances as to prevent the passage of water between them. Held in place with spring pressure.

MECHANORECEPTOR: A sensory receptor that detects physical deformations in the body environment associated with pressure, touch, stretch, motion, and sound.

MEDIAN BODIES: Prominent, dark-staining, paired organelles consisting of microtubules and found in the posterior half of *Giardia*. In *G. intestinalis* (from humans), these structures often have a claw-hammer shape, while in *G. muris* (from mice), the median bodies are round. MEDIUM WATER SYSTEM: More than 3,300 persons and 50,000 or fewer persons.

MEDULLA OBLONGATA: The lowest part of the vertebrate brain; a swelling of the hindbrain dorsal to the anterior spinal cord that controls autonomic, homeostatic functions, including breathing, heart and blood vessel activity, swallowing, digestion, and vomiting.

MEDUSA: The floating, flattened, mouth-down version of the cnidarian body plan. The alternate form is the polyp.

MEGAPASCAL: A unit of pressure equivalent to 10 atmospheres of pressure.

MEGGER: Used to test the insulation resistance on a motor.

MEIOSIS: A two-stage type of cell division in sexually reproducing organisms that results in gametes with half the chromosome number of the original cell.

MELTING: The phase change from a solid to a liquid.

MEMBRANE POTENTIAL: The charge difference between the cytoplasm and extracellular fluid in all cells, due to the differential distribution of ions. Membrane potential affects the activity of excitable cells and the transmembrane movement of all charged substances.

MEMBRANE: A thin barrier that permits passage of particles of a certain size or of particular physical or chemical properties.

M-ENDO BROTH: The coliform group are used as indicators of fecal pollution in water, for assessing the effectiveness of water treatment and disinfection, and for monitoring water quality. m-Endo Broth is used for selectively isolating coliform bacteria from water and other specimens using the membrane filtration technique. m-Endo Broth is prepared according to the formula of Fifield and Schaufus.1 It is recommended by the American Public Health Association in standard total coliform membrane filtration procedure for testing water, wastewater, and foods.2,3 The US EPA specifies using m-Endo Broth in the total coliform methods for testing water using single-step, two-step, and delayed incubation membrane filtration methods.

M-ENDO BROTH: The coliform group is used as indicators of fecal pollution in water, for assessing the effectiveness of water treatment and disinfection, and for monitoring water quality. m-Endo Broth is used for selectively isolating coliform bacteria from water and other specimens using the membrane filtration technique. m-Endo Broth is prepared according to the formula of Fifield and Schaufus.1 It is recommended by the American Public Health Association in standard total coliform membrane filtration procedure for testing water, wastewater, and foods.2,3 The US EPA specifies using m-Endo Broth in the total coliform methods for testing water using single-step, two-step, and delayed incubation membrane filtration methods.: The media shall be brought to the boiling point when preparing M-Endo broth to be used in the membrane filter test for total coliform.

MESENTERIES: Membranes that suspend many of the organs of vertebrates inside fluid- filled body cavities.

MESODERM: The middle primary germ layer of an early embryo that develops into the notochord, the lining of the coelom, muscles, skeleton, gonads, kidneys and most of the circulatory system.

MESOSOME: A localized infolding of the plasma membrane of a bacterium.

MESSENGER: (RNA) A type of RNA synthesized from DNA in the genetic material that attaches to ribosomes in the cytoplasm and specifies the primary structure of a protein.

METABOLISM: The sum total of the chemical and physical changes constantly taking place in living substances.

METAL: Chemical element that is a good conductor of both electricity and heat and forms cations and ionic bonds with non-metals.

METALIMNION: Thermocline, middle layer of a thermally stratified lake which is characterized by a rapid decrease in temperature in proportion to depth.

METALLOID: Metalloid is a term used in chemistry when classifying the chemical elements. On the basis of their general physical and chemical properties, nearly every element in the periodic table can be termed either a metal or a nonmetal. A few elements with intermediate properties are, however, referred to as metalloids. (In Greek metallon = metal and eidos = sort)

METAMORPHOSIS: The resurgence of development in an animal larva that transforms it into a sexually mature adult.

METANEPHRIDIUM: A type of excretory tubule in annelid worms that has internal openings called nephrostomes that collect body fluids and external openings called nephridiopores.

METASTASIS: The spread of cancer cells beyond their original site.

METAZOAN: A multicellular animal. Among important distinguishing characteristics of Metazoa are cell differentiation and intercellular communication. For certain multicellular colonial entities such as sponges, some biologists prefer the term "parazoa".

METHANE: Methane is a chemical compound with the molecular formula CH4. It is the simplest alkane, and the principal component of natural gas. Methane's bond angles are 109.5 degrees. Burning methane in the presence of oxygen produces carbon dioxide and water. The relative abundance of methane and its clean burning process makes it a very attractive fuel. However, because it is a gas at normal temperature and pressure, methane is difficult to transport from its source. In its natural gas form, it is generally transported in bulk by pipeline or LNG carriers; few countries still transport it by truck.

METHLENE BLUE: A heterocyclic aromatic chemical compound with the molecular formula C16H18N3SCI.

METHOD BLANK: An aliquot of reagent water that is treated exactly as a sample, including exposure to all glassware, equipment, solvents, and procedures that are used with samples. The method blank is used to determine if analytes or interferences are present in the laboratory environment, the reagents, or the apparatus.

Mg/L: Stands for "milligrams per liter." A common unit of chemical concentration. It expresses the mass of a chemical that is present in a given volume of water. A milligram (one one-thousandth of a gram) is equivalent to about 18 grains of table salt. A liter is equivalent to about one quart.

Mg/L: Stands for "milligrams per liter." A common unit of chemical concentration. It expresses the mass of a chemical that is present in a given volume of water. A milligram (one one-thousandth of a gram) is equivalent to about 18 grains of table salt. A liter is equivalent to about one quart. MICROBE OR MICROBIAL: Any minute, simple, single-celled form of life, especially one that causes disease.

MICROBIAL CONTAMINANTS: Microscopic organisms present in untreated water that can cause waterborne diseases.

MICROBE OR MICROBIAL: Any minute, simple, single-celled form of life, especially one that causes disease.

MICROBIOLOGICAL: Is a type of analysis in which a composite sample unacceptable.

MICROBODY: A small organelle, bounded by a single membrane and possessing a granular interior. Peroxisomes and glyoxysomes are types of microbodies.

MICROCENTRIFUGE: A small plastic container that is used to store small amounts of liquid. MICROEVOLUTION: A change in the gene pool of a population over a succession of generations. MICROFILAMENT: Minute fibrous structure generally composed of actin found in the cytoplasm of eukaryotic cells. They play a role in motion within cells.

MICROFILTRATION: A low pressure membrane filtration process that removes suspended solids and colloids generally larger than 0.1 micron diameter.

MICROORGANISMS: Very small animals and plants that are too small to be seen by the naked eye and must be observed using a microscope. Microorganisms in water include algae, bacteria, viruses, and protozoa. Algae growing in surface waters can cause off-taste and odor by

producing the chemicals MIB and geosmin. Certain types of bacteria, viruses, and protozoa can cause disease in humans. Bacteria are the most common microorganisms found in treated

drinking water. The great majority of bacteria are not harmful. In fact, humans would not be able to live without the bacteria that inhabit the intestines. However, certain types of bacteria called coliform bacteria can signal the presence of possible drinking water contamination.

MICROSCOPE: An instrument which magnifies images either by using lenses in an optical system to bend light (light microscope) or electromagnets to direct the movement of electrons (electron microscope).

MICROTUBULE: A minute tubular structure found in centrioles, spindle apparati, cilia, flagella, and other places in the cytoplasm of eukaryotic cells. Microtubules play a role in movement and maintenance of shape.

MICROVILLUS: Collectively, fine, fingerlike projections of the epithelial cells in the lumen of the small intestine that increase its surface area.

MILLIGRAMS PER LITER: (mg/L) A common unit of measurement of the concentration of a material in solution.

MILLILITER: One one-thousandth of a liter. A liter is a little more than a quart. A milliliter is about two drops from an eye dropper.

MIMICRY: A phenomenon in which one species benefits by a superficial resemblance to an unrelated species. A predator or species of prey may gain a significant advantage through mimicry. MISCIBLE: Capable of being mixed together.

MISSENSE: (mutation) The most common type of mutation involving a base- pair substitution within a gene that changes a codon, but the new codon makes sense, in that it still codes for an amino acid.

MITOCHONDRIAL MATRIX: The compartment of the mitochondrion enclosed by the inner membrane and containing enzymes and substrates for the Krebs cycle.

MITOCHONDRION: An organelle that occurs in eukaryotic cells and contains the enzymes of the citric acid cycle, the respiratory chain, and oxidative phosphorylation. A mitochondrion is bounded by a double membrane.

MITOSIS: A process of cell division in eukaryotic cells conventionally divided into the growth period (interphase) and four stages: prophase, metaphase, anaphase, and telophase. The stages conserve chromosome number by equally allocating replicated chromosomes to each of the daughter cells.

MIXED LIQUOR SUSPENDED SOLIDS: Suspended solids in the mixture of wastewater and activated sludge undergoing aeration in the aeration basin.

MODEM SYNTHESIS: A comprehensive theory of evolution emphasizing natural selection, gradualism, and populations as the fundamental units of evolutionary change; also called Neo-Darwinism.

MOISTURE AND POTASSIUM PERMANGANATE: The combination of moisture and potassium permanganate produces heat.

MOISTURE: If a material is hygroscopic, it must it be protected from water.

MOLARITY: A common measure of solute concentration, referring to the number of moles of solute in 1 L of solution.

MOLD: A rapidly growing, asexually reproducing fungus.

MOLE: Abbreviated mol : a measurement of an amount of substance; a single mole contains approximately 6.022×1023 units or entities .A mole of water contains 6.022×1023 H2O molecules.

MOLE: The number of grams of a substance that equals its molecular weight in daltons and contains Avogadro's number of molecules.

MOLECULAR FORMULA: A type of molecular notation indicating only the quantity of the constituent atoms.

566

MOLECULAR ORBITAL: Region where an electron can be found in a molecule (as opposed to an atom).

MOLECULAR WEIGHT: The molecular mass (abbreviated Mr) of a substance, formerly also called molecular weight and abbreviated as MW, is the mass of one molecule of that substance, relative to the unified atomic mass unit u (equal to 1/12 the mass of one atom of carbon-12). This is distinct from the relative molecular mass of a molecule, which is the ratio of the mass of that molecule to 1/12 of the mass of carbon 12 and is a dimensionless number. Relative molecular mass is abbreviated to Mr.

MOLECULE: Two or more atoms of one or more elements held together by ionic or covalent chemical bonds. A chemically bonded number of atoms that are electrically neutral.

MOLTING: A process in arthropods in which the exoskeleton is shed at intervals to allow growth by secretion of a larger exoskeleton.

MONERA: The kingdom of life forms that includes all of the bacteria.

MONOCLONAL ANTIBODY: A defensive protein produced by cells descended from a single cell; an antibody that is secreted by a clone of cells and, consequently, is specific for a single antigenic determinant.

MONOECIOUS: Referring to an organism having the capacity of producing both sperm and eggs. MONOHYBRID CROSS: A breeding experiment that employs parental varieties differing in a single character.

MONOMER: A small molecule, two or more of which can be combined to form oligomers (consisting of a few monomers) or polymers (consisting of many monomers).

MONOPHYLETIC: A term used to describe any taxon derived from a single ancestral form that gave rise to no species in other taxa.

MONOSACCHARIDE: A simple sugar; a monomer.

MONOZYGOTIC TWINS: Monozygotic twins are genetically identical, derived from the division and autonomous development of a single zygote (fertilized egg).

MORPHOGENESIS: The development of body shape and organization during ontogeny.

MORPHOSPECIES: Species defined by their anatomical features.

MOSAIC EVOLUTION: The evolution of different features of an organism at different rates.

MOSAIC: A pattern of development, such as that of a mollusk, in which the early blastomeres each give rise to a specific part of the embryo. In some animals, the fate of the blastomeres is established in the zygote.

MOTOR NERVOUS SYSTEM: In vertebrates, the component of the peripheral nervous system that transmits signals from the central nervous system to effector cells.

MOTTLING: High levels of fluoride may stain the teeth of humans.

MPF: M: phase promoting factor: A protein complex required for a cell to progress from late interphase to mitosis; the active form consists of cyclin and cdc2, a protein kinase.

MUCOSA: Refers to the mucous tissue lining various tubular structures in the body.

MUD BALLS IN FILTER MEDIA: Is a possible result of an ineffective or inadequate filter backwash.

MULLERIAN MIMICRY: A mutual mimicry by two unpalatable species.

MULTIGENE FAMILY: A collection of genes with similar or identical sequences, presumably of common origin.

MUNICIPAL WASTE: The combined solid and liquid waste from residential, commercial and industrial sources.

MUNICIPAL WASTEWATER TREATMENT PLANT (MWTP): Treatment works designed to treat municipal wastewater.

MURIATIC ACID: An acid used to reduce pH and alkalinity. Also used to remove stain and scale. MUST: This action, activity, or procedural step is required.

MUTAGEN: A chemical or physical agent that interacts with DNA and causes a mutation.

MUTAGENESIS: The creation of mutations.

MUTATION: A spontaneous or induced change in a gene's or chromosome's structure or number. The resulting individual is termed a mutant.

MUTUALISM: A symbiotic relationship in which both the host and the symbiont benefit.

MYCELIUM: The densely branched network of hyphae in a fungus.

MYCOBACTERIUM: Pleomorphic spherical or rod-shaped, frequently branching, no gram stain, aerobic; commonly form yellow pigments; include Mycobacterium tuberculosis, cause of tuberculosis.

MYCOPLASMA: Spherical, commonly forming branching chains, no gram stain, aerobic but can live in certain anaerobic conditions; without cell walls yet structurally resistant to lysis; among smallest of bacteria; named for superficial resemblance to fungal hyphae (myco-means "fungus"). MYCOTOXIN: A toxin produced by a fungus.

MYELIN SHEATH: An insulating coat of cell membrane from Schwann cells that is interrupted by nodes of Ranvier where saltatory conduction occurs.

MYOFIBRILS: Fibrils arranged in longitudinal bundles in muscle cells (fibers); composed of thin filaments of actin and a regulatory protein and thick filaments of myosin.

MYOGLOBIN: An oxygen-storing, pigmented protein in muscle cells.

MYOSIN: A type of protein filament that interacts with actin filaments to cause cell movement, such as contraction in muscle cells.

Ν

NAD+: Nicatinamide adenine dinucleotide (oxidized); a coenzyme present in all cells that assists enzymes in transferring electrons during the redox reactions of metabolism.

NANO-FILTRATION: A specialty membrane filtration process that rejects solutes larger than approximately one nanometer (10 angstroms) in size.

NANOMETER: A unit of measure (length). 1 nm is equal to 1 x 10: 9 m, or 1/1,000,000 mm.

NaOCI: Is the molecular formula of Sodium hypochlorite.

NaOH: Is the molecular formula of Sodium hydroxide.

NASCENT: Coming into existence; emerging.

NATURAL ORGANIC MATTER: Organic matter present in natural waters.

NEAT: Conditions with a liquid reagent or gas performed with no added solvent or co-solvent. NEGATIVE CONTROL: See Method blank.

NEGATIVE FEEDBACK: A primary mechanism of homeostasis, whereby a change in a physiological variable that is being monitored triggers a response that counteracts the initial fluctuation.

NEURAMINIDASE: A surface enzyme possessed by some influenza viruses which help the virus penetrate the mucus layer protecting the respiratory epithelium and also plays a role in budding of new virus particles from infected cells.

NEURON: A nerve cell; the fundamental unit of the nervous system, having structure and properties that allow it to conduct signals by taking advantage of the electrical charge across its cell membrane.

NEUROSECRETORY CELLS: Cells that receive signals from other nerve cells, but instead of signaling to an adjacent nerve cell or muscle, release hormones into the blood stream.

NEUROTRANSMITTER: The chemical messenger released from the synaptic terminals of a neuron at a chemical synapse that diffuses across the synaptic cleft and binds to and stimulates the postsynaptic cell.

NEUTRAL VARIATION: Genetic diversity that confers no apparent selective advantage.

NEUTRALIZATION REACTIONS: Chemical reactions between acids and bases where water is an end product.

NEUTRALIZATION: The chemical process that produces a solution that is neither acidic nor alkaline. Usually with a pH between 6 and 8.

NEUTRINO: A particle that can travel at speeds close to the speed of light and are created as a result of radioactive decay.

NEUTRON: An uncharged subatomic particle of about the same size and mass as a proton. NH4+: The molecular formula of the Ammonium ion.

NITRATES: A dissolved form of nitrogen found in fertilizers and sewage by-products that may leach into groundwater and other water sources. Nitrates may also occur naturally in some waters. Over time, nitrates can accumulate in aguifers and contaminate groundwater.

NITROGEN AND PHOSPHORUS: Pairs of elements and major plant nutrients that cause algae to grow.

NITROGEN: Nitrogen is a nonmetal, with an electronegativity of 3.0. It has five electrons in its outer shell and is therefore trivalent in most compounds. The triple bond in molecular nitrogen (N2) is one of the strongest in nature. The resulting difficulty of converting (N₂) into other compounds, and the ease (and associated high energy release) of converting nitrogen compounds into elemental N2, have dominated the role of nitrogen in both nature and human economic activities. At atmospheric pressure molecular nitrogen condenses (liquefies) at 77 K (-195.8 °C) and freezes at 63 K (-210.0 °C) into the beta hexagonal close-packed crystal allotropic form. Below 35.4 K (-237.6 °C) nitrogen assumes the alpha cubic crystal allotropic form. Liquid nitrogen, a fluid resembling water, but with 80.8% of the density, is a common cryogen. Unstable allotropes of nitrogen consisting of more than two nitrogen atoms have been produced in the laboratory, like N3 and N4.[1] Under extremely high pressures (1.1 million atm) and high temperatures (2000 K), as produced under diamond anvil conditions, nitrogen polymerizes into the single bonded diamond crystal structure, an allotrope nicknamed "nitrogen diamond."

NITROGEN-FIXING: Rod-shaped, gram-negative, aerobic; convert atmospheric nitrogen gas to ammonium in soil; include Azotobacter, a common genus.

NO3-: The molecular formula of the Nitrate ion.

NOBLE GASES: Group 18 elements, those whose outer electron shell is filled.

NOMENCLATURE: The method of assigning names in the classification of organisms.

NON-CARBONATE HARDNESS: The portion of the total hardness in excess of the alkalinity.

NON-CARBONATE IONS: Water contains non-carbonate ions if it cannot be softened to a desired level through the use of lime only.

NONCOMPETITIVE INHIBITOR: A substance that reduces the activity of an enzyme by binding to a location remote from the active site, changing its conformation so that it no longer binds to the substrate.

NONCYCLIC ELECTRON FLOW: A route of electron flow during the light reactions of photosynthesis that involves both photosystems and produces ATP, NADPH, and oxygen; the net electron flow is from water to NADP+.

NONCYCLIC PHOTOPHOSPHORYLATION: The production of ATP by noncyclic electron flow. NONDISJUNCTION: An accident of meiosis or mitosis, in which both members of a pair of homologous chromosomes or both sister chromatids fail to separate normally. NON-METAL: An element which is not metallic.

NON-POINT SOURCE POLLUTION: Air pollution may leave contaminants on highway surfaces. This non-point source pollution adversely impacts reservoir water and groundwater quality.

NON-POINT SOURCE POLLUTION: Air pollution may leave contaminants on highway surfaces. This non-point source pollution adversely impacts reservoir water and groundwater quality.

NONPOLAR: Electrically symmetrical. For example, in many molecules with covalent bonds, the electrons are shared equally; the poles are electrically neutral.

NONSENSE MUTATION: A mutation that changes an amino acid codon to one of the three stop codons, resulting in a shorter and usually nonfunctional protein.

NON-TRANSIENT, NON-COMMUNITY WATER SYSTEM: A water system which supplies water to 25 or more of the same people at least six months per year in places other than their

residences. Some examples are schools, factories, office buildings, and hospitals which have their own water systems.

NORM OF REACTION: The range of phenotypic possibilities for a single genotype, as influenced by the environment.

NORMALITY: It is the number of equivalent weights of solute per liter of solution. Normality highlights the chemical nature of salts: in solution, salts dissociate into distinct reactive species (ions such as H+, Fe3+, or Cl-). Normality accounts for any discrepancy between the

concentrations of the various ionic species in a solution. For example, in a salt such as MgCl2, there are two moles of Cl- for every mole of Mg2+, so the concentration of Cl- as well as of Mg2+ is said to be 2 N (read: "two normal"). Further examples are given below. A normal is one gram equivalent of a solute per liter of solution. The definition of a gram equivalent varies depending on the type of chemical reaction that is discussed - it can refer to acids, bases, redox species, and ions that will precipitate. It is critical to note that normality measures a single ion which takes part in an overall solute. For example, one could determine the normality of hydroxide or sodium in an

aqueous solution of sodium hydroxide, but the normality of sodium hydroxide itself has no meaning. Nevertheless it is often used to describe solutions of acids or bases, in those cases it is implied that the normality refers to the H+ or OH- ion. For example, 2 Normal sulfuric acid (H2SO4), means that the normality of H+ ions is 2, or that the molarity of the sulfuric acid is 1. Similarly for 1 Molar H3PO4 the normality is 3 as it contains three H+ ions.

NTNCWS: Non-transient non-community water system.

NTU (Nephelometric turbidity unit): A measure of the clarity or cloudiness of water. NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY: Technique that exploits the magnetic properties of certain nuclei, useful for identifying unknown compounds.

NTU: (Nephelometric turbidity unit): A measure of the clarity or cloudiness of water. NUCLEAR: 1) (envelope) The surface, consisting of two layers of membrane, that encloses the nucleus of eukaryotic cells. 2) (pore) An opening of the nuclear envelope which allows for the movement of materials between the nucleus and surrounding cytoplasm.

NUCLEAR: Of or pertaining to the atomic nucleus.

NUCLEASE: This term refers to any enzyme that acts on nucleic acids, e.g., Dnase, Rnase, endonuclease, etc.

NUCLEIC: (acid) A polymer composed of nucleotides that are joined by covalent bonds (phosphodiester linkages) between the phosphate of one nucleotide and the sugar of the next nucleotide.

NUCLELUS: A small, generally spherical body found within the nucleus of eukaryotic cells. The site of ribosomal RNA synthesis.

NUCLEOID: The region that harbors the chromosome of a prokaryotic cell. Unlike the eukaryotic nucleus, it is not bounded by a membrane.

NUCLEOLUS (pl. nucleoli): A specialized structure in the nucleus, formed from various chromosomes and active in the synthesis of ribosomes.

NUCLEOSIDE: An organic molecule consisting of a nitrogenous base joined to a five- carbon sugar.

NUCLEOSOME: The basic, beadlike unit of DNA packaging in eukaryotes, consisting of a segment of DNA wound around a protein core composed of two copies of each of four types of histone.

NUCLEOTIDE: The basic chemical unit (monomer) of a nucleic acid. A nucleotide in RNA consists of one of four nitrogenous bases linked to ribose, which in turn is linked to phosphate. In DNA, deoxyribose is present instead of ribose.

NUCLEUS: A membrane-bound organelle containing genetic material. Nuclei are a prominent internal structure seen both in *Cryptosporidium* oocysts and *Giardia* cysts. In *Cryptosporidium* oocysts, there is one nucleus per sporozoite. One to four nuclei can be seen in *Giardia* cysts.

NUCLEUS: The membrane bound organelle of eukaryotic cells that contains the cell's genetic material. Also the central region of an atom composed of protons and neutrons.

NUCLEUS: The center of an atom made up of neutrons and protons, with a net positive charge. NULL: In the scientific method, the hypothesis which one attempts to falsify.

NUMBER DENSITY: A measure of concentration of countable objects (atoms, molecules, etc.) in space; number per volume.

0

O3: The molecular formula of ozone.

OLIGOTROPHIC: A reservoir that is nutrient-poor and contains little plant or animal life. An oligotrophic ecosystem or environment is one that offers little to sustain life. The term is commonly utilized to describe bodies of water or soils with very low nutrient levels. It derives etymologically from the Greek oligo (small, little, few) and trophe (nutrients, food). Oligotrophic environments are of special interest for the alternative energy sources and survival strategies upon which life could rely.

ONGOING PRECISION AND RECOVERY (OPR) STANDARD: A method blank spiked with known quantities of analytes. The OPR is analyzed exactly like a sample. Its purpose is to assure that the results produced by the laboratory remain within the limits specified in this method for precision and recovery.

OOCYST AND CYST STOCK SUSPENSION: See Stock suspension.

OOCYST: The encysted zygote of some sporozoa; e.g., *Cryptosporidium*. The oocyst is a phase or form of the organism produced as a normal part of the life cycle of the organism. It is characterized by a thick and environmentally resistant outer wall.

ORBITAL: May refer to either an atomic orbital or a molecular orbital.

ORGANIC CHEMISTRY: A part of chemistry concerned with organic compounds.

ORGANIC COMPOUND: Compounds that contain carbon.

ORGANIC MATTER: Substances containing carbon compounds, usually of animal or vegetable origin.

ORGANIC PRECURSORS: Natural or man-made compounds with chemical structures based upon carbon that, upon combination with chlorine, leading to trihalomethane formation.

ORGANIC: Relating to, or derived from, a living thing. A description of a substance that contains carbon atoms linked together by carbon-carbon bonds.

OSMOSIS: Osmosis is the process by which water moves across a semi permeable membrane from a low concentration solute to a high concentration solute to satisfy the pressure differences caused by the solute.

OVER-RANGE PROTECTION DEVICES: Mechanical dampers, snubbers and an air cushion chamber are examples of surging and over range protection devices.

OXIDE: An oxide is a chemical compound containing at least one oxygen atom as well as at least one other element. Most of the Earth's crust consists of oxides. Oxides result when elements are oxidized by oxygen in air. Combustion of hydrocarbons affords the two principal oxides of carbon, carbon monoxide and carbon dioxide. Even materials that are considered to be pure elements often contain a coating of oxides. For example, aluminum foil has a thin skin of Al2O3 that protects the foil from further corrosion.

OXIDIZING: The process of breaking down organic wastes into simpler elemental forms or by products. Also used to separate combined chlorine and convert it into free chlorine.

OXYGEN DEFICIENT ENVIRONMENT: One of the most dangerous threats to an operator upon entering a manhole.

OZONE DOES NOT PROVIDE A RESIDUAL: One of the major drawbacks to using ozone as a disinfectant.

OZONE: Ozone or trioxygen (O3) is a triatomic molecule, consisting of three oxygen atoms. It is an allotrope of oxygen that is much less stable than the diatomic O2. Ground-level ozone is an air pollutant with harmful effects on the respiratory systems of animals. Ozone in the upper atmosphere filters potentially damaging ultraviolet light from reaching the Earth's surface. It is present in low concentrations throughout the Earth's atmosphere. It has many industrial and consumer applications. Ozone, the first allotrope of a chemical element to be recognized by science, was proposed as a distinct chemical compound by Christian Friedrich Schönbein in 1840, who named it after the Greek word for smell (ozein), from the peculiar odor in lightning storms. The formula for ozone, O3, was not determined until 1865 by Jacques-Louis Soret and confirmed by Schönbein in 1867. Ozone is a powerful oxidizing agent, far better than dioxygen. It is also unstable at high concentrations, decaying to ordinary diatomic oxygen (in about half an hour in atmospheric conditions):2 O3 = 3 O2.

Ρ

PAC: A disadvantage of using PAC is it is very abrasive and requires careful maintenance of equipment. One precaution that should be taken in storing PAC is that bags of carbon should not be stored near bags of HTH. Removes tastes and odors by adsorption only. Powered activated carbon frequently used for taste and odor control because PAC is non-specific and removes a broad range of compounds. Jar tests and threshold odor number testing determines the application rate for powdered activated carbon. Powdered activated carbon, or PAC, commonly used for in a water treatment plant for taste and odor control. Powdered activated carbon may be used with some success in removing the precursors of THMs.

PARAMECIUM: Paramecia are a group of unicellular ciliate protozoa formerly known as slipper animalcules from their slipper shape. They are commonly studied as a representative of the ciliate group. Simple cilia cover the body which allows the cell to move with a synchronous motion (like a caterpilla). There is also a deep oral groove containing inconspicuous compound

oral cilia (as found in other peniculids) that is used to draw food inside. They generally feed upon bacteria and other small cells. Osmoregulation is carried out by a pair of contractile vacuoles, which actively expel water absorbed by osmosis from their surroundings. Paramecia are widespread in freshwater environments, and are especially common in scums. Paramecia are attracted by acidic conditions. Certain single-celled eukaryotes, such as Paramecium, are examples for exceptions to the universality of the genetic code (translation systems where a few codons differ from the standard ones).

PARTS PER MILLION (PPM): A common unit of measure used to express the number of parts of a substance contained within a million parts of a liquid, solid, or gas.

PASTEURIZATION: A process for killing pathogenic organisms by applying heat for a specific period of time.

PATHOGENS: Disease-causing pathogens; waterborne pathogens A pathogen may contaminate water and cause waterborne disease.

Pb: The chemical symbol of Lead.

PCE: abbr. perchloroethylene. Known also as perc or tetrachloroethylene, perchloroethylene is a clear, colorless liquid with a distinctive, somewhat ether-like odor. It is non-flammable, having no measurable flashpoint or flammable limits in air. Effective over a wide range of applications, perchloroethylene is supported by closed loop transfer systems, stabilizers and employee exposure monitoring.

PERKINESIS: The aggregation resulting from random thermal motion of fluid molecules. pCi/L: Picocuries per liter A curie is the amount of radiation released by a set amount of a certain compound. A picocurie is one quadrillionth of a curie.

PEAK DEMAND: The maximum momentary load placed on a water treatment plant, pumping station or distribution system.

PEPTIDOGLYCAN: A polymer found in the cell walls of prokaryotes that consists of polysaccharide and peptide chains in a strong molecular network. Also called mucopeptide, murein.

PERKINESIS: The aggregation resulting from random thermal motion of fluid molecules.

PERMEATE: The term for water which has passed through the membrane of a reverse osmosis unit.

PERMEATE: The term for water which has passed through the membrane of a reverse osmosis unit. The liquid that passes through a membrane.

pH OF SATURATION: The ideal pH for perfect water balance in relation to a particular total alkalinity level and a particular calcium hardness level, at a particular temperature. The pH where the Langelier Index equals zero.

pH: A unit of measure which describes the degree of acidity or alkalinity of a solution. The pH scale runs from 0 to 14 with 7 being the mid-point or neutral. A pH of less than 7 is on the acid side of the scale with 0 as the point of greatest acid activity. A pH of more than 7 is on the basic (alkaline) side of the scale with 14 as the point of greatest basic activity. The term pH is derived from "p", the mathematical symbol of the negative logarithm, and "H", the chemical symbol of Hydrogen. The definition of pH is the negative logarithm of the Hydrogen ion activity. pH=-log[H+].

PHENOL RED: Chemical reagent used for testing pH in the range of 6.8 - 8.4. PHENOLPHTHALEIN/TOTAL ALKALINITY: The relationship between the alkalinity constituent's bicarbonate, carbonate, and hydroxide can be based on the P and T alkalinity measurement. PHOSPHATE, NITRATE AND ORGANIC NITROGEN: Nutrients in a domestic water supply reservoir may cause water quality problems if they occur in moderate or large quantities. PHOTON: A carrier of electromagnetic radiation of all wavelength (such as gamma rays and radio waves).

PHYSICAL CHEMICAL TREATMENT: Treatment processes that are non-biological in nature. PHYSISORPTION: (Or physical adsorption) Is adsorption in which the forces involved are intermolecular forces (van der Waals forces) of the same kind as those responsible for the imperfection of real gases and the condensation of vapors, and which do not involve a significant change in the electronic orbital patterns of the species involved. The term van der Waals adsorption is synonymous with physical adsorption, but its use is not recommended. PICOCURIE: A unit of radioactivity. "Pico" is a metric prefix that means one one-millionth of one one-millionth. A picocurie is one one-millionth of one one-millionth of a Curie. A Curie is that quantity of any radioactive substance that undergoes 37 billion nuclear disintegrations per second. Thus a picocurie is that quantity of any radioactive substance that undergoes 0.037 nuclear disintegrations per second.

PIEZOMETRIC SURFACE: See potentiometric surface.

PIN FLOC: Small flocculated particle size.

PLANKTON: The aggregate of passively floating, drifting, or somewhat motile organisms occurring in a body of water, primarily comprising microscopic algae and protozoa.

PLASMA: State of matter similar to gas in which a certain portion of the particles are ionized. PLUNGER: See Surge-block.

POINT OF ENTRY: POE.

POINT SOURCE DISCHARGE: A pipe, ditch, channel or other container from which pollutants may be discharged.

POLLUTANT: A substance, organism or energy form present in amounts that impair or threaten an ecosystem to the extent that its current or future uses are prevented.

POLLUTION: To make something unclean or impure. See Contaminated.

POLYMER: A type of chemical when combined with other types of coagulants aid in binding small suspended particles to larger particles to help in the settling and filtering processes. Chemical used for flocculation in dewatering. Also known as a "polyelectrolyte" which is a substance made of giant molecules formed by the union of simple smaller molecules.

POLYPHOSPHATES: Chemicals that may be added to remove low levels of iron and manganese.

POSITIVE CONTROL: See Ongoing precision and recovery standard.

POST TREATMENT: Treatment of finished water or wastewater to further enhance its quality. POST-CHLORINE: Where the water is chlorinated to make sure it holds a residual in the distribution system.

POST-CHLORINE: Where the water is chlorinated to make sure it holds a residual in the distribution system.

POTABLE: Good water which is safe for drinking or cooking purposes. Non-Potable: A liquid or water that is not approved for drinking.

POTENTIAL ENERGY: The energy that a body has by virtue of its position or state enabling it to do work.

PPM: Abbreviation for parts per million.

PRE-CHLORINE: Where the raw water is dosed with a large concentration of chlorine.

PRECIPITATE: A solid that separates from a solution.

PRECIPTATION: The phenomenon that occurs when a substance held in solution passes out of solution into a solid form.

PRELIMINARY TREATMENT: Treatment steps including comminution, screening, grit removal, pre-aeration, and/or flow equalization that prepares wastewater influent for further treatment. PRESIPATATE: Formation of a solid in a solution or inside another solid during a chemical reaction or by diffusion in a solid.

PRESSURE FILTER: Filter unit enclosed in a vessel that may be operated under pressure. PRESSURE HEAD: The height of a column of water capable of being maintained by pressure. See also Total Head, Total Dynamic Head.

PRESSURE MEASUREMENT: Bourdon tube, Bellows gauge and Diaphragm are commonly used to measure pressure in waterworks systems. A Bellows-type sensor reacts to a change in pressure.

PRESSURE: Pressure is defined as force per unit area. It is usually more convenient to use pressure rather than force to describe the influences upon fluid behavior. The standard unit for pressure is the Pascal, which is a Newton per square meter. For an object sitting on a surface, the force pressing on the surface is the weight of the object, but in different orientations it might have a different area in contact with the surface and therefore exert a different pressure. PREVENTION: To take action. Stop something before it happens.

PRIMARY CLARIFIER: Sedimentation basin that precedes secondary wastewater treatment.

PRIMARY SLUDGE: Sludge produced in a primary waste treatment unit.

PRIMARY TREATMENT: Treatment steps including sedimentation and/or fine screening to produce an effluent suitable for biological treatment.

PROCESS WASTEWATER: Wastewater generated during manufacture or production processes.

PROCESS WATER: Water that is used for, or comes in contact with an end product or the materials used in an end product.

PROPIONIC ACID: Rod-shaped, pleomorphic, gram-positive, anaerobic; ferment lactic acid; fermentation produces holes in Swiss cheese from the production of carbon dioxide. PROTIST: Any of a group of eukaryotic organisms belonging to the kingdom Protista according to a group of eukaryotic organisms belonging to the kingdom Protista according.

to some widely used modern taxonomic systems. The protists include a variety of unicellular, coenocytic, colonial, and multicellular organisms, such as the protozoans, slime molds, brown algae, and red algae. A unicellular protoctist in taxonomic systems in which the protoctists are considered to form a kingdom.

PROTOCTIST: Any of various unicellular eukaryotic organisms and their multicellular, coenocytic, or colonial descendants that belong to the kingdom Protoctista according to some taxonomic systems. The protoctists include the protozoans, slime molds, various algae, and other groups. In many new classification systems, all protoctists are considered to be protists. PROTON, NEUTRON AND ELECTRON: Are the 3 fundamental particles of an atom.

PROTON: A positive unit or subatomic particle that has a positive charge.

PROTONATION: The addition of a proton (H+) to an atom, molecule, or ion.

PROTOZOA: Microscopic animals that occur as single cells. Some protozoa can cause disease in humans. Protozoa form cysts, which are specialized cells like eggs that are very resistant to chlorine. Cysts can survive the disinfection process, then "hatch" into normal cells that can cause disease. Protozoa must be removed from drinking water by filtration, because they cannot be effectively killed by chlorine.

PSEUDOMONAD: Rod-shaped (straight or curved) with polar flagella, gram-negative, aerobic; can use up to 100 different compounds for carbon and energy.

PTFE: Polytetrafluoroethylene.

PUBLIC NOTIFICATION: An advisory that EPA requires a water system to distribute to affected consumers when the system has violated MCLs or other regulations. The notice advises consumers what precautions, if any, they should take to protect their health.

PUBLIC WATER SYSTEM (PWS): Any water system which provides water to at least 25 people for at least 60 days annually. There are more than 170,000 PWSs providing water from wells, rivers and other sources to about 250 million Americans. The others drink water from private wells. There are differing standards for PWSs of different sizes and types.

PUMPING LIFT: The height to which water must be pumped or lifted to, feet of head. PWS: 3 types of public water systems. Community water system, non-transient non-community water system, transient non-community water system.

Q

QUANTA: It is the minimum amount of bundle of energy.

QUANTITATIVE TRANSFER: The process of transferring a solution from one container to another using a pipette in which as much solution as possible is transferred, followed by rinsing of the walls of the source container with a small volume of rinsing solution (e.g., reagent water, buffer, etc.), followed by transfer of the rinsing solution, followed by a second rinse and transfer. QUANTUM MECHANICS: The study of how atoms, molecules, subatomic particles, etc. behave and are structured.

QUARKS: Elementary particle and a fundamental constituent of matter.

QUICKLIME: A calcium oxide material produced by calcining limestone to liberate carbon dioxide, also called "calcined lime" or "pebble lime", commonly used for pH adjustment. Chemical formula is CaO.

R

RADIATION: Energy in the form of waves or subatomic particles when there is a change from high energy to low energy states.

RADIOACTIVE DECAY: The process of an unstable atomic nucleus losing energy by emitting radiation.

RADIOCHEMICALS: (Or radioactive chemicals) Occur in natural waters. Naturally radioactive ores are particularly common in the Southwestern United States, and some streams and wells can have dangerously high levels of radioactivity. Total alpha and beta radioactivity and isotopes of radium and strontium are the major tests performed for radiochemicals. The federal drinking water standard for gross alpha radioactivity is set at 5 picocuries per liter.

RAW SEWAGE: Untreated wastewater and its contents.

RAW SLUDGE: Undigested sludge recently removed from a sedimentation basin.

RAW TURBIDITY: The turbidity of the water coming to the treatment plant from the raw water source.

RAW WATER: Water that has not been treated in any way; it is generally considered to be unsafe to drink.

REAGENT: A substance used in a chemical reaction to measure, detect, examine, or produce other substances.

REAGENT WATER BLANK: see Method blank.

REAGENT WATER: Water demonstrated to be free from the analytes of interest and potentially interfering substances at the method detection limit for the analyte.

REAGENT: A substance used in a chemical reaction to measure, detect, examine, or produce other substances.

RECHARGE: The infiltration component of the hydrologic cycle. Often used in the context of referring to: The infiltration of water back into an aquifer, resulting in the restoration of lost storage and water levels which had been decreased due to pumping and/or natural discharges from the aquifer.

RECLAIMED WATER: Wastewater that has been treated to a level that allows for its reuse for a beneficial purpose.

RECLAMATION: The process of improving or restoring the condition of land or other material to a better or more useful state.

RECORDER, FLOW: A flow recorder that measures flow is most likely to be located anywhere in the plant where a flow must be measured and in a central location.

RECYCLING: The process by which recovered materials are transformed into new products. RED WATER AND SLIME: Iron bacteria are undesirable in a water distribution system because of red water and slime complaints.

REDOX POTENTIAL: Reduction potential (also known as redox potential, oxidation / reduction potential or ORP) is the tendency of a chemical species to acquire electrons and thereby be reduced. Each species has its own intrinsic reduction potential; the more positive the potential, the greater the species' affinity for electrons and tendency to be reduced. In aqueous solutions, the reduction potential is the tendency of the solution to either gain or lose electrons when it is subject to change by introduction of a new species. A solution with a higher (more positive) reduction potential than the new species will have a tendency to gain electrons from the new species (i.e. to be reduced by oxidizing the new species) and a solution with a lower (more negative) reduction potential will have a tendency to lose electrons to the new species (i.e. to be oxidized by reducing the new species).

RELATIVE STANDARD DEVIATION (RSD): The standard deviation divided by the mean times 100.

RELAY LOGIC: The name of a popular method of automatically controlling a pump, valve, chemical feeder, and other devices.

RESERVOIR: An impoundment used to store water.

RESIDENCE TIME: The period of time that a volume of liquid remains in a tank or system. RESIDUAL DISINFECTION PROTECTION: A required level of disinfectant that remains in treated water to ensure disinfection protection and prevent recontamination throughout the distribution system (i.e., pipes). RESPIRATION: Intake of oxygen and discharge of carbon dioxide as a result of biological oxidation.

RETURN ACTIVATED SLUDGE: Settled activated sludge that is returned to mix with raw or primary settled wastewater.

REVERSE OSMOSIS: Forces water through membranes that contain holes so small that even salts cannot pass through. Reverse osmosis removes microorganisms, organic chemicals, and inorganic chemicals, producing very pure water. For some people, drinking highly purified water exclusively can upset the natural balance of salts in the body. Reverse osmosis units require regular maintenance or they can become a health hazard.

RICKETTSIA: Spherical or rod-shaped, gram-negative, aerobic; cause Rocky Mountain spotted fever and typhus; closely related to Agrobacterium, a common gall-causing plant bacterium. ROBERT HOOKE: Coined the term "cell" to describe the structures he saw while examining a piece of cork using a microscope.

ROTAMETER: The name of transparent tube with a tapered bore containing a ball is often used to measure the rate of flow of a gas or liquid.

ROTARY DRUM SCREEN: Cylindrical screen used to remove floatable and suspended solids. ROTIFER: Rotifers get their name (derived from Greek and meaning "wheel-bearer"; they have also been called wheel animalcules) from the corona, which is composed of several ciliated tufts around the mouth that in motion resemble a wheel. These create a current that sweeps food into the mouth, where it is chewed up by a characteristic pharynx (called the mastax) containing a tiny, calcified, jaw-like structure called the trophi. The cilia also pull the animal, when unattached, through the water. Most free-living forms have pairs of posterior toes to anchor themselves while feeding. Rotifers have bilateral symmetry and a variety of different shapes. There is a welldeveloped cuticle which may be thick and rigid, giving the animal a box-like shape, or flexible, giving the animal a worm-like shape; such rotifers are respectively called loricate and illoricate. RSD: See Relative standard deviation.

S

S- BLOCK ELEMENTS: Group 1 and 2 elements (alkali and alkaline metals), which includes Hydrogen and Helium.

S.T.P.: Standard temperature and pressure standard temperature and pressure the temperature of 0°C and pressure of 1 atmosphere, usually taken as the conditions when stating properties of gases.

SAFE YIELD: A possible consequence when the "safe yield" of a well is exceeded and water continues to be pumped from a well, is land subsidence around the well will occur. Safe yield refers to a long-term balance between the water that is naturally and artificially recharged to an aquifer and the groundwater that is pumped out. When more water is removed than is recharged, the aquifer is described as being out of safe yield. When the water level in the aquifer then drops, we are said to be mining groundwater.

SALINE SOLUTION: General term for NaCl in water.

SALT BRIDGE: Devices used to connection reduction with oxidation half-cells in an electrochemical cell.

SALTS ARE ABSENT: Is a strange characteristic that is unique to water vapor in the atmosphere. SALTS: Ionic compounds composed of anions and cations.

SAMPLE: The water that is analyzed for the presence of EPA-regulated drinking water contaminants. Depending on the regulation, EPA requires water systems and states to take samples from source water, from water leaving the treatment facility, or from the taps of selected consumers. Sampling Location: A location where soil or cuttings samples may be readily and accurately collected.

SANITARY SURVEY: Persons trained in public health engineering and the epidemiology of waterborne diseases should conduct the sanitary survey. The importance of a detailed sanitary survey of a new water source cannot be overemphasized. An on-site review of the water sources, facilities, equipment, operation, and maintenance of a public water systems for the purpose of evaluating the adequacy of the facilities for producing and distributing safe drinking water. The

purpose of a non-regulatory sanitary survey is to identify possible biological and chemical pollutants which might affect a water supply.

SANITIZER: A disinfectant or chemical which disinfects (kills bacteria), kills algae and oxidizes organic matter.

SATURATED ZONE: Where an unconfined aquifer becomes saturated beneath the capillary fringe.

SATURATION INDEX: See Langelier's Index.

SATURATOR: A device which produces a fluoride solution for the fluoride process. Crystal-grade types of sodium fluoride should be fed with a saturator. Overfeeding must be prevented to protect public health when using a fluoridation system.

SCADA: A remote method of monitoring pumps and equipment. 130 degrees F is the maximum temperature that transmitting equipment is able to with stand. If the level controller may be set with too close a tolerance 45 could be the cause of a control system that is frequently turning a pump on and off.

SCALE: Crust of calcium carbonate, the result of unbalanced water. Hard insoluble minerals deposited (usually calcium bicarbonate) which forms on pool and spa surfaces and clog filters, heaters and pumps. Scale is caused by high calcium hardness and/or high pH. The regular use of stain prevention chemicals can prevent scale.

SCHMUTZDECKE: German, "grime or filth cover", sometimes spelt schmutzedecke) is a complex biological layer formed on the surface of a slow sand filter. The schmutzdecke is the layer that provides the effective purification in potable water treatment, the underlying sand providing the support medium for this biological treatment layer. The composition of any particular schmutzdecke varies, but will typically consist of a gelatinous biofilm matrix of bacteria, fungi, protozoa, rotifera and a range of aquatic insect larvae. As a schmutzdecke ages, more algae tend to develop, and larger aquatic organisms may be present including some bryozoan, snails and annelid worms.

SCHRODINGER EQUATION: Quantum state equation which represents the behavior of an election around an atom.

SCREENINGS PRESS: A mechanical press used to compact and/or dewater material removed from mechanical screening equipment.

SCROLL AND BASKET: The two basic types of centrifuges used in water treatment. SCRUBBER: A device used to removal particulates or pollutant gases from combustion or chemical process exhaust streams.

SCUM: Floatable materials found on the surface of primary and secondary settling tanks consisting of food wastes, grease, fats, paper, foam, and similar matter.

SEAL: For wells: to abandon a well by filling up the well with approved seal material including cementing with grout from a required depth to the land surface.

SECONDARY CLARIFIER: A clarifier following a secondary treatment process, designed for gravity removal of suspended matter.

SECONDARY DRINKING WATER STANDARDS: Non-enforceable federal guidelines regarding cosmetic effects (such as tooth or skin discoloration) or aesthetic effects (such as taste, odor, or color) of drinking water.

SECONDARY SLUDGE: The sludge from the secondary clarifier in a wastewater treatment plant.

SECONDARY TREATMENT: The treatment of wastewater through biological oxidation after primary treatment.

SEDIMENT: Grains of soil, sand, gravel, or rock deposited by and generated by water movement. SEDIMENTATION BASIN: A quiescent tank used to remove suspended solids by gravity settling. Also called clarifiers or settling tanks, they are usually equipped with a motor driven rake mechanism to collect settled sludge and move it to a central discharge point.

SEDIMENTATION BASIN: Where the thickest and greatest concentration of sludge will be found. Twice a year sedimentation tanks should be drained and cleaned if the sludge buildup interferes with the treatment process. SEDIMENTATION: The process of suspended solid particles settling out (going to the bottom of the vessel) in water. The removal of settleable suspended solids from water or wastewater by gravity in a quiescent basin or clarifier.

SEMICONDUCTOR: An electrically conductive solid that is between a conductor and an insulator.

SENSOR: A float and cable system are commonly found instruments that may be used as a sensor to control the level of liquid in a tank or basin.

SEPTIC: Condition characterized by bacterial decomposition under anaerobic conditions. SESSILE: Botany. attached by the base, or without any distinct projecting support, as a leaf issuing directly from the stem. Zoology. permanently attached; not freely moving. SETTLEABILITY: The tendency of suspended solids to settle.

SETTLEABLE SOLIDS: That portion of suspended solids which are of a sufficient size and weight to settle to the bottom of an Imhoff cone in one hour.

SETTLED SLUDGE VOLUME: Volume of settled sludge measured at predetermined time increments for use in process control calculations.

SETTLED SOLIDS: Solids that have been removed from the raw water by the coagulation and settling processes.

SEWAGE: Liquid or waterborne wastes polluted or fouled from households, commercial or industrial operations, along with any surface water, storm water or groundwater infiltration. SEWER GAS: A gas mixture produced by anaerobic decomposition of organic matter usually containing high percentages of methane and hydrogen sulfide.

SHEATHED: Filamentous, gram-negative, aerobic; "swarmer" (colonizing) cells form and break out of a sheath; sometimes coated with metals from environment.

SHOCK LOAD: A sudden hydraulic or organic load to a treatment plant, also descriptive of a change in the material being treated.

SHOCK: Also known as superchlorination or break point chlorination. Ridding a water of organic waste through oxidization by the addition of significant quantities of a halogen.

SHORT-CIRCUITING: Short Circuiting is a condition that occurs in tanks or basins when some of the water travels faster than the rest of the flowing water. This is usually undesirable since it may result in shorter contact, reaction or settling times in comparison with the presumed detention times.

SHOULD: This action, activity, or procedural step is suggested but not required. SINGLE BOND: Sharing of one pair of electrons.

SINGLE PHASE POWER: The type of power used for lighting systems, small motors, appliances, portable power tools and in homes.

SINUSOID: A curve described by the equation $y = a \sin x$, the ordinate being proportional to the sine of the abscissa.

SINUSOIDAL: Mathematics. Of or pertaining to a sinusoid. Having a magnitude that varies as the sine of an independent variable: a sinusoidal current.

SLOP OIL: Separator skimmings and tramp oil generated during refinery startup, shutdown or abnormal operation.

SLUDGE BASINS: After cleaning sludge basins and before returning the tanks into service the tanks should be inspected, repaired if necessary, and disinfected.

SLUDGE BLANKET: The accumulated sludge suspended in a clarifier or other enclosed body of water.

SLUDGE DEWATERING: The removal of a portion or majority of the water contained in sludge by means of a filter press, centrifuge or other mechanism.

SLUDGE DRYING BED: A closed area consisting of sand or other porous material upon which sludge is dewatered by gravity drainage and evaporation.

SLUDGE REDUCTION: Organic polymers are used to reduce the quantity of sludge. If a plant produces a large volume of sludge, the sludge could be dewatered, thickened, or conditioned to decrease the volume of sludge. Turbidity of source water, dosage, and type of coagulant used are the most important factors which determine the amount of sludge produced in a treatment of water.

SLUDGE: Accumulated and concentrated solids generated within a treatment process that have not undergone a stabilization process.

SLURRY: A mixture of a solid and a liquid that facilitates the transfer of the solid into a treatment solution.

SMALL WATER SYSTEM: 3,300 or fewer persons.

SOC: A common way for a synthetic organic chemical such as dioxin to be introduced to a surface water supply is from an industrial discharge, agricultural drainage, or a spill.

SOC: Synthetic organic chemical. A common way for a synthetic organic chemical such as dioxin to be introduced to a surface water supply is from an industrial discharge, agricultural drainage, or a spill.

SODA ASH: Chemical used to raise pH and total alkalinity (sodium carbonate).

SODIUM BICARBONATE: Commonly used to increase alkalinity of water and stabilize pH. SODIUM BISULFATE: Chemical used to lower pH and total alkalinity (dry acid).

SODIUM HYDROXIDE: Also known as caustic soda, a by-product chlorine generation and often used to raise pH.

SOFTENING WATER: When the water has a low alkalinity it is advantageous to use soda ash instead of caustic soda for softening water.

SOFTENING: The process that removes the ions which cause hardness in water.

SOL: A suspension of solid particles in liquid. Artificial examples include sol-gels.

SOLAR DRYING BEDS OR LAGOONS: Are shallow, small-volume storage pond where sludge is concentrated and stored for an extended periods.

SOLAR DRYING BEDS, CENTRIFUGES AND FILTER PRESSES: Are procedures used in the dewatering of sludge.

SOLDER: A fusible alloy used to join metallic parts.

SOLID: One of the states of matter, where the molecules are packed close together, there is a resistance of movement/deformation and volume change; see Young's modulus.

SOLID WASTE: Garbage, refuse, sludge and other discarded material resulting from community activities or commercial or industrial operations.

SOLID, LIQUID AND VAPOR: 3 forms of matter.

SOLUBILITY: The amount of a substance that can dissolve in a solution under a given set of conditions.

SOLUTE: The part of the solution that is mixed into the solvent (NaCl in saline water).

SOLUTION: Homogeneous mixture made up of multiple substances. It is made up of solutes and solvents.

SOLVENT: The part of the solution that dissolves the solute (H2O in saline water).

SPADNS: The lab reagent called SPADNS solution is used in performing the Fluoride test.

SPADNS: The lab reagent called SPADNS solution is used in performing the Fluoride test. SPECTROSCOPY: Study of radiation and matter, such as X:ray absorption and emission spectroscopy.

SPEED OF LIGHT: The speed of anything that has zero rest mass (Energyrest = mc² where m is the mass and c is the speed of light).

SPIKING SUSPENSION: Diluted stock suspension containing the organism(s) of interest at a concentration appropriate for spiking samples.

SPIRILLUM: Spiral-shaped, gram-negative, aerobic; include Bdellovibrio, predatory on other bacteria.

SPIRIT OF HARTSHORN: A colorless, pungent, suffocating, aqueous solution of about 28.5 percent ammonia gas: used chiefly as a detergent, for removing stains and extracting certain vegetable coloring agents, and in the manufacture of ammonium salts.

SPIROCHETE: Spiral-shaped, gram-negative, mostly anaerobic; common in moist environments, from mammalian gums to coastal mudflats; complex internal structures convey rapid movement; include *Treponemapallidum*, cause of syphilis.

SPLIT FLOW CONTROL SYSTEM: This type of control system is to control the flow to each filter influent which is divided by a weir.

SPOROZOITE: A motile, infective stage of certain protozoans; e.g., *Cryptosporidium*. There are four sporozoites in each *Cryptosporidium* oocyst, and they are generally banana-shaped.

SPRAY BOTTLE OF AMMONIA: An operator should use ammonia to test for a chlorine leak around a valve or pipe. You will see white smoke if there is a leak.

SPRING PRESSURE: Is what maintains contact between the two surfaces of a mechanical seal. STABILIZATION POND: A large shallow basin used for wastewater treatment by natural processes involving the use of algae and bacteria to accomplish biological oxidation of organic matter.

STANDARD CONDITIONS FOR TEMPERATURE AND PRESSURE or SATP : A standardization used in order compare experimental results (25 °C and 100.000 kPa).

STANDPIPE: A water tank that is taller than it is wide. Should not be found in low point. STATE OF MATTER: Matter having a homogeneous, macroscopic phase; gas, plasma, liquid, and solid are the most well-known (in increasing concentration).

STERILIZED GLASSWARE: The only type of glassware that should be used in testing for coliform bacteria.

STOCK SUSPENSION: A concentrated suspension containing the organism(s) of interest that is obtained from a source that will attest to the host source, purity, authenticity, and viability of the organism(s).

STORAGE TANKS: Three types of water usage that determine the volume of a storage tank are fire suppression storage, equalization storage, and emergency storage. Equalization storage is the volume of water needed to supply the system for periods when demand exceeds supply. Generally, a water storage tank's interior coating (paint) protects the interior about 3-5 years. STUFFING BOX: That portion of the pump that houses the packing or mechanical seal. SUBATOMIC PARTICLES: Particles that are smaller than an atom; examples are protons, neutrons and electrons.

SUBLIMATION: A phase transition from solid to limewater fuel or gas.

SUBNATANT: Liquid remaining beneath the surface of floating solids.

SUBSTANCE: Material with definite chemical composition.

SUCCESSION: Transition in the species composition of a biological community, often following ecological disturbance of the community; the establishment of a biological community in an area virtually barren of life.

SULFATE- AND SULFUR- REDUCING: Commonly rod-shaped, mostly gram-negative, anaerobic; include *Desulfovibrio*, ecologically important in marshes.

SULFATE: Will readily dissolve in water to form an anion. Sulfate is a substance that occurs naturally in drinking water. Health concerns regarding sulfate in drinking water have been raised because of reports that diarrhea may be associated with the ingestion of water containing high levels of sulfate. Of particular concern are groups within the general population that may be at greater risk from the laxative effects of sulfate when they experience an abrupt change from drinking water with low sulfate concentrations to drinking water with high sulfate concentrations. SULFIDE: The term sulfide refers to several types of chemical compounds containing sulfur in its lowest oxidation number of -2. Formally, "sulfide" is the dianion, S2-, which exists in strongly alkaline aqueous solutions formed from H2S or alkali metal salts such as Li2S, Na2S, and K2S. Sulfide is exceptionally basic and, with a pKa > 14, it does not exist in appreciable concentrations even in highly alkaline water, being undetectable at pH < ~15 (8 M NaOH). Instead, sulfide combines with electrons in hydrogen to form HS, which is variously called hydrogen sulfide ion, hydrosulfide ion, sulfhydryl ion, or bisulfide ion. At still lower pH's (<7), HS- converts to H2S, hydrogen sulfide. Thus, the exact sulfur species obtained upon dissolving sulfide salts depends on the pH of the final solution. Aqueous solutions of transition metals cations react with sulfide sources (H2S, NaSH, Na2S) to precipitate solid sulfides. Such inorganic sulfides typically have very low solubility in water and many are related to minerals. One famous example is the bright yellow species CdS or "cadmium yellow". The black tarnish formed on sterling silver is Ag2S. Such species are sometimes referred to as salts. In fact, the bonding in transition metal sulfides is highly covalent, which gives rise to their semiconductor properties, which in turn is related to the practical applications of many sulfide materials.

SULFUR- AND IRON- OXIDIZING: Commonly rod-shaped, frequently with polar flagella, gramnegative, mostly anaerobic; most live in neutral (nonacidic) environment.

SUPERNATANT: The liquid layer which forms above the sludge in a settling basin.

Distribution 404 1St Edition

SURFACE SEAL: The upper portion of a wells construction where surface contaminants are adequately prevented from entering the well, normally consisting of surface casing and neat cement grout.

SURFACE WATER SOURCES: Surface water sources such as a river or lake are primarily the result of Runoff.

SURFACE WATER: Water that is open to the atmosphere and subject to surface runoff; generally, lakes, streams, rivers.

SURFACTANT: Surfactants reduce the surface tension of water by adsorbing at the liquid-gas interface. They also reduce the interfacial tension between oil and water by adsorbing at the liquid-liquid interface. Many surfactants can also assemble in the bulk solution into aggregates. Examples of such aggregates are vesicles and micelles. The concentration at which surfactants begin to form micelles is known as the critical micelle concentration or CMC. When micelles form in water, their tails form a core that can encapsulate an oil droplet, and their (ionic/polar) heads form an outer shell that maintains favorable contact with water. When surfactants assemble in oil, the aggregate is referred to as a reverse micelle. In a reverse micelle, the heads are in the core and the tails maintain favorable contact with oil. Surfactants are also often classified into four primary groups; anionic, cationic, non-ionic, and zwitterionic (dual charge).

SURFACTANT: Surfactants reduce the surface tension of water by adsorbing at the liquid-gas interface. They also reduce the interfacial tension between oil and water by adsorbing at the liquid-liquid interface. Many surfactants can also assemble in the bulk solution into aggregates. Examples of such aggregates are vesicles and micelles. The concentration at which surfactants begin to form micelles is known as the critical micelle concentration or CMC. When micelles form in water, their tails form a core that can encapsulate an oil droplet, and their (ionic/polar) heads form an outer shell that maintains favorable contact with water. When surfactants assemble in oil, the aggregate is referred to as a reverse micelle. In a reverse micelle, the heads are in the core and the tails maintain favorable contact with oil. Surfactants are also often classified into four primary groups; anionic, cationic, non-ionic, and zwitterionic (dual charge).

SUSCEPTIBILITY WAIVER: A waiver that is granted based upon the results of a vulnerability assessment.

SUSPENDED SOLIDS: Solids captured by filtration through a 0.45 micron filter membrane. SYNCHRONY: Simultaneous occurrence; synchronism.

Т

TALC: A mineral representing the one on the Mohs Scale and composed of hydrated magnesium silicate with the chemical formula H2Mg3(SiO3)4 or Mg3Si4O10(OH)2.

TASTE AND ODORS: The primary purpose to use potassium permanganate in water treatment is to control taste and odors. Anaerobic water undesirable for drinking water purposes because of color and odor problems are more likely to occur under these conditions. Taste and odor problems in the water may happen if sludge and other debris are allowed to accumulate in a water treatment plant.

TCE, trichloroethylene: A solvent and degreaser used for many purposes; for example dry cleaning, it is a common groundwater contaminant. Trichloroethylene is a colorless liquid which is used as a solvent for cleaning metal parts. Drinking or breathing high levels of trichloroethylene may cause nervous system effects, liver and lung damage, abnormal heartbeat, coma, and possibly death. Trichloroethylene has been found in at least 852 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

TDS: Ion exchange is an effective treatment process used to remove iron and manganese in a water supply. This process is ideal as long as the water does not contain a large amount of TDS. When determining the total dissolved solids, a sample should be filtered before being poured into an evaporating dish and dried. Demineralization may be necessary in a treatment process if the water has a very high value Total Dissolved Solids.

TDS-TOTAL DISSOLVED SOLIDS: An expression for the combined content of all inorganic and organic substances contained in a liquid which are present in a molecular, ionized or microgranular (colloidal sol) suspended form. Generally, the operational definition is that the solids (often abbreviated TDS) must be small enough to survive filtration through a sieve size of two micrometers. Total dissolved solids are normally only discussed for freshwater systems, since salinity comprises some of the ions constituting the definition of TDS. The principal application of TDS is in the study of water quality for streams, rivers and lakes, although TDS is generally considered not as a primary pollutant (e.g. it is not deemed to be associated with health effects), but it is rather used as an indication of aesthetic characteristics of drinking water and as an aggregate indicator of presence of a broad array of chemical contaminants. Ion exchange is an effective treatment process used to remove iron and manganese in a water supply. This process is ideal as long as the water does not contain a large amount of TDS. When determining the total dissolved solids, a sample should be filtered before being poured into an evaporating dish and dried. Demineralization may be necessary in a treatment process if the water has a very high value Total Dissolved Solids.

TDS-TOTAL DISSOLVED SOLIDS: An expression for the combined content of all inorganic and organic substances contained in a liquid which are present in a molecular, ionized or micro-granular (colloidal sol) suspended form. Generally, the operational definition is that the solids (often abbreviated TDS) must be small enough to survive filtration through a sieve size of two micrometers. Total dissolved solids are normally only discussed for freshwater systems, since salinity comprises some of the ions constituting the definition of TDS. The principal application of TDS is in the study of water quality for streams, rivers and lakes, although TDS is generally considered not as a primary pollutant (e.g. it is not deemed to be associated with health effects), but it is rather used as an indication of aesthetic characteristics of drinking water and as an aggregate indicator of presence of a broad array of chemical contaminants.

TELEMETERING: The use of a transmission line with remote signaling to monitor a pumping station or motors. Can be used to accomplish accurate and reliable remote monitoring and control over a long distribution system.

TEMPERATURE SAMPLE: This test should be performed immediately in the field, this is a grab sample.

TEMPERATURE SAMPLE: This test should be performed immediately in the field, a grab sample.

TEMPERATURE: The average energy of microscopic motions of particles.

TERTIARY TREATMENT: The use of physical, chemical, or biological means to improve secondary wastewater effluent quality.

THE RATE DECREASES: In general, when the temperature decreases, the chemical reaction rate decreases also.

THEORY: A model describing the nature of a phenomenon.

THERMAL CONDUCTIVITY: A property of a material to conduct heat (often noted as k).

THERMOCHEMISTRY: The study of absorption/release of heat within a chemical reaction.

THERMODYNAMIC STABILITY: When a system is in its lowest energy state with its environment (equilibrium).

THERMODYNAMICS: The study of the effects of changing temperature, volume or pressure (or work, heat, and energy) on a macroscopic scale.

THERMOMETER: Device that measures the average energy of a system.

THICKENING, CONDITIONING AND DEWATERING: Common processes that are utilized to reduce the volume of sludge.

THICKENING: A procedure used to increase the solids content of sludge by removing a portion of the liquid.

THOMAS MALTHUS: Formulated the concept that population growth proceeds at a geometric rate.

TIME FOR TURBIDITY BREAKTHROUGH AND MAXIMUM HEADLOSS: Are the two factors which determine whether or not a change in filter media size should be made.

TITRATION: A method of testing by adding a reagent of known strength to a water sample until a specific color change indicates the completion of the reaction.

TITRATION: The process of titrating one solution with another, also called volumetric analysis. A method of testing by adding a reagent of known strength to a water sample until a specific color change indicates the completion of the reaction.

TITRIMETRIC: Chemistry. Using or obtained by titration. Titrimetrically, adverb.

Distribution 404 1St Edition

TOROID: A surface generated by the revolution of any closed plane curve or contour about an axis lying in its plane. The solid enclosed by such a surface.

TORR: A unit to measure pressure (1 Torr is equivalent to 133.322 Pa or $1.3158 \times 10-3$ atm). TOTAL ALKALINITY: A measure of the acid-neutralizing capacity of water which indicates its buffering ability, i.e. measure of its resistance to a change in pH. Generally, the higher the total alkalinity, the greater the resistance to pH change.

TOTAL COLIFORM: Total coliform, fecal coliform, and E. coli are all indicators of drinking water quality. The total coliform group is a large collection of different kinds of bacteria. Fecal coliforms are types of total coliform that mostly exist in feces. E. coli is a sub-group of fecal coliform. When a water sample is sent to a lab, it is tested for total coliform. If total coliform is present, the sample will also be tested for either fecal coliform or E. coli, depending on the lab testing method.

TOTAL DISSOLVED SOLIDS (TDS): The accumulated total of all solids that might be dissolved in water. The weight per unit volume of all volatile and non-volatile solids dissolved in a water or wastewater after a sample has been filtered to remove colloidal and suspended solids.

TOTAL DYNAMIC HEAD: The pressure (psi) or equivalent feet of water, required for a pump to lift water to its point of storage overcoming elevation head, friction loss, line pressure, drawdown and pumping lift.

TOTAL SOLIDS: The sum of dissolved and suspended solids in a water or wastewater.

TOTAL SUSPENDED SOLIDS: The measure of particulate matter suspended in a sample of water or wastewater.

TOXIC: Capable of causing an adverse effect on biological tissue following physical contact or absorption.

TRANSIENT, NON-COMMUNITY WATER SYSTEM: TNCWS A water system which provides water in a place such as a gas station or campground where people do not remain for long periods of time. These systems do not have to test or treat their water for contaminants which pose long-term health risks because fewer than 25 people drink the water over a long period. They still must test their water for microbes and several chemicals. A Transient Non-community Water System: Is not required to sample for VOC's.

TRANSITION METAL: Elements that have incomplete d sub-shells, but also may be referred to as the d-block elements.

TRANSURANIC ELEMENT: Element with atomic number greater than 92; none of the transuranic elements are stable.

TREATABILITY STUDY: A study in which a waste is subjected to a treatment process to determine treatment and/or to determine the treatment efficiency or optimal process conditions for treatment. TREATED WATER: Disinfected and/or filtered water served to water system customers. It must meet or surpass all drinking water standards to be considered safe to drink.

TRIHALOMETHANES (THM): Four separate compounds including chloroform,

dichlorobromomethane, dibromochloromethane, and bromoform. The most common class of disinfection by-products created when chemical disinfectants react with organic matter in water during the disinfection process. See Disinfectant Byproducts.

TRIHALOMETHANES (THM): Four separate compounds including chloroform, dichlorobromomethane, dibromochloromethane, and bromoform. The most common class of disinfection by-products created when chemical disinfectants react with organic matter in water during the disinfection process. See Disinfectant Byproducts.

TRIPLE BOND: The sharing of three pairs of electrons within a covalent bond (example N2). TRIPLE POINT: The place where temperature and pressure of three phases are the same (Water has a special phase diagram).

TUBE SETTLERS: This modification of the conventional process contains many metal tubes that are placed in the sedimentation basin, or clarifier. These tubes are approximately 1 inch deep and 36 inches long, split-hexagonal shape and installed at an angle of 60 degrees or less. These tubes provide for a very large surface area upon which particles may settle as the water flows upward. The slope of the tubes facilitates gravity settling of the solids to the bottom of the basin, where they can be collected and removed. The large surface settling area also means that adequate clarification can be obtained with detention times of 15 minutes or less. As with conventional treatment, this sedimentation step is followed by filtration through mixed media.

TUBERCLES: The creation of this condition is of the most concern regarding corrosive water effects on a water system. Tubercles are formed due to joining dissimilar metals, causing electrochemical reactions. Like iron to copper pipe. We have all seen these little rust mounds inside cast iron pipe.

TUNDALL EFFECT: The effect of light scattering by colloidal (mixture where one substance is dispersed evenly through another) or suspended particles.

TURBIDIMETER: Monitoring the filter effluent turbidity on a continuous basis with an in-line instrument is a recommended practice. Turbidimeter is best suited to perform this measurement. TURBIDITY: A measure of the cloudiness of water caused by suspended particles. A qualitative measurement of water clarity which results from suspended matter that scatters or otherwise interferes with the passage of light through the water.

U

U.S. ENVIRONMENTAL PROTECTION AGENCY: In the United States, this agency responsible for setting drinking water standards and for ensuring their enforcement. This agency sets federal regulations which all state and local agencies must enforce.

ULTRAFILTRATION: A low pressure membrane filtration process which separates solutes up to 0.1 micron size range.

UN NUMBER: A four digit code used to note hazardous and flammable substances.

UNCERTAINTY PRINCIPLE: Knowing the location of a particle makes the momentum uncertain, while knowing the momentum of a particle makes the location uncertain.

UNCERTAINTY: A characteristic that any measurement that involves estimation of any amount cannot be exactly reproducible.

UNDER PRESSURE IN STEEL CONTAINERS: After chlorine gas is manufactured, it is primarily transported in steel containers.

UNIT CELL: The smallest repeating unit of a lattice.

UNIT FACTOR: Statements used in converting between units.

UNIT FILTER RUN VOLUME (UFRV): One of the most popular ways to compare filter runs. This technique is the best way to compare water treatment filter runs.

UNIVERSAL OR IDEAL GAS CONSTANT: Proportionality constant in the ideal gas law (0.08206 L·atm/(K·mol)).

UP FLOW CLARIFIER: Clarifier where flocculated water flows upward through a sludge blanket to obtain floc removal by contact with flocculated solids in the blanket.

VALENCE BOND THEORY: A theory explaining the chemical bonding within molecules by discussing valencies, the number of chemical bonds formed by an atom.

VALENCE ELECTRON: The outermost electrons of an atom, which are located in electron shells. VAN DER WAALS FORCE: One of the forces (attraction/repulsion) between molecules.

VAN'T HOFF FACTOR: Ratio of moles of particles in solution to moles of solute dissolved.

VAPOR PRESSURE: Pressure of vapor over a liquid at equilibrium.

VAPOR: The gaseous phase of a material that is in the solid or liquid state at standard temperature and pressure.

VAPOR: When a substance is below the critical temperature while in the gas phase. VAPORIZATION: Phase change from liquid to gas.

VELOCITY HEAD: The vertical distance a liquid must fall to acquire the velocity with which it flows through the piping system. For a given quantity of flow, the velocity head will vary indirectly as the pipe diameter varies.

VELOCITY HEAD: The vertical distance a liquid must fall to acquire the velocity with which it flows through the piping system. For a given quantity of flow, the velocity head will vary indirectly as the pipe diameter varies.

VENTURI: If water flows through a pipeline at a high velocity, the pressure in the pipeline is reduced. Velocities can be increased to a point that a partial vacuum is created.

VIBRIO: Rod- or comma-shaped, gram-negative, aerobic; commonly with a single flagellum; include *Vibrio cholerae*, cause of cholera, and luminescent forms symbiotic with deep-water fishes and squids.

VIRION: A complete viral particle, consisting of RNA or DNA surrounded by a protein shell and constituting the infective form of a virus.

VIRUSES: Very small disease-causing microorganisms that are too small to be seen even with microscopes. Viruses cannot multiply or produce disease outside of a living cell.

VISCOSITY: The resistance of a liquid to flow (oil).

VITRIFICATION: Vitrification is a process of converting a material into a glass-like amorphous solid that is free from any crystalline structure, either by the quick removal or addition of heat, or by mixing with an additive. Solidification of a vitreous solid occurs at the glass transition temperature (which is lower than melting temperature, Tm, due to super cooling). When the starting material is solid, vitrification usually involves heating the substances to very high temperatures. Many ceramics are produced in such a manner. Vitrification may also occur naturally when lightning strikes sand, where the extreme and immediate heat can create hollow, branching rootlike structures of glass, called fulgurite. When applied to whiteware ceramics, vitreous means the material has an extremely low permeability to liquids, often but not always water, when determined by a specified test regime. The microstructure of whiteware ceramics frequently contain both amorphous and crystalline phases.

VOC WAIVER: The longest term VOC waiver that a public water system using groundwater could receive is 9 years.

VOID: An opening, gap, or space within rock or sedimentary formations formed at the time of origin or deposition.

VOLATILE ORGANIC COMPOUNDS (VOCs): Solvents used as degreasers or cleaning agents. Improper disposal of VOCs can lead to contamination of natural waters. VOCs tend to evaporate very easily. This characteristic gives VOCs very distinct chemical odors like gasoline, kerosene, lighter fluid, or dry cleaning fluid. Some VOCs are suspected cancer-causing agents. Volatile organic compounds (VOCs) are organic chemical compounds that have high enough vapor pressures under normal conditions to significantly vaporize and enter the atmosphere. A wide range of carbon-based molecules, such as aldehydes, ketones, and other light hydrocarbons are VOCs. The term often is used in a legal or regulatory context and in such cases the precise definition is a matter of law. These definitions can be contradictory and may contain "loopholes"; e.g. exceptions, exemptions, and exclusions. The United States Environmental Protection Agency defines a VOC as any organic compound that participates in a photoreaction; others believe this definition is very broad and vague as organics that are not volatile in the sense that they vaporize under normal conditions can be considered volatile by this EPA definition. The term may refer both to well characterized organic compounds and to mixtures of variable composition.

VOLATILE ORGANIC COMPOUNDS: (VOCs) Solvents used as degreasers or cleaning agents. Improper disposal of VOCs can lead to contamination of natural waters. VOCs tend to evaporate very easily. This characteristic gives VOCs very distinct chemical odors like gasoline, kerosene, lighter fluid, or dry cleaning fluid. Some VOCs are suspected cancer-causing agents. Volatile organic compounds (VOCs) are organic chemical compounds that have high enough vapor pressures under normal conditions to significantly vaporize and enter the atmosphere. A wide range of carbon-based molecules, such as aldehydes, ketones, and other light hydrocarbons are VOCs. The term often is used in a legal or regulatory context and in such cases the precise definition is a matter of law. These definitions can be contradictory and may contain "loopholes"; e.g. exceptions, exemptions, and exclusions. The United States Environmental Protection Agency defines a VOC as any organic compound that participates in a photoreaction; others believe this definition is very broad and vague as organics that are not volatile in the sense that they vaporize under normal conditions can be considered volatile by this EPA definition. The term may refer both to well characterized organic compounds and to mixtures of variable composition.

VOLATILE: A substance that evaporates or vaporizes at a relatively low temperature. VOLT: One joule of work per coulomb - the unit of electrical potential transferred.

VOLTAGE: Voltage (sometimes also called electric or electrical tension) is the difference of electrical potential between two points of an electrical or electronic circuit, expressed in volts.[1] It measures the potential energy of an electric field to cause an electric current in an electrical conductor. Depending on the difference of electrical potential it is called extra low voltage, low voltage, high voltage or extra high voltage. Specifically Voltage is equal to energy per unit charge.

Distribution 404 1St Edition

VOLTAGE: Voltage (sometimes also called electric or electrical tension) is the difference of electrical potential between two points of an electrical or electronic circuit, expressed in volts. It measures the potential energy of an electric field to cause an electric current in an electrical conductor. Depending on the difference of electrical potential it is called extra low voltage, low voltage, high voltage or extra high voltage. Specifically Voltage is equal to energy per unit charge. VOLTIMETER: Instrument that measures the cell potential.

VOLUMETERIC ANALYSIS: See titration.

VOLUTE: The spiral-shaped casing surrounding a pump impeller that collects the liquid discharge by the impeller.

VORTEX: The helical swirling of water moving towards a pump.

VORTICELLA: Vorticella is a genus of protozoa, with over 100 known species. They are stalked inverted bell-shaped ciliates, placed among the peritrichs. Each cell has a separate stalk anchored onto the substrate, which contains a contracile fibril called a myoneme. When stimulated this shortens, causing the stalk to coil like a spring. Reproduction is by budding, where the cell undergoes longitudinal fission and only one daughter keeps the stalk. Vorticella mainly lives in freshwater ponds and streams - generally anywhere protists are plentiful. Other genera such as Carchesium resemble Vorticella but are branched or colonial.

VULNERABILITY ASSESSMENT: An evaluation of drinking water source quality and its vulnerability to contamination by pathogens and toxic chemicals.

W

WAIVERS: Monitoring waivers for nitrate and nitrite are prohibited.

WASTE ACTIVATED SLUDGE: Excess activated sludge that is discharged from an activated sludge treatment process.

WASTEWATER: Liquid or waterborne wastes polluted or fouled from households, commercial or industrial operations, along with any surface water, storm water or groundwater infiltration.

WATER H2O: A chemical substance, a major part of cells and Earth, and covalently bonded. WATER HAMMER: A surge in a pipeline resulting from the rapid increase or decrease in water flow. Water hammer exerts tremendous force on a system and can be highly destructive.

WATER PURVEYOR: The individuals or organization responsible to help provide, supply, and furnish quality water to a community.

WATER QUALITY CRITERIA: Comprised of both numeric and narrative criteria. Numeric criteria are scientifically derived ambient concentrations developed by EPA or States for various pollutants of concern to protect human health and aquatic life. Narrative criteria are statements that describe the desired water quality goal.

WATER QUALITY CRITERIA: Comprised of both numeric and narrative criteria. Numeric criteria are scientifically derived ambient concentrations developed by EPA or States for various pollutants of concern to protect human health and aquatic life. Narrative criteria are statements that describe the desired water quality goal.

WATER QUALITY STANDARD: A statute or regulation that consists of the beneficial designated use or uses of a waterbody, the numeric and narrative water quality criteria that are necessary to protect the use or uses of that particular waterbody, and an antidegradation statement.

WATER QUALITY: The 4 broad categories of water quality are: Physical, chemical, biological, radiological. Pathogens are disease causing organisms such as bacteria and viruses. A positive bacteriological sample indicates the presence of bacteriological contamination. Source water monitoring for lead and copper be performed when a public water system exceeds an action level for lead of copper.

WATER RECLAMATION: The restoration of wastewater to a state that will allow its beneficial reuse.

WATER VAPOR: A characteristic that is unique to water vapor in the atmosphere is that water does not contain any salts.

WATERBORNE DISEASE: A disease, caused by a virus, bacterium, protozoan, or other microorganism, capable of being transmitted by water (e.g., typhoid fever, cholera, amoebic dysentery, gastroenteritis).

WATERSHED: An area that drains all of its water to a particular water course or body of water. The land area from which water drains into a stream, river, or reservoir.

WAVE FUNCTION: A function describing the electron's position in a three-dimensional space. Weathered: The existence of rock or formation in a chemically or physically broken down or decomposed state. Weathered material is in an unstable state.

WHOLE EFFLUENT TOXICITY: The total toxic effect of an effluent measured directly with a toxicity test.

WORK: The amount of force over distance and is in terms of joules (energy).

WPCF: Water Pollution Control Facility

WTP: Water Treatment Plant

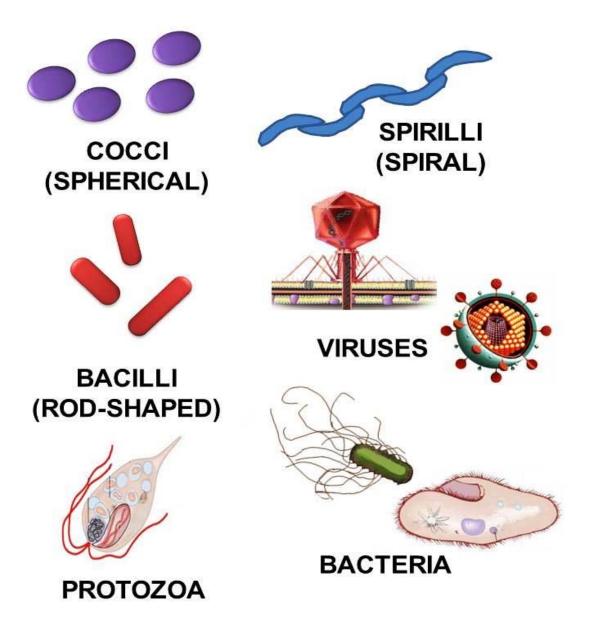
WWTP: Wastewater Treatment Plant

Х

X-RAY DIFFRACTION: A method for establishing structures of crystalline solids using singe wavelength X-rays and looking at diffraction pattern.

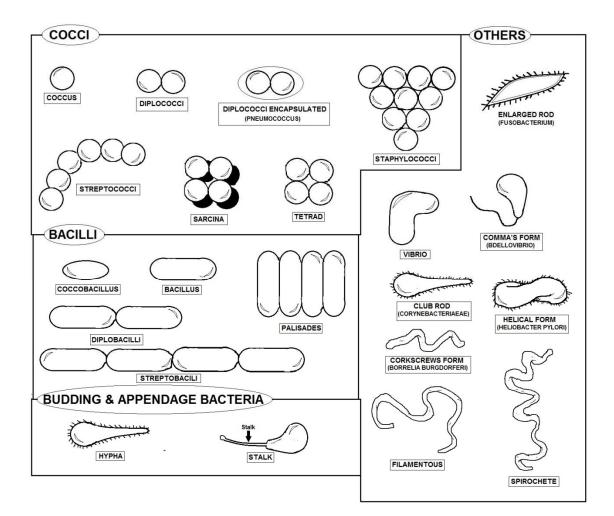
X-RAY PHOTOELECTRON SPECTROSCOPY: A spectroscopic technique to measure composition of a material.

X-RAY: Form of ionizing, electromagnetic radiation, between gamma and UV rays.

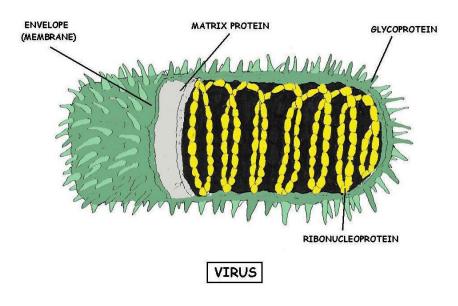

Y

YIELD: The amount of product produced during a chemical reaction.

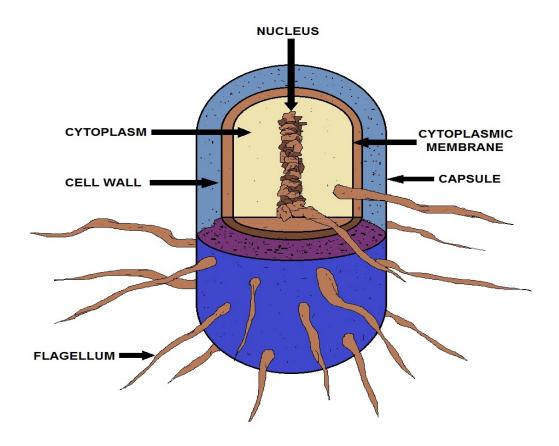
Distribution 404 1St Edition

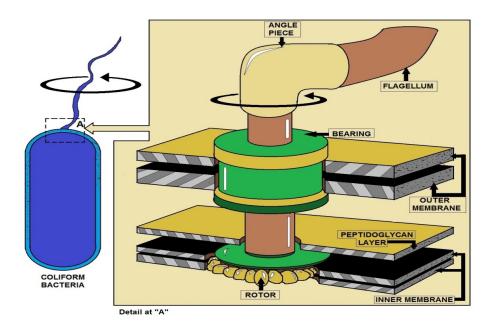

Microorganism Appendix

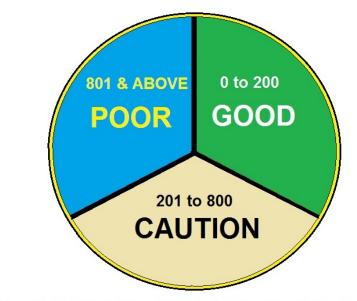
This section will give a close-up and short explanation of the major microorganisms found in water and in wastewater.

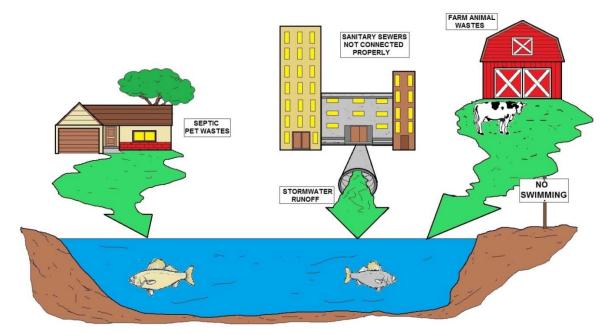


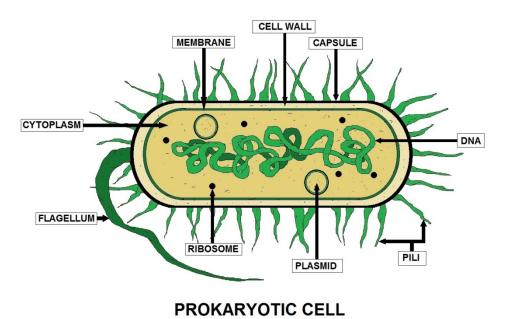
BACTERIA TYPES


589

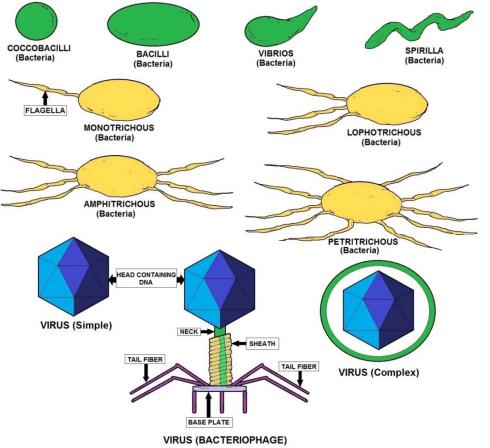

BACTERIA SHAPES

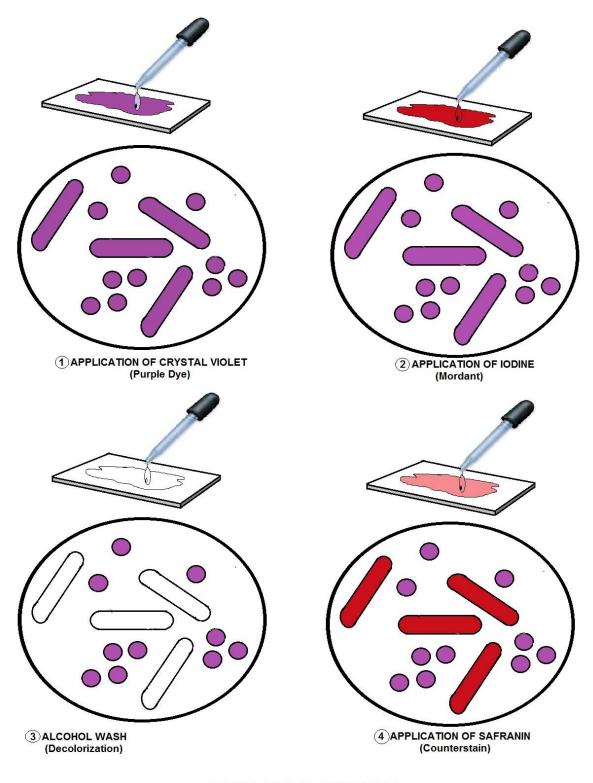

590

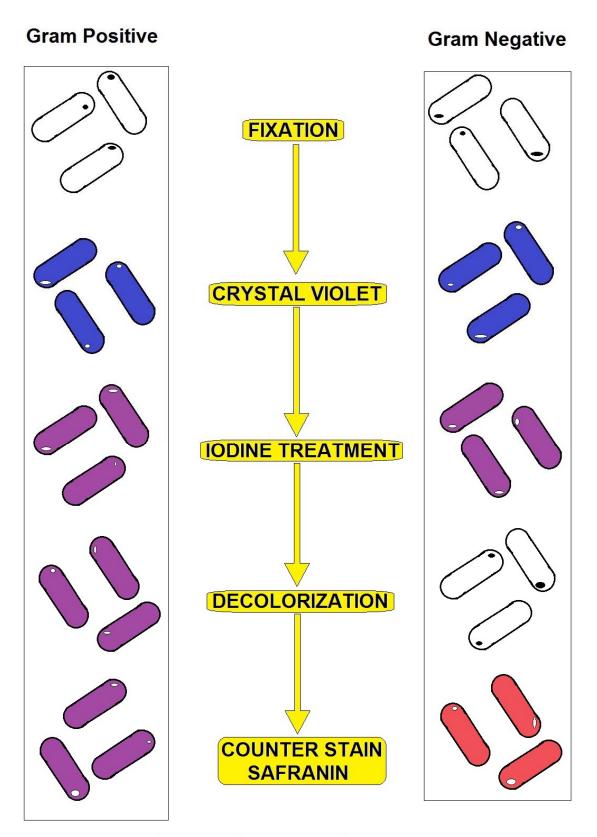

BACTERIAL STRUCTURE

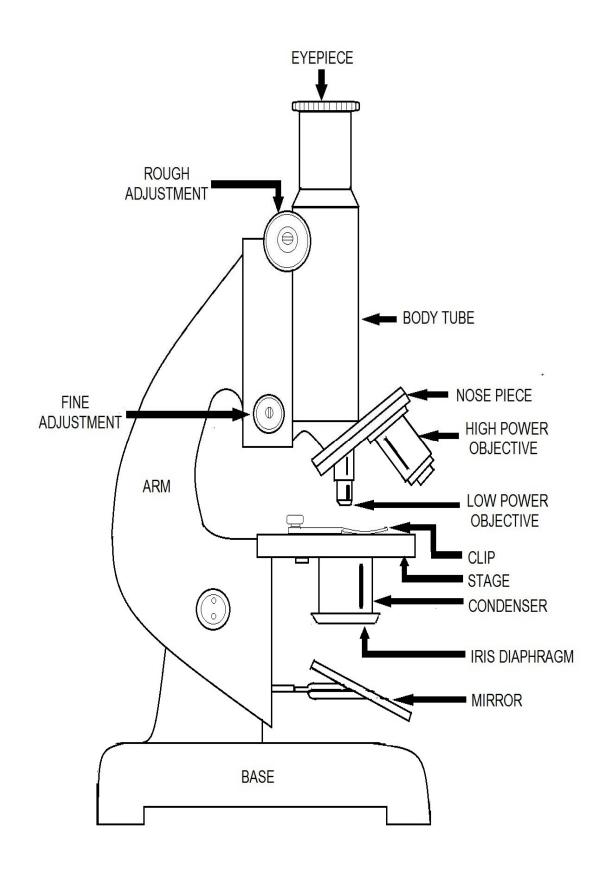

FLAGELLUM DIAGRAM

FECAL COLIFORM BACTERIA COLONIES (Per 100 Milliliters)

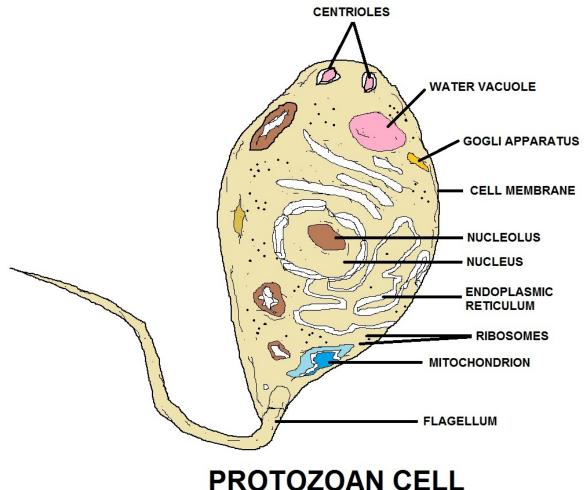



SOURCES OF FECAL COLIFORM BACTERIA


593



BACTERIA STAIN TEST (BACTERIA THAT RETAIN STAIN ARE TERMED POSITIVE "+ve")


GRAM STAINING DIAGRAM

595

596

Protozoa

Protozoa are around 10–50 micrometer, but can grow up to 1 mm and can easily be seen under a microscope. Protozoa exist throughout aqueous environments and soil. Protozoa occupy a range of trophic levels. As predators, they prey upon unicellular or filamentous algae, bacteria, and microfungi.

Protozoa play a role both as herbivores and as consumers in the decomposer link of the food chain. Protozoa also play a vital role in controlling bacteria populations and biomass. As components of the micro- and meiofauna, protozoa are an important food source for microinvertebrates. Thus, the ecological role of protozoa in the transfer of bacterial and algal production to successive trophic levels is important. Protozoa such as the malaria parasites (Plasmodium spp.), trypanosomes and leishmania are also important as parasites and symbionts of multicellular animals.

Most protozoa exist in 5 stages of life which are in the form of trophozoites and cysts. As cysts, protozoa can survive harsh conditions, such as exposure to extreme temperatures and harmful chemicals, or long periods without access to nutrients, water, or oxygen for a period of time. Being a cyst enables parasitic species to survive outside of the host, and

allows their transmission from one host to another. When protozoa are in the form of trophozoites (Greek, tropho=to nourish), they actively feed and grow.

The process by which the protozoa takes its cyst form is called encystation, while the process of transforming back into trophozoite is called excystation.

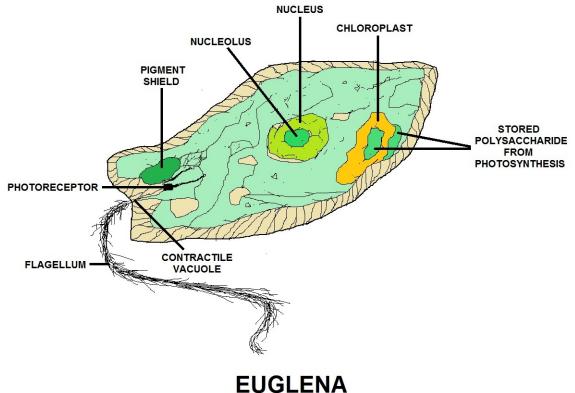
Protozoa can reproduce by binary fission or multiple fission. Some protozoa reproduce sexually, some asexually, and some both (e.g. Coccidia). An individual protozoan is hermaphroditic.

Classification

Protozoa were commonly grouped in the kingdom of Protista together with the plant-like algae and fungus-like water molds and slime molds. In the 21st-century systematics, protozoans, along with ciliates, mastigophorans, and apicomplexans, are arranged as animal-like protists. However, protozoans are neither Animalia nor Metazoa (with the possible exception of the enigmatic, moldy Myxozoa).

Sub-groups

Protozoa have traditionally been divided on the basis of their means of locomotion, although this is no longer believed to represent genuine relationships:

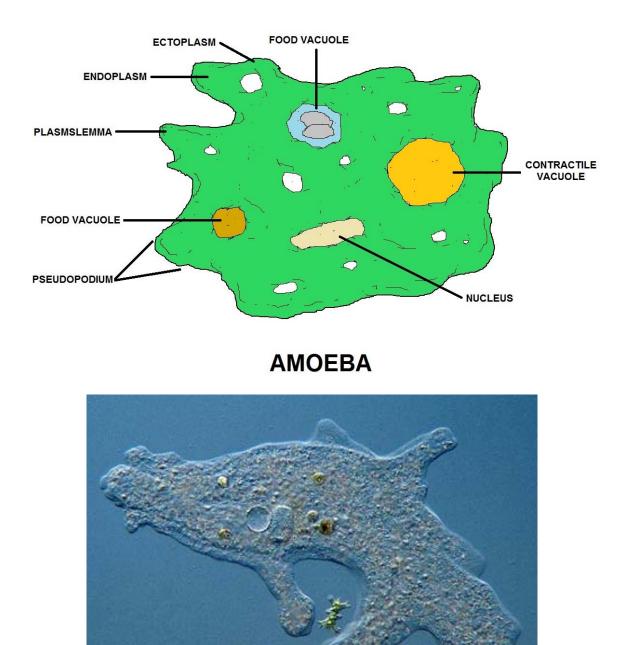

- * Flagellates (e.g. Giardia lambia)
- * Amoeboids (e.g. Entamoeba histolytica)
- * Sporozoans (e.g. Plasmodium knowlesi)
- * Apicomplexa
- * Myxozoa
- * Microsporidia
- * Ciliates (e.g. Balantidium coli)

There are many ways that infectious diseases can spread. Pathogens usually have specific routes by which they are transmitted, and these routes may depend on the type of cells and tissue that a particular agent targets. For example, because cold viruses infect the respiratory tract, they are dispersed into the air via coughing and sneezing.

Once in the air, the viruses can infect another person who is unlucky enough to inhale air containing the virus particles.

Agents vary greatly in their stability in the environment. Some viruses may survive for only a few minutes outside of a host, while some spore-forming bacteria are extremely durable and may survive in a dormant state for a decade or more.

Protozoa Section


The diverse assemblage of organisms that carry out all of their life functions within the confines of a single, complex eukaryotic cell are called protozoa.

Paramecium, Euglena, and Amoeba are well-known examples of these major groups of organisms. Some protozoa are more closely related to animals, others to plants, and still others are relatively unique. Although it is not appropriate to group them together into a single taxonomic category, the research tools used to study any unicellular organism are usually the same, and the field of protozoology has been created to carry out this research. The unicellular photosynthetic protozoa are sometimes also called algae and are addressed elsewhere. This report considers the status of our knowledge of heterotrophic protozoa (protozoa that cannot produce their own food).

Free-living Protozoa

Protozoans are found in all moist habitats within the United States, but we know little about their specific geographic distribution. Because of their small size, production of resistant cysts, and ease of distribution from one place to another, many species appear to be cosmopolitan and may be collected in similar microhabitats worldwide (Cairns and Ruthven 1972). Other species may have relatively narrow limits to their distribution.

Marine ciliates inhabit interstices of sediment and beach sands, surfaces, deep sea and cold Antarctic environments, planktonic habitats, and the algal mats and detritus of estuaries and wetlands.

Amoeba proteus, pseudopods slowly engulf the small desmid Staurastrum.

Amoebas

Amoebas (Phylum Rhizopoda) are unicellular protists that are able to change their shape constantly. Each species has its own distinct repertoire of shapes.

How does an amoeba locomote?

Amoebas locomote by way of cytoplasmic movement. (cytoplasm is the cell content around the nucleus of the cell) The amoeba forms pseudopods (false feet) with which they 'flow' over a surface. The cytoplasma not only flows, it also changes from a fluid into a solid state.

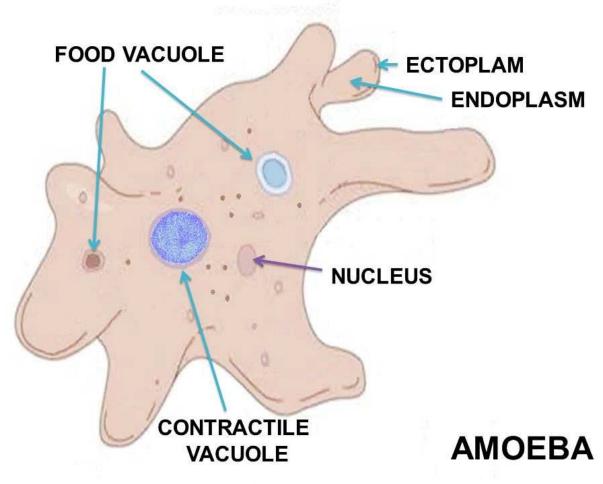
These pseudopods are also used to capture prey, they simply engulf the food. They can detect the kind of prey and use different 'engulfing tactics'.

The image from the last page shows several cell organelles. Left from the center we can see aspherical water expelling vesicle and just right of it, the single nucleus of this species can be seen. Other species may have many nuclei. The cell is full of brown food vacuoles and also contains small crystals.

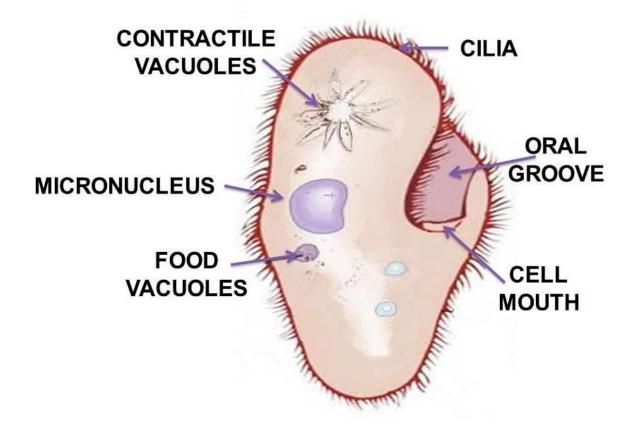
Protozoa Information

Our actual knowledge of salinity, temperature, and oxygen requirements of marine protozoa is poor (although some groups, such as the foraminifera, are better studied than others), and even the broadest outlines of their biogeographic ranges are usually a mystery. In general, freshwater protozoan communities are similar to marine communities except the specialized interstitial fauna of the sand is largely missing. In freshwater habitats, the foraminifera and radiolaria common in marine environments are absent or low in numbers while testate amoebae exist in greater numbers. Relative abundance of species in the marine versus freshwater habitat is unknown.

Soil-dwelling protozoa have been documented from almost every type of soil and in every kind of environment, from the peat-rich soil of bogs to the dry sands of deserts. In general, protozoa are found in greatest abundance near the soil surface, especially in the upper 15 cm (6 in), but occasional isolates can be obtained at depths of a meter (yard) or more.

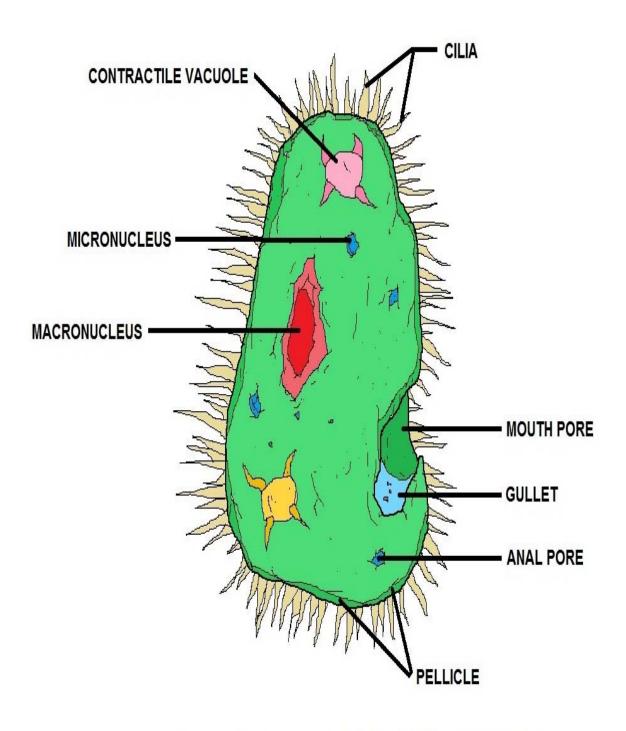

Protozoa do not constitute a major part of soil biomass, but in some highly productive regions such as forest litter, the protozoa are a significant food source for the microinvertebrates, with a biomass that may reach 20 g/m2 of soil surface area there.

Environmental Quality Indicators


Polluted waters often have a rich and characteristic protozoan fauna. The relative abundance and diversity of protozoa are used as indicators of organic and toxic pollution (Cairns et al. 1972; Foissner 1987; Niederlehner et al. 1990; Curds 1992). Bick (1972), for example, provided a guide to ciliates that are useful as indicators of environmental quality of European freshwater systems, along with their ecological distribution with respect to parameters such as amount of organic material and oxygen levels.

Foissner (1988) clarified the taxonomy of European ciliates as part of a system for classifying the state of aquatic habitats according to their faunas.

Amoeba



Amoeba (sometimes amœba or ameba, plural amoebae) is a genus of protozoa that moves by means of pseudopods, and is well-known as a representative unicellular organism. The word amoeba or ameba is variously used to refer to it and its close relatives, now grouped as the Amoebozoa, or to all protozoa that move using pseudopods, otherwise termed amoeboids. Paramecia

PARAMECIUM

Paramecia are a group of unicellular ciliate protozoa formerly known as slipper animalcules from their slipper shape. They are commonly studied as a representative of the ciliate group. Simple cilia cover the body which allows the cell to move with a synchronous motion (like a caterpilla). There is also a deep oral groove containing inconspicuous compound oral cilia (as found in other peniculids) that is used to draw food inside. They generally feed upon bacteria and other small cells. Osmoregulation is carried out by a pair of contractile vacuoles, which actively expel water absorbed by osmosis from their surroundings. Paramecia are widespread in freshwater environments, and are especially common in scums. Paramecia are attracted by acidic conditions. Certain singlecelled eukaryotes, such as Paramecium, are examples for exceptions to the universality of the genetic code (translation systems where a few codons differ from the standard ones).

DIAGRAM OF A PARAMECIUM SP.

Symbiotic Protozoa

Parasites

Protozoa are infamous for their role in causing disease, and parasitic species are among the best-known protozoa. Nevertheless, our knowledge has large gaps, especially of normally free-living protozoa that may become pathogenic in immunocompromised individuals. For example, microsporidia comprise a unique group of obligate, intracellular parasitic protozoa. Microsporidia are amazingly diverse organisms with more than 700 species and 80 genera that are capable of infecting a variety of plant, animal, and even other protist hosts.

They are found worldwide and have the ability to thrive in many ecological conditions. Until the past few years, their ubiquity did not cause a threat to human health, and few systematists worked to describe and classify the species. Since 1985, however, physicians have documented an unusual rise in worldwide infections in AIDS patients caused by four different genera of microsporidia (Encephalitozoon, Nosema, Pleistophora, and Enterocytozoon). According to the Centers for Disease Control in the United States, difficulties in identifying microsporidian species are impeding diagnosis and effective treatment of AIDS patients.

Protozoan Reservoirs of Disease

The presence of bacteria in the cytoplasm of protozoa is well known, whereas that of viruses is less frequently reported. Most of these reports simply record the presence of bacteria or viruses and assume some sort of symbiotic relationship between them and the protozoa. Recently, however, certain human pathogens were shown to not only survive but also to multiply in the cytoplasm of free-living, nonpathogenic protozoa. Indeed, it is now believed that protozoa are the natural habitat for certain pathogenic bacteria. To date, the main focus of attention has been on the bacterium Legionella pneumophila, the causative organism of Legionnaires' disease; these bacteria live and reproduce in the following pages.

Symbionts

Some protozoa are harmless or even beneficial symbionts. A bewildering array of ciliates, for example, inhabit the rumen and reticulum of ruminates and the cecum and colon of equids. Little is known about the relationship of the ciliates to their host, but a few may aid the animal in digesting cellulose.

Data on Protozoa

While our knowledge of recent and fossil foraminifera in the U.S. coastal waterways is systematically growing, other free-living protozoa are poorly known. There are some regional guides and, while some are excellent, many are limited in scope, vague on specifics, or difficult to use. Largely because of these problems, most ecologists who include protozoa in their studies of aquatic habitats do not identify them, even if they do count and measure them for biomass estimates (Taylor and Sanders 1991).

Parasitic protozoa of humans, domestic animals, and wildlife are better known although no attempt has been made to compile this information into a single source. Large gaps in our knowledge exist, especially for haemogregarines, microsporidians, and myxosporidians (see Kreier and Baker 1987).

Distribution 404 1St Edition

Museum Specimens

For many plant and animal taxa, museums represent a massive information resource. This is not true for protozoa. In the United States, only the National Natural History Museum (Smithsonian Institution) has a reference collection preserved on microscope slides, but it does not have a protozoologist curator and cannot provide species' identification or verification services. The American Type Culture Collection has some protozoa in culture, but its collection includes relatively few kinds of protozoa.

Ecological Role of Protozoa

Although protozoa are frequently overlooked, they play an important role in many communities where they occupy a range of trophic levels. As predators upon unicellular or filamentous algae, bacteria, and microfungi, protozoa play a role both as herbivores and as consumers in the decomposer link of the food chain. As components of the microand meiofauna, protozoa are an important food source for microinvertebrates. Thus, the ecological role of protozoa in the transfer of bacterial and algal production to successive trophic levels is important.

Factors Affecting Growth and Distribution

Most free-living protozoa reproduce by cell division (exchange of genetic material is a separate process and is not involved in reproduction in protozoa). The relative importance for population growth of biotic versus chemical-physical components of the environment is difficult to ascertain from the existing survey data. Protozoa are found living actively in nutrient-poor to organically rich waters and in fresh water varying between 0°C (32°F) and 50°C (122°F). Nonetheless, it appears that rates of population growth increase when food is not constrained and temperature is increased (Lee and Fenchel 1972; Fenchel 1974; Montagnes et al. 1988).

Comparisons of oxygen consumption in various taxonomic groups show wide variation (Laybourn and Finlay 1976), with some aerobic forms able to function at extremely low oxygen tensions and to thereby avoid competition and predation.

Many parasitic and a few free-living species are obligatory anaerobes (grow without atmospheric oxygen). Of the free-living forms, the best known are the plagiopylid ciliates that live in the anaerobic sulfide-rich sediments of marine wetlands (Fenchel et al. 1977). The importance of plagiopylids in recycling nutrients to aerobic zones of wetlands is potentially great.

Because of the small size of protozoa, their short generation time, and (for some species) ease of maintaining them in the laboratory, ecologists have used protozoan populations and communities to investigate competition and predation.

The result has been an extensive literature on a few species studied primarily under laboratory conditions. Few studies have been extended to natural habitats with the result that we know relatively little about most protozoa and their roles in natural communities. Intraspecific competition for common resources often results in cannibalism, sometimes with dramatic changes in morphology of the cannibals (Giese 1973). Field studies of interspecific competition are few and most evidence for such species interactions is indirect (Cairns and Yongue 1977).

Contractile Vacuoles

Many protozoa have contractile vacuoles, which collect and expel excess water, and extrusomes, which expel material used to deflect predators or capture prey. In multicellular organisms, hormones are often produced in vesicles. In higher plants, most of a cell's volume is taken up by a central vacuole or tonoplast, which maintains its osmotic pressure. Many eukaryotes have slender motile projections, usually called flagella when long and cilia when short. These are variously involved in movement, feeding, and sensation. These are entirely distinct from prokaryotic flagella. They are supported by a bundle of microtubules arising from a basal body, also called a kinetosome or centriole, characteristically arranged as nine doublets surrounding two singlets. Flagella also may have hairs or mastigonemes, scales, connecting membranes, and internal rods. Their interior is continuous with the cell's cytoplasm.

Centrioles

Centrioles are often present even in cells and groups that do not have flagella. They generally occur in groups of one or two, called kinetids that give rise to various microtubular roots. These form a primary component of the cytoskeletal structure, and are often assembled over the course of several cell divisions, with one flagellum retained from the parent and the other derived from it. Centrioles may also be associated in the formation of a spindle during nuclear division. Some protists have various other microtubule-supported organelles. These include the radiolaria and heliozoa, which produce axopodia used in flotation or to capture prey, and the haptophytes, which have a peculiar flagellum-like organelle called the haptonema.

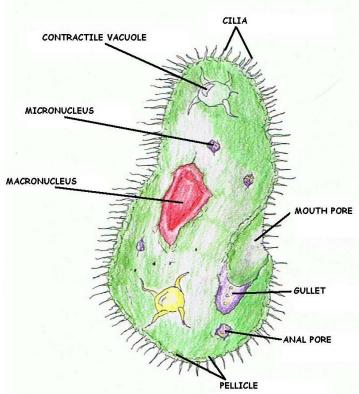
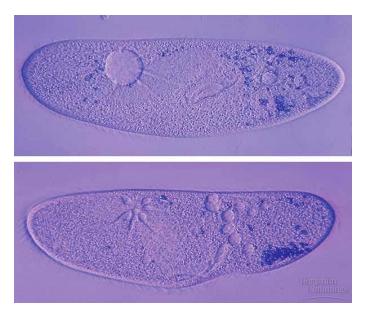



Figure 1. A diagram of *Paramecium* sp. with major organelles indicated.

Distribution 404 1St Edition

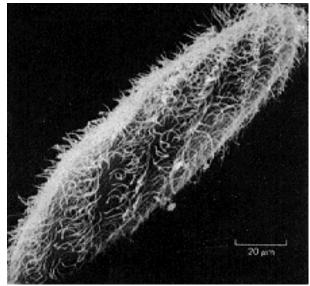

Contractile Vacuoles

Figure 2. The contractile vacuole when full (top) and after contraction (bottom).

Paramecium

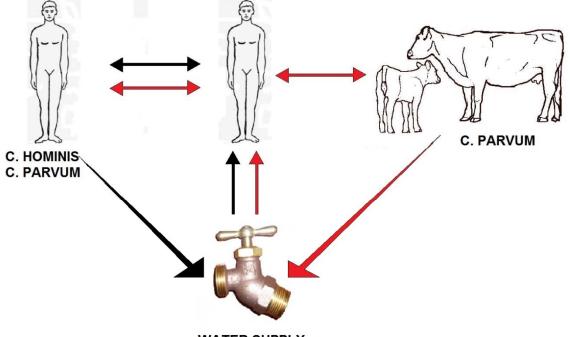
Members of the genus *Paramecium* are single-celled, freshwater organisms in the kingdom Protista. They exist in an environment in which the osmotic concentration in their external environment is much lower than that in their cytoplasm. More specifically, the habitat in which they live is **hypotonic** to their cytoplasm. As a result of this, *Paramecium* is subjected to a continuous influx of water, as water diffuses inward to a region of higher osmotic concentration.

If *Paramecium* is to maintain homeostasis, water must be continually pumped out of the cell (against the osmotic gradient) at the same rate at which it moves in. This process, known as **osmoregulation**, is carried out by two organelles in *Paramecium* known as **contractile vacuoles** (Figures 1 and 2).

Protozoan Diseases

Protozoan pathogens are larger than bacteria and viruses, but still microscopic. They invade and inhabit the gastrointestinal tract. Some parasites enter the environment in a dormant form, with a protective cell wall called a "*cyst*." The cyst can survive in the environment for long periods of time and be extremely resistant to conventional disinfectants such as chlorine. Effective filtration treatment is therefore critical to removing these organisms from water sources.

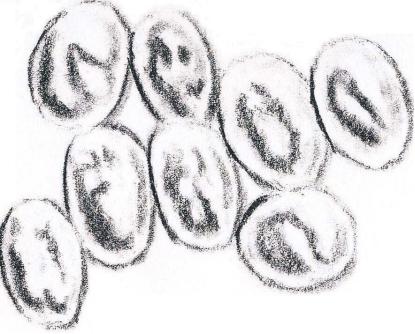
Giardiasis


Giardiasis is a commonly reported protozoan-caused disease. It has also been referred to as *"backpacker's disease"* and *"beaver fever"* because of the many cases reported among hikers and others who consume untreated surface water. Symptoms include chronic diarrhea, abdominal cramps, bloating, frequent loose and pale greasy stools, fatigue and weight loss. The incubation period is 5-25 days or longer, with an average of 7-10 days. Many infections are asymptomatic (no symptoms). Giardiasis occurs worldwide. Waterborne outbreaks in the United States occur most often in communities receiving their drinking water from streams or rivers without adequate disinfection or a filtration system. The organism, *Giardia lamblia*, has been responsible for more community-wide outbreaks of disease in the U.S. than any other pathogen. Drugs are available for treatment but are not 100% effective.

Cryptosporidiosis

Cryptosporidiosis is an example of a protozoan disease that is common worldwide, but was only recently recognized as causing human disease. The major symptom in humans is diarrhea, which may be profuse and watery. The diarrhea is associated with cramping abdominal pain. General malaise, fever, anorexia, nausea, and vomiting occur less often. Symptoms usually come and go, and end in fewer than 30 days in most cases. The incubation period is 1-12 days, with an average of about seven days. *Cryptosporidium* organisms have been identified in human fecal specimens from more than 50 countries on six continents. The mode of transmission is fecal-oral, either by person-to-person or animal-to-person. There is no specific treatment for *Cryptosporidium* infections.

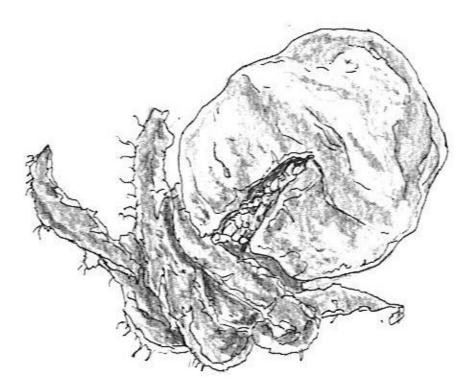
All of these diseases, with the exception of hepatitis A, have one symptom in common: diarrhea. They also have the same mode of transmission, fecal-oral, whether through person-to-person


or animal-to-person contact, and the same routes of transmission, being either foodborne or waterborne. Although most pathogens cause mild, self-limiting disease, on occasion, they can cause serious, even life threatening illness. Particularly vulnerable are persons with weak immune systems such as those with HIV infections or cancer. By understanding the nature of waterborne diseases, the importance of properly constructed, operated and maintained public water systems becomes obvious. While water treatment cannot achieve sterile water (no microorganisms), the goal of treatment must clearly be to produce drinking water that is as pathogen-free as possible at all times. For those who operate water systems with inadequate source protection or treatment facilities, the potential risk of a waterborne disease outbreak is real. For those operating systems that currently provide adequate source protection and treatment, operating and maintaining the system at a high level on a continuing basis is critical to prevent disease.

WATER SUPPLY

CRYPTOSPORIDIUM TRANSMISSION

Cryptosporidium

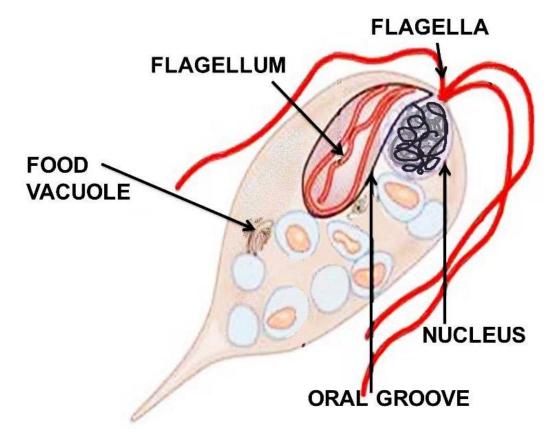


Cryptosporidium is a protozoan pathogen of the Phylum Apicomplexa and causes a diarrheal illness called cryptosporidiosis. Other apicomplexan pathogens include the malaria parasite Plasmodium, and Toxoplasma, the causative agent of toxoplasmosis. Unlike Plasmodium, which transmits via a mosquito vector, Cryptosporidium does not utilize an insect vector and is capable of completing its life cycle within a single host, resulting in cyst stages which are excreted in feces and are capable of transmission to a new host.

A number of species of Cryptosporidium infect mammals. In humans, the main causes of disease are C. parvum and C. hominis (previously C. parvum genotype 1). C. canis, C. felis, C. meleagridis, and C. muris can also cause disease in humans. In recent years, cryptosporidiosis has plagued many commercial Leopard gecko breeders. Several species of the Cryptosporidium family (C. serpentes and others) are involved, and outside of geckos it has been found in monitor lizards, iguanas, tortoises as well as several snake species.

Cryptosporidiosis is typically an acute short-term infection but can become severe and nonresolving in children and immunocompromised individuals. The parasite is transmitted by environmentally hardy cysts (oocysts) that, once ingested, excyst in the small intestine and result in an infection of intestinal epithelial tissue.

The genome of Cryptosporidium parvum was sequenced in 2004 and was found to be unusual amongst Eukaryotes in that the mitochondria seem not to contain DNA. A closely-related species, C. hominis, also has its genome sequence available. CryptoDB.org is a NIH-funded database that provides access to the Cryptosporidium genomics data sets.


CRYPTO-PARVUM

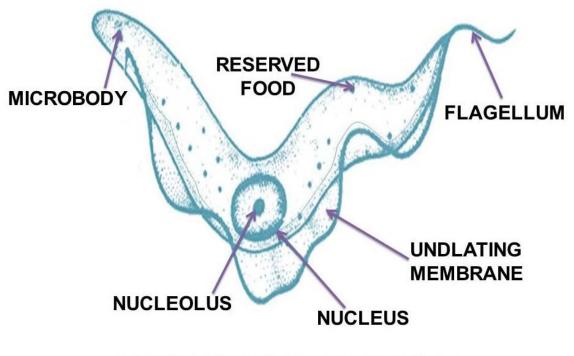
When *C. parvum* was first identified as a human pathogen, diagnosis was made by a biopsy of intestinal tissue (Keusch, *et al.*, 1995). However, this method of testing can give false negatives due the "patchy" nature of the intestinal parasitic infection (Flanigan and Soave, 1993). Staining methods were then developed to detect and identify the oocysts directly from stool samples. The modified acid-fast stain is traditionally used to most reliably and specifically detect the presence of cryptosporidial oocysts.

There have been six major outbreaks of cryptosporidiosis in the United States as a result of contamination of drinking water (Juranek, 1995). One major outbreak in Milwaukee in 1993 affected over 400,000 persons. Outbreaks such as these usually result from drinking water taken from surface water sources such as lakes and rivers (Juranek, 1995). Swimming pools and water park wave pools have also been associated with outbreaks of cryptosporidiosis. Also, untreated groundwater or well water public drinking water supplies can be sources of contamination.

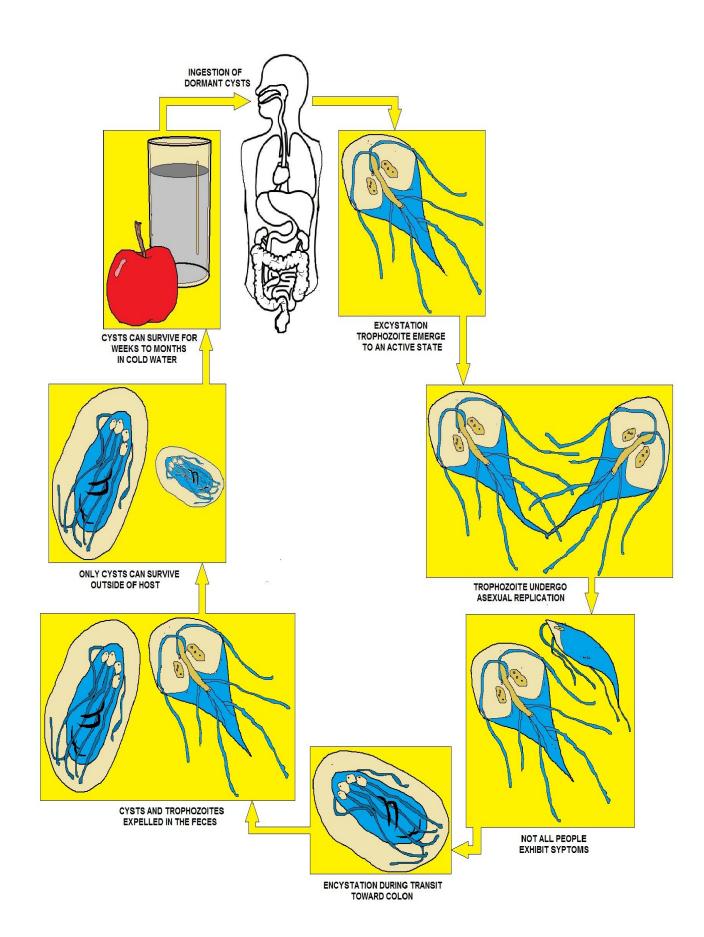
The highly environmentally resistant cyst of *C. parvum* allows the pathogen to survive various drinking water filtrations and chemical treatments such as chlorination. Although municipal drinking water utilities may meet federal standards for safety and quality of drinking water, complete protection from cryptosporidial infection is not guaranteed. In fact, *all* waterborne outbreaks of cryptosporidiosis have occurred in communities where the local utilities met all state and federal drinking water standards (Juranek, 1995).

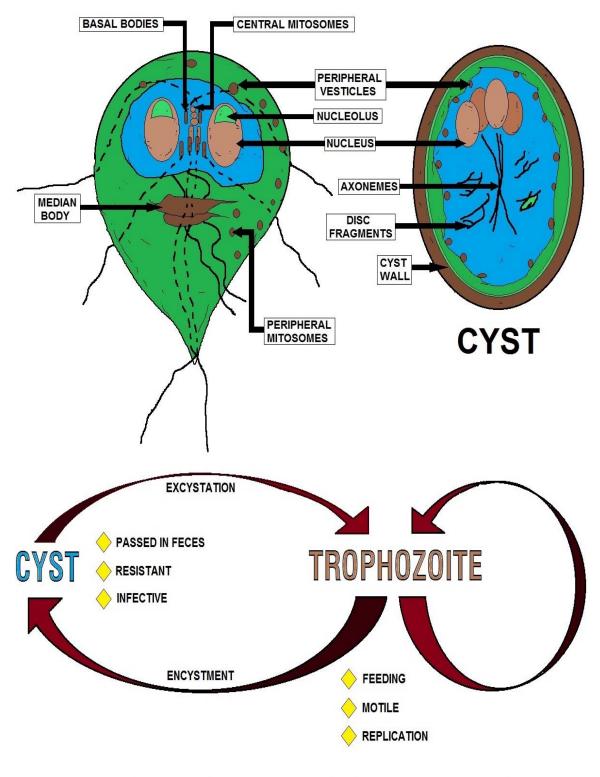
Giardia Lamblia

Giardia lamblia (synonymous with Lamblia intestinalis and Giardia duodenalis) is a flagellated protozoan parasite that colonizes and reproduces in the small intestine, causing giardiasis. The giardia parasite attaches to the epithelium by a ventral adhesive disc, and reproduces via binary fission. Giardiasis does not spread via the bloodstream, nor does it spread to other parts of the gastro-intestinal tract, but remains confined to the lumen of the small intestine. Giardia trophozoites absorb their nutrients from the lumen of the small intestine, and are anaerobes.

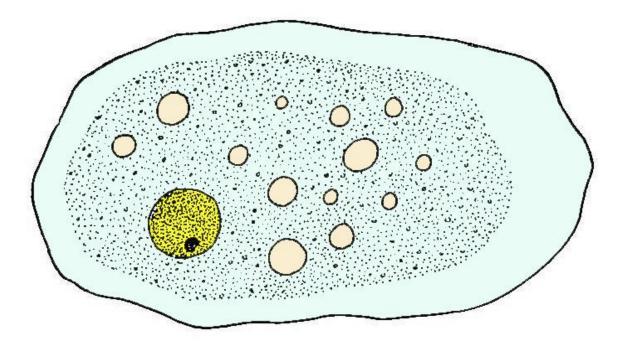

Giardia infection can occur through ingestion of dormant cysts in contaminated water, or by the fecal-oral route (through poor hygiene practices). The Giardia cyst can survive for weeks to months in cold water and therefore can be present in contaminated wells and water systems, and even clean-looking mountain streams, as well as city reservoirs, as the Giardia cysts are resistant to conventional water treatment methods, such as chlorination and ozonolysis.

Zoonotic transmission is also possible, and therefore Giardia infection is a concern for people camping in the wilderness or swimming in contaminated streams or lakes, especially the artificial lakes formed by beaver dams (hence the popular name for giardiasis, "Beaver Fever"). As well as water-borne sources, fecal-oral transmission can also occur, for example in day care centers, where children may have poorer hygiene practices.


Those who work with children are also at risk of being infected, as are family members of infected individuals. Not all Giardia infections are symptomatic, so some people can unknowingly serve as carriers of the parasite.

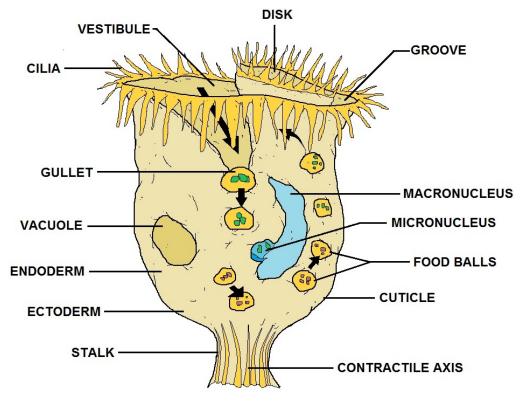

The life cycle begins with a non-infective cyst being excreted with feces of an infected individual. Once out in the environment, the cyst becomes infective. A distinguishing characteristic of the cyst is 4 nuclei and a retracted cytoplasm. Once ingested by a host, the trophozoite emerges to an active state of feeding and motility. After the feeding stage, the trophozoite undergoes asexual replication through longitudinal binary fission. The resulting trophozoites and cysts then pass through the digestive system in the feces. While the trophozoites may be found in the feces, only the cysts are capable of surviving outside of the host.

Distinguishing features of the trophozoites are large karyosomes and lack of peripheral chromatin, giving the two nuclei a halo appearance. Cysts are distinguished by a retracted cytoplasm. This protozoa lacks mitochondria, although the discovery of the presence of mitochodrial remnant organelles in one recent study "indicate that Giardia is not primitively amitochondrial and that it has retained a functional organelle derived from the original mitochondrial endosymbiont"


PROTOZOAN PARASITE

TYPICAL FECAL-ORAL LIFE CYCLE

Entamoeba histolytica

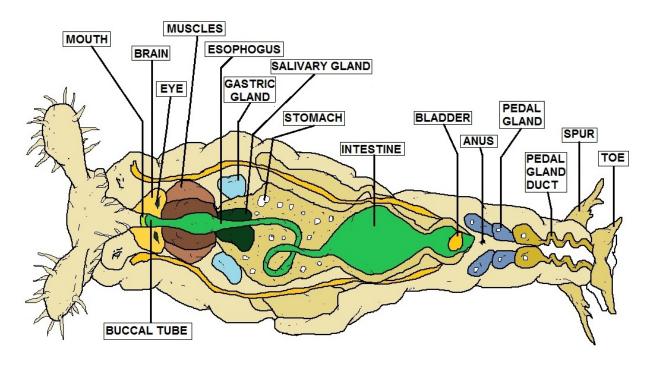

Entamoeba histolytica, another water-borne pathogen, can cause diarrhea or a more serious invasive liver abscess. When in contact with human cells, these amoebae are cytotoxic. There is a rapid influx of calcium into the contacted cell, it quickly stops all membrane movement save for some surface blebbing. Internal organization is disrupted, organelles lyse, and the cell dies. The ameba may eat the dead cell or just absorb nutrients released from the cell.

On average, about one in 10 people who are infected with *E. histolytica* becomes sick from the infection. The symptoms often are quite mild and can include loose stools, stomach pain, and stomach cramping. Amebic dysentery is a severe form of amebiasis associated with stomach pain, bloody stools, and fever. Rarely, *E. histolytica* invades the liver and forms an abscess. Even less commonly, it spreads to other parts of the body, such as the lungs or brain.

Scientific Classification

Domain: Eukaryota Phylum: Amoebozoa Class: Archamoebae Genus: Entamoeba Species: E. histolytica

Vorticella



VORTICELLA (TYPE OF PROTOZOAN FOUND IN STAGNANT WATER)

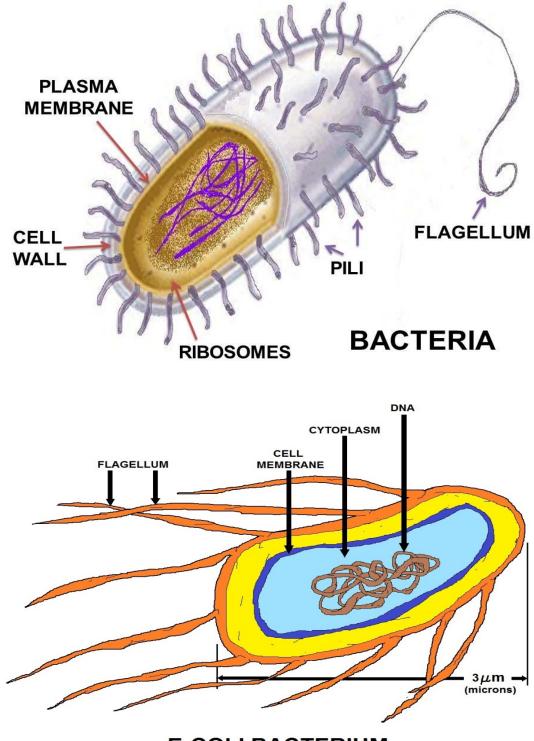
Vorticella is a genus of protozoa, with over 100 known species. They are stalked inverted bellshaped ciliates, placed among the peritrichs. Each cell has a separate stalk anchored onto the substrate, which contains a contracile fibril called a myoneme. When stimulated this shortens, causing the stalk to coil like a spring. Reproduction is by budding, where the cell undergoes longitudinal fission and only one daughter keeps the stalk. Vorticella mainly lives in freshwater ponds and streams - generally anywhere protists are plentiful. Other genera such as Carchesium resemble Vorticella but are branched or colonial.

Domain: Eukaryota Phylum: Ciliophora Class: Oligohymenophorea Subclass: Peritrichia Order: Sessilida Family: Vorticellidae Genus: Vorticella

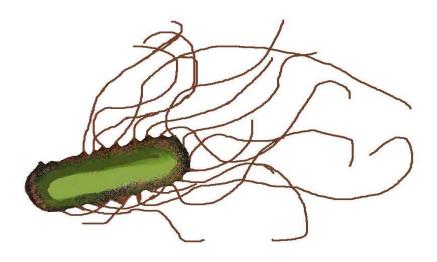
Rotifer

ROTIFER

The rotifers make up a phylum of microscopic and near-microscopic pseudocoelomate animals. They were first described by John Harris in 1696 (Hudson and Gosse, 1886). Leeuwenhoek is mistakenly given credit for being the first to describe rotifers but Harris had produced sketches in 1703. Most rotifers are around 0.1-0.5 mm long, and are common in freshwater throughout the world with a few saltwater species. Rotifers may be free swimming and truly planktonic, others move by inch worming along the substrate, whilst some are sessile, living inside tubes or gelatinous holdfasts. About 25 species are colonial (e.g. Sinantherina semibullata), either sessile or planktonic.

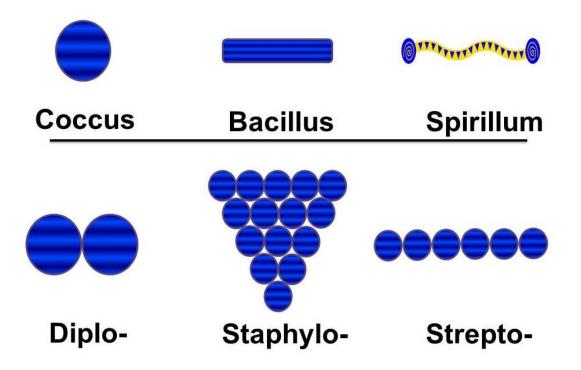

Rotifers get their name (derived from Greek and meaning "wheel-bearer"; they have also been called wheel animalcules) from the corona, which is composed of several ciliated tufts around the mouth that in motion resemble a wheel. These create a current that sweeps food into the mouth, where it is chewed up by a characteristic pharynx (called the mastax) containing a tiny, calcified, jaw-like structure called the trophi. The cilia also pull the animal, when unattached, through the water. Most free-living forms have pairs of posterior toes to anchor themselves while feeding. Rotifers have bilateral symmetry and a variety of different shapes. There is a well-developed cuticle which may be thick and rigid, giving the animal a box-like shape, or flexible, giving the animal a worm-like shape; such rotifers are respectively called loricate and illoricate.

Like many other microscopic animals, adult rotifers frequently exhibit eutely - they have a fixed number of cells within a species, usually on the order of one thousand. Males in the class Monogononta may be either present or absent depending on the species and environmental conditions. In the absence of males, reproduction is by parthenogenesis and results in clonal offspring that are genetically identical to the parent.

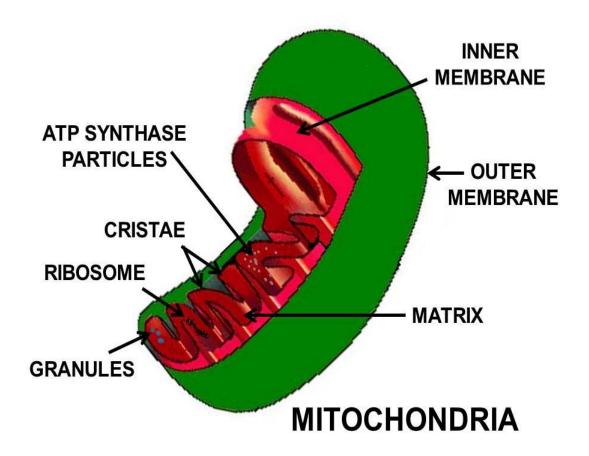

Individuals of some species form two distinct types of parthenogenetic eggs; one type develops into a normal parthenogenetic female, while the other occurs in response to a changed environment and develops into a degenerate male that lacks a digestive system, but does have a complete male reproductive system that is used to inseminate females thereby producing fertilized 'resting eggs'. Resting eggs develop into zygotes that are able to survive extreme environmental conditions such as may occur during winter or when the pond dries up. These eggs resume development and produce a new female generation when conditions improve again. The life span of monogonont females varies from a couple of days to about three weeks.

Bdelloid rotifers are unable to produce resting eggs, but many can survive prolonged periods of adverse conditions after desiccation. This facility is termed anhydrobiosis, and organisms with these capabilities are termed anhydrobionts. Under drought conditions, bdelloid rotifers contract into an inert form and lose almost all body water; when rehydrated, however, they resume activity within a few hours. Bdelloids can survive the dry state for prolonged periods, with the longest well-documented dormancy being nine years. While in other anhydrobionts, such as the brine shrimp, this desiccation tolerance is thought to be linked to the production of trehalose, a non-reducing disaccharide (sugar), bdelloids apparently lack the ability to synthesize trehalose. Bdelloid rotifer genomes contain two or more divergent copies of each gene. Four copies of hsp82 are, for example, found. Each is different and found on a different chromosome, excluding the possibility of homozygous sexual reproduction.

Bacteria Section

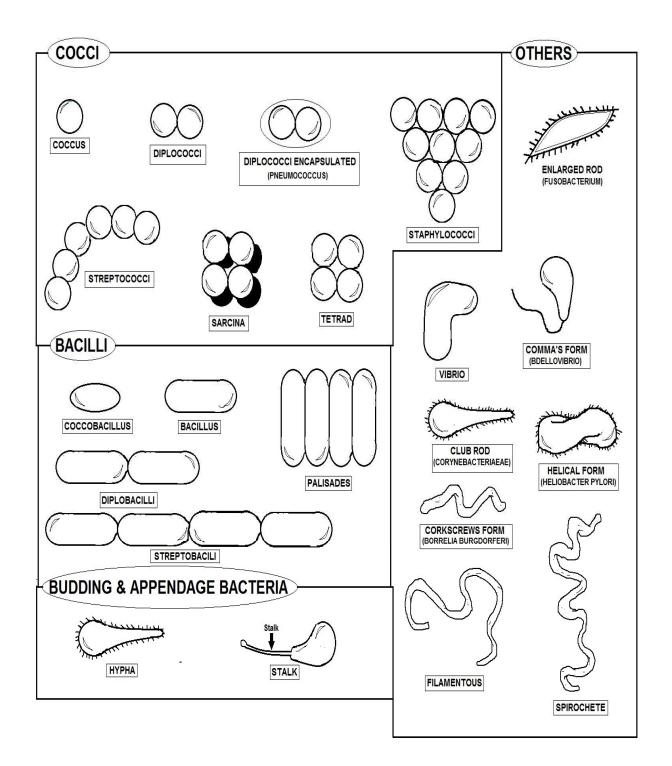


E-COLI BACTERIUM



Peritrichous Bacteria

Microbiologists broadly classify bacteria according to their shape: spherical, rod-shaped, and spiral-shaped. Pleomorphic bacteria can assume a variety of shapes. Bacteria may be further classified according to whether they require oxygen (aerobic or anaerobic) and how they react to a test with Gram's stain. Bacteria in which alcohol washes away Gram's stain are called gramnegative, while bacteria in which alcohol causes the bacteria's walls to absorb the stain are called gram-positive.



Bacterial Cell

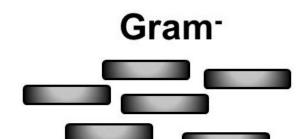
The bacterial cell is surrounded by a lipid membrane, or cell membrane, which encloses the contents of the cell and acts as a barrier to hold nutrients, proteins and other essential components of the cytoplasm within the cell.

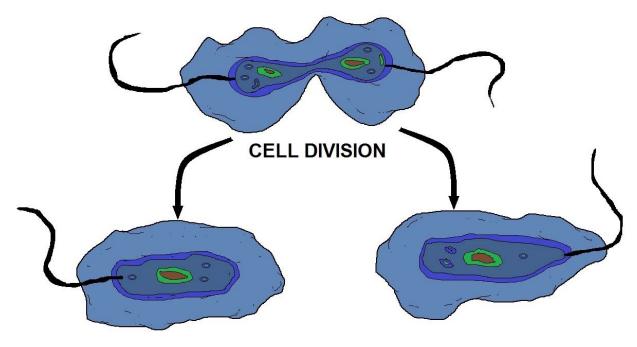
As they are prokaryotes, bacteria do not tend to have membrane-bound organelles in their cytoplasm and thus contain few large intracellular structures. They consequently lack a nucleus, mitochondria, chloroplasts and the other organelles present in eukaryotic cells, such as the Golgi apparatus and endoplasmic reticulum.

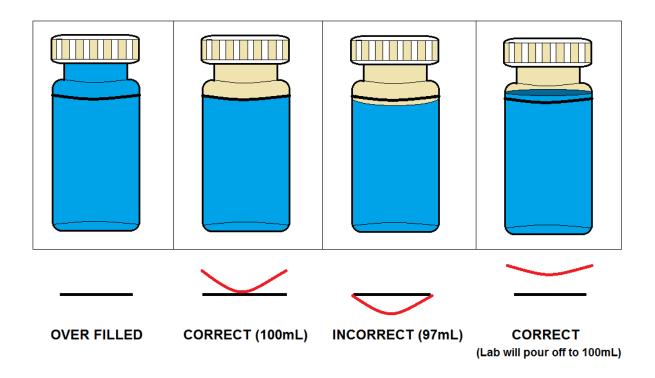
BACTERIA SHAPES

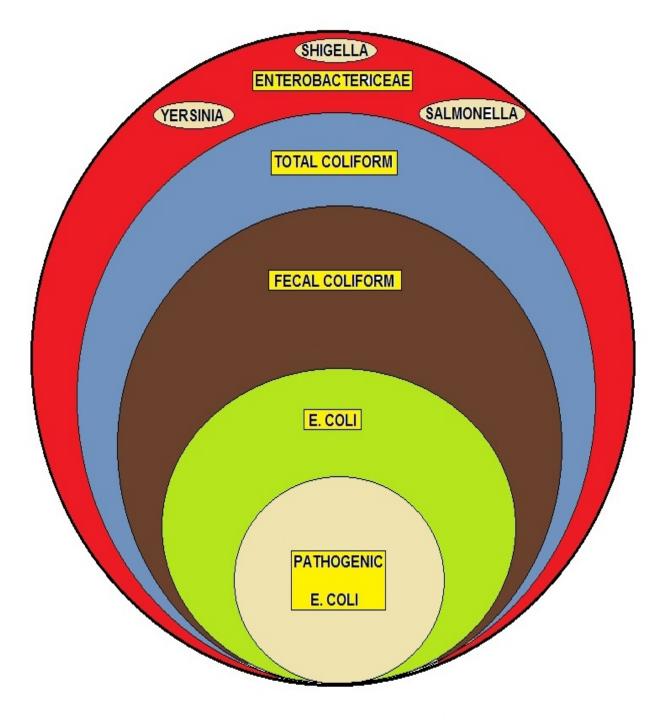
Туре	Characteristics
Acetic acid	Rod-shaped, gram-negative, aerobic; highly tolerant of acidic conditions; generate organic acids
Actinomycete	Rod-shaped or filamentous, gram-positive, aerobic; common in soils; essential to growth of many plants; source of much of original antibiotic production in pharmaceutical industry
Coccoid	Spherical, sometimes in clusters or strings, gram-positive, aerobic and anaerobic; resistant to drying and high-salt conditions; <i>Staphylococcus</i> species common on human skin, certain strains associated with toxic shock syndrome
Coryneform	Rod-shaped, form club or V shapes, gram-positive, aerobic; found in wide variety of habitats, particularly soils; highly resistant to drying; include <i>Arthrobacter</i> , among most common forms of life on earth
Endospore- forming	Usually rod-shaped, can be gram-positive or gram-negative; have highly adaptable, heat-resistant spores that can go dormant for long periods, possibly thousands of years; include <i>Clostridium</i> (anaerobic) and <i>Bacillus</i> (aerobic)
Enteric	Rod-shaped, gram-negative, aerobic but can live in certain anaerobic conditions; produce nitrite from nitrate, acids from glucose; include <i>Escherichia coli, Salmonella</i> (over 1000 types), and <i>Shigella</i>
Gliding	Rod-shaped, gram-negative, mostly aerobic; glide on secreted slimy substances; form colonies, frequently with complex fruiting structures
Lactic acid	Gram-positive, anaerobic; produce lactic acid through fermentation; include <i>Lactobacillus</i> , essential in dairy product formation, and <i>Streptococcus</i> , common in humans
Mycobacterium	Pleomorphic, spherical or rod-shaped, frequently branching, no gram stain, aerobic; commonly form yellow pigments; include <i>Mycobacterium tuberculosis</i> , cause of tuberculosis
Mycoplasma	Spherical, commonly forming branching chains, no gram stain, aerobic but can live in certain anaerobic conditions; without cell walls yet structurally resistant to lysis; among smallest of bacteria; named for superficial resemblance to fungal hyphae (<i>myco-</i> means 'fungus')
Nitrogen-fixing	Rod-shaped, gram-negative, aerobic; convert atmospheric nitrogen gas to ammonium in soil; include <i>Azotobacter,</i> a common genus
Propionic acid	Rod-shaped, pleomorphic, gram-positive, anaerobic; ferment lactic acid; fermentation produces holes in Swiss cheese from the production of carbon dioxide
Pseudomonad	Rod-shaped (straight or curved) with polar flagella, gram-negative, aerobic; can use up to 100 different compounds for carbon and energy
Rickettsia	Spherical or rod-shaped, gram-negative, aerobic; cause Rocky Mountain spotted fever and typhus; closely related to <i>Agrobacterium,</i> a common gall-causing plant bacterium
Sheathed	Filamentous, gram-negative, aerobic; 'swarmer' (colonizing) cells form and break out of a sheath; sometimes coated with metals from environment

Spirillum	Spiral-shaped, gram-negative, aerobic; include <i>Bdellovibrio,</i> predatory on other bacteria	
Spirochete	Spiral-shaped, gram-negative, mostly anaerobic; common in moist environments, from mammalian gums to coastal mudflats; complex internal structures convey rapid movement; include <i>Treponemapallidum,</i> cause of syphilis	
Sulfate- and Sulfur- reducing	Commonly rod-shaped, mostly gram-negative, anaerobic; include <i>Desulfovibrio,</i> ecologically important in marshes	
Sulfur- and iron-oxidizing	Commonly rod-shaped, frequently with polar flagella, gram-negative, mostly anaerobic; most live in neutral (nonacidic) environment	
Vibrio	Rod- or comma-shaped, gram-negative, aerobic; commonly with a single flagellum; include <i>Vibrio cholerae,</i> cause of cholera, and luminescent forms symbiotic with deep-water fishes and squids	

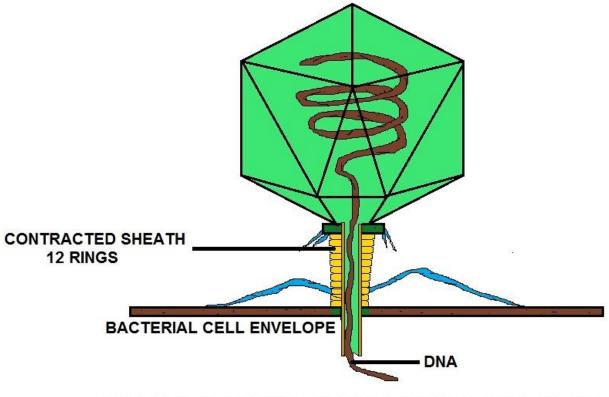



Lactobacillus acidophilus


Streptococcus thermophilus

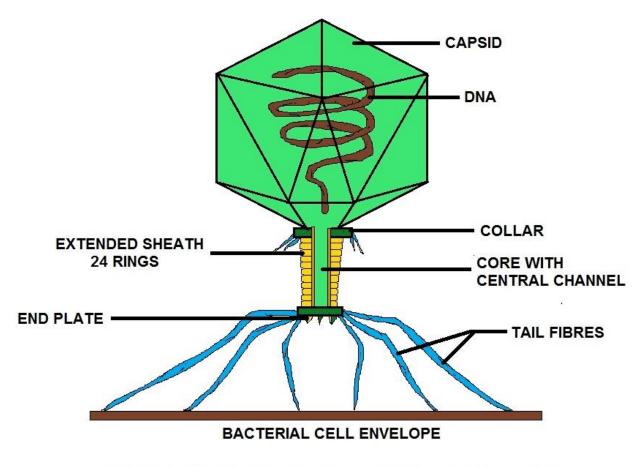


Escherichia coli


DAUGHTER CELLS

COLIFORM GROUP (Indicator Organisms)

Bacteriophage

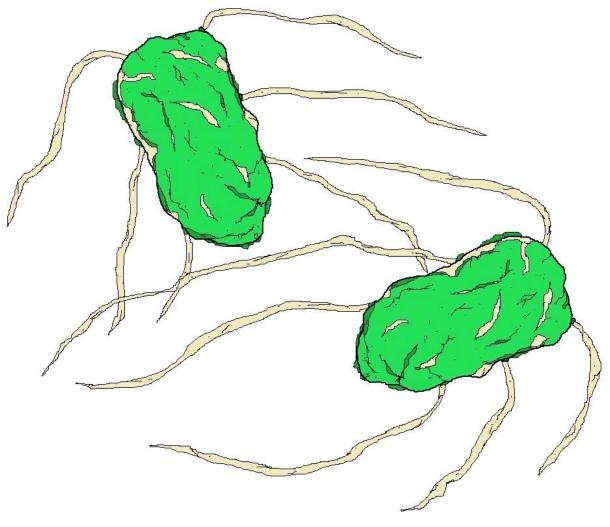


VIRUS CAPSID (BACTERIOPHAGES)

A bacteriophage (from 'bacteria' and Greek phagein, 'to eat') is any one of a number of viruses that infect bacteria. The term is commonly used in its shortened form, phage.

Typically, bacteriophages consist of an outer protein hull enclosing genetic material. The genetic material can be ssRNA (single stranded RNA), dsRNA, ssDNA, or dsDNA between 5 and 500 kilo base pairs long with either circular or linear arrangement. Bacteriophages are much smaller than the bacteria they destroy - usually between 20 and 200 nm in size.

Phages are estimated to be the most widely distributed and diverse entities in the biosphere. Phages are ubiquitous and can be found in all reservoirs populated by bacterial hosts, such as soil or the intestine of animals. One of the densest natural sources for phages and other viruses is sea water, where up to 9×108 virions per milliliter have been found in microbial mats at the surface, and up to 70% of marine bacteria may be infected by phages.



VIRUS CAPSID (BACTERIOPHAGES)

Release of Virions

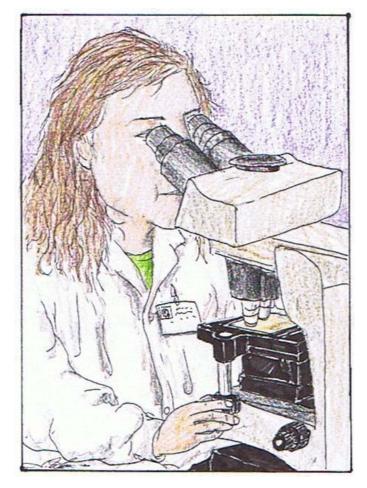
Phages may be released via cell lysis or by host cell secretion. In the case of the T4 phage, in just over twenty minutes after injection upwards of three hundred phages will be released via lysis within a certain timescale. This is achieved by an enzyme called endolysin which attacks and breaks down the peptidoglycan. In contrast, "lysogenic" phages do not kill the host but rather become long-term parasites and make the host cell continually secrete more new virus particles. The new virions bud off the plasma membrane, taking a portion of it with them to become enveloped viruses possessing a viral envelope. All released virions are capable of infecting a new bacterium.

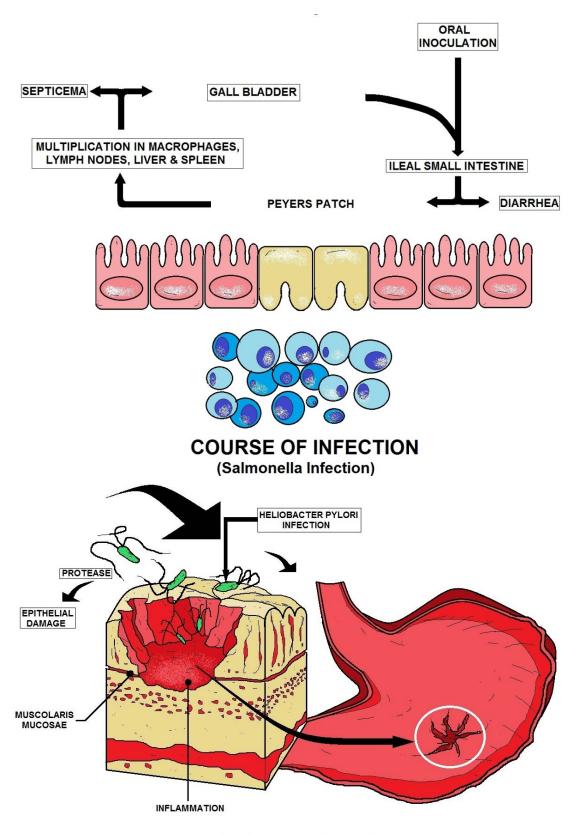
Salmonella

SALMONELLA

Salmonella is a Gram-negative bacterium. It is found in many turtles and other reptiles. In clinical laboratories, it is usually isolated on MacConkey agar, XLD agar, XLT agar, DCA agar, or Önöz agar. Because they cause intestinal infections and are greatly outnumbered by the bacteria normally found in the healthy bowel, primary isolation requires the use of a selective medium, so use of a relatively non-selective medium such as CLED agar is not often practiced. Numbers of salmonella may be so low in clinical samples that stools are routinely also subjected to "enrichment culture", where a small volume of stool is incubated in a selective broth medium, such as selenite broth or Rappaport Vassiliadis soya peptone broth, overnight. These media are inhibitory to the growth of the microbes normally found in the healthy human bowel, while allowing salmonellae to become enriched in numbers. Salmonellae may then be recovered by inoculating the enrichment broth on one or more of the primary selective media. On blood agar, they form moist colonies about 2 to 3 mm in diameter.

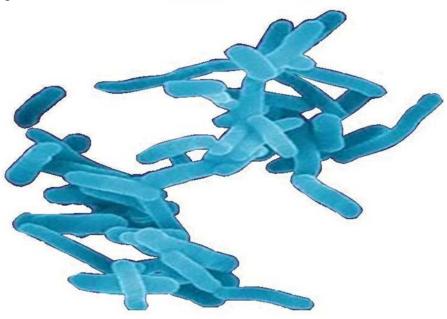
When the cells are grown for a prolonged time at a range of 25—28°C, some strains produce a biofilm, which is a matrix of complex carbohydrates, cellulose and proteins. The ability to produce biofilm (a.k.a. "rugose", "lacy", or "wrinkled") can be an indicator of dimorphism, which is the ability of a single genome to produce multiple phenotypes in response to environmental conditions. Salmonellae usually do not ferment lactose; most of them produce hydrogen sulfide which, in media containing ferric ammonium citrate, reacts to form a black spot in the center of the creamy colonies.


Classification


Salmonella taxonomy is complicated. As of December 7, 2005, there are two species within the genus: S. bongori (previously subspecies V) and S. enterica (formerly called S. choleraesuis), which is divided into six subspecies:

- * I—enterica
- * II—salamae
- * Illa—arizonae
- * IIIb—diarizonae
- * IV-houtenae
- * V—obsolete (now designated
- S. bongori)
- * VI-indica

There are also numerous (over 2500) serovars within both species, which are found in a disparate variety of environments and which are associated with many different diseases. The vast majority of human isolates (>99.5%) are subspecies S. enterica. For the sake of simplicity, the CDC recommends that Salmonella species be referred to only by their genus and serovar, e.g.


Salmonella Typhi instead of the more technically correct designation, Salmonella enterica subspecies enterica serovar Typhi.

Shigella dysenteriae

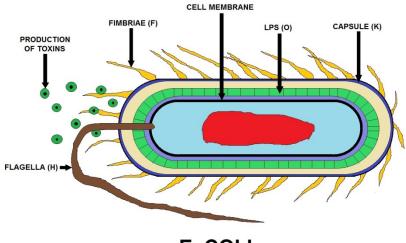
SHIGELLA DYSENTERIAE

Shigella dysenteriae is a species of the rod-shaped bacterial genus Shigella. Shigella can cause shigellosis (bacillary dysentery). Shigellae are Gram-negative, non-spore-forming, facultatively anaerobic, non-motile bacteria.

S. dysenteriae, spread by contaminated water and food, causes the most severe dysentery because of its potent and deadly Shiga toxin, but other species may also be dysentery agents. Shigella infection is typically via ingestion (fecal–oral contamination); depending on age and condition of the host as few as ten bacterial cells can be enough to cause an infection. Shigella causes dysentery that result in the destruction of the epithelial cells of the intestinal mucosa in the cecum and rectum. Some strains produce enterotoxin and Shiga toxin, similar to the verotoxin of E. coli O157:H7. Both Shiga toxin and verotoxin are associated with causing hemolytic uremic syndrome.

Shigella invades the host through epithelial cells of the large intestine. Using a Type III secretion system acting as a biological syringe, the bacterium injects IpaD protein into cell, triggering bacterial invasion and the subsequent lysis of vacuolar membranes using IpaB and IpaC proteins. It utilizes a mechanism for its motility by which its IcsA protein triggers actin polymerization in the host cell (via N-WASP recruitment of Arp2/3 complexes) in a "rocket" propulsion fashion for cell-to-cell spread.

The most common symptoms are diarrhea, fever, nausea, vomiting, stomach cramps, and straining to have a bowel movement. The stool may contain blood, mucus, or pus (e.g. dysentery). In rare cases, young children may have seizures. Symptoms can take as long as a week to show up, but most often begin two to four days after ingestion. Symptoms usually last for several days, but can last for weeks. Shigella is implicated as one of the pathogenic causes of reactive arthritis worldwide.


Escherichia Coli Section

Fecal Coliform Bacteria

Fecal coliform bacteria are microscopic organisms that live in the intestines of warm-blooded animals. They also live in the waste material, or feces, excreted from the intestinal tract. When fecal coliform bacteria are present in high numbers in a water sample, it means that the water has received fecal matter from one source or another. Although not necessarily agents of disease, fecal coliform bacteria may indicate the presence of disease-carrying organisms, which live in the same environment as the fecal coliform bacteria.

Reasons for Natural Variation

Unlike the other conventional water quality parameters, fecal coliform bacteria are living organisms. They do not simply mix with the water and float straight downstream. Instead they multiply quickly when conditions are favorable for growth, or die in large numbers when conditions are not. Because bacterial concentrations are dependent on specific conditions for growth, and these conditions change quickly, fecal coliform bacteria counts are not easy to predict. For example, although winter rains may wash more fecal matter from urban areas into a stream, cool water temperatures may cause a major die-off. Exposure to sunlight (with its ultraviolet disinfection properties) may have the same effect, even in the warmer water of summertime.

E. COLI

Expected Impact of Pollution

The primary sources of fecal coliform bacteria to fresh water are wastewater treatment plant discharges, failing septic systems, and animal waste. Bacteria levels do not necessarily decrease as a watershed develops from rural to urban. Instead, urbanization usually generates new sources of bacteria. Farm animal manure and septic systems are replaced by domestic pets and leaking sanitary sewers. In fact, stormwater runoff in urbanized areas has been found to be surprisingly high in fecal coliform bacteria concentrations. General coliforms, E. Coli, and Enterococcus bacteria are the "indicator" organisms generally measured to assess microbiological quality of water. However, these aren't generally what get people sick. Other bacteria, viruses, and parasites are what we are actually worried about because it is so much more expensive and tedious to do so; actual pathogens are virtually never tested for.

Coliform Standards (in colonies/100ml)

Indicator Connection Varies

Over the course of a professional lifetime pouring over indicator tests, in a context where all standards are based on indicators, water workers tend to forget that the indicators are not the things we actually care about. Infection rates are around 5% in the US, and approach 100% in areas with poor hygiene and contaminated water supplies.

Keep in the back of your mind that *the ratio of indicators to actual pathogens is not fixed*. It will always be different, sometimes very different. Whenever you are trying to form a mental map of reality based on water tests, you should include in the application of your water intuition an adjustment factor for your best guess of the ratio between indicators and actual pathogens.

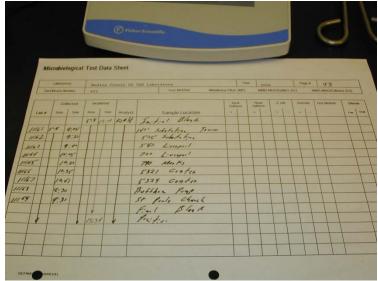
What are these indicators? More information in the Laboratory section.

- **General coliforms** indicate that the water has come in contact with plant or animal life. General coliforms are universally present, including in pristine spring water. They are of little concern at low levels, except to indicate the effectiveness of disinfection. Chlorinated water and water from perfectly sealed tube wells is the only water I've tested which had zero general coliforms. At very high levels they indicate there is what amounts to a lot of compost in the water, which could easily include pathogens (Ten thousand general coliform bacteria will get you a beach closure, compared to two or four hundred fecal coliforms, or fifty enterococcus).
- Fecal coliforms, particularly E. coli, indicate that there are mammal or bird feces in the water.
- Enterococcus bacteria also indicate that there are feces from warm blooded animals in the water. Enterococcus are a type of fecal streptococci. They are another valuable indicator for determining the amount of fecal contamination of water. According to studies conducted by the EPA, enterococci have a greater correlation with swimming-associated gastrointestinal illness in both marine and fresh waters than other bacterial indicator organisms, and are less likely to "die off" in saltwater.

Membrane Filter Total Coliform Technique

The membrane filter total Coliform technique is used at Medina County for drinking water quality testing. The following is a summary of this test. A sampling procedure sheet is given to all sample takers by Medina County.

The samples are taken in sterile 100 mL containers. These containers, when used for chlorinated water samples, have a sodium thiosulfate pill or solution to dechlorinate the sample.


The sample is placed in cold storage after proper sample taking procedures are followed. (See sample procedures below)

The samples are taken to the laboratory with a chain of custody to assure no tampering of samples can occur.

These samples are logged in at the laboratory.

No longer than 30 hours can lapse between the time of sampling and time of test incubation. (8 hours for heterotrophic, non-potable 6 hours, others not longer than 24 hours)

All equipment is sterilized by oven and autoclave.

Glassware in oven at $170^{\circ}C + 10^{\circ}C$ with foil (or other suitable wrap) loosely fitting and secured immediately after sterilization.

Filtration units in autoclave at 121°C for 30 minutes.

Use sterile petri dishes, grid, and pads bought from a reliable company – certified, quality assured - test for satisfactory known positive amounts.

Incubators – $35^{\circ}C \pm .5^{\circ}C$ (60% relative humidity)

M-endo medium is prepared and heated to near boiling removed from heat cooled to 45° C pH adjusted to 7.2 <u>+</u> .2 and immediately dispensed 8ml to plates. Keep refrigerated and discard after 2 weeks.

Plates can be stored in a dated box with expiration date and discarded if not used. No denatured alcohol should be used. Everclear or 95% proof alcohol or absolute methyl may be used for sterilizing forceps by flame.

Procedure:

Counters are alcohol wiped.

Bench sheets are filled out.

Samples are removed from refrigeration.

Sterile wrapped utensils are placed on counters.

Filtration units are placed onto sterile membrane filters by aseptic technique using sterile forceps.

Sterile petri dishes are labeled.

The samples closures are clipped.

The sample is shaken 25 times 1 foot in length within 7 seconds.

100 mL is filtered and rinsed with sterile distilled water 3 times.

The membrane filter is aseptically removed from filter holder.

A sterile padded petri dish is used and the membrane filter is rolled onto the pad making sure no air bubbles form.

The sterile labeled lid is placed on the petri dish.

2 blanks and a known is run with each series of samples.

The samples are placed in the $35^{\circ}C \pm .5^{\circ}C$ incubator stacked no higher than 3 for 22 - 24 hours (Humidity can be maintained by saturated paper towels placed under containers holding petri dishes.)

After 22- 24 hours view the petri dishes under a 10 –15 power magnification with cool white fluorescent light.

Count all colonies that appear pink to dark red with a <u>metallic surface sheen</u> – the sheen may vary in size from a pin head to complete coverage.

Report as Total Coliform per 100 mL.

If no colonies are present report as <1 coliform/100mL.

Anything greater than 1 is over the limit for drinking water for 2 samples taken 24 hours apart. Further investigation may be necessary – follow Standard Methods accordingly.

Photograph and Credits to Mary McPherson Aran[™] Aqua Analytical Laboratory Director.

Escherichia coli EPEC

Two types of pathogenic Escherichia coli, enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), cause diarrheal disease by disrupting the intestinal environment through the intimate attachment of the bacteria to the intestinal epithelium.

E. coli O157:H7

E. coli O157:H7 (bacterium) found in human feces. Symptoms vary with type caused gastroenteritis.

Escherichia coli O157:H7 is an emerging cause of foodborne illness. An estimated 73,000 cases of infection and 61 deaths occur in the United States each year. Infection often leads to bloody diarrhea, and occasionally to kidney failure. Most illnesses have been associated with eating undercooked, contaminated ground beef. Person-to-person contact in families and child care centers is also an important mode of transmission. Infection can also occur after drinking raw milk and after swimming in or drinking sewage-contaminated water.

Consumers can prevent *E. coli* O157:H7 infection by thoroughly cooking ground beef, avoiding unpasteurized milk, and washing hands carefully. Because the organism lives in the intestines of healthy cattle, preventive measures on cattle farms and during meat processing are being investigated.

What is Escherichia coli O157:H7?

E. coli O157:H7 is one of hundreds of strains of the bacterium Escherichia coli. Although most strains are harmless and live in the intestines of healthy humans and animals, this strain produces a powerful toxin and can cause severe illness.

E. coli O157:H7 was first recognized as a cause of illness in 1982 during an outbreak of severe bloody diarrhea; the outbreak was traced to contaminated hamburgers. Since then, most infections have come from eating undercooked ground beef.

The combination of letters and numbers in the name of the bacterium refers to the specific markers found on its surface and distinguishes it from other types of *E. coli*.

Currently, there are four recognized classes of enterovirulent *E. coli* (collectively referred to as the EEC group) that cause gastroenteritis in humans. Among these is the enterohemorrhagic (EHEC) strain designated *E. coli* O157:H7. *E. coli* is a normal inhabitant of the intestines of all animals, including humans. When aerobic culture methods are used, *E. coli* is the dominant species found in feces.

Normally *E. coli* serves a useful function in the body by suppressing the growth of harmful bacterial species and by synthesizing appreciable amounts of vitamins. A minority of *E. coli* strains are capable of causing human illness by several different mechanisms. *E. coli* serotype O157:H7 is a rare variety of *E. coli* that produces large quantities of one or more related, potent toxins that cause severe damage to the lining of the intestine. These toxins [verotoxin (VT), shiga-like toxin] are closely related or identical to the toxin produced by *Shigella dysenteriae*.

How does *E. coli* or other fecal coliforms get in the water?

E. coli comes from human and animal wastes. During rainfalls, snow melts, or other types of precipitation, *E. coli* may be washed into creeks, rivers, streams, lakes, or groundwater. When these waters are used as sources of drinking water and the water is not treated or inadequately treated, *E. coli* may end up in drinking water.

How is water treated to protect me from *E. coli*?

The water can be treated using chlorine, ultra-violet light, or ozone, all of which act to kill or inactivate *E. coli*. Systems using surface water sources are required to disinfect to ensure that all bacterial contamination such as *E. coli*. is inactivated. Systems using ground water sources are not required to disinfect, although many of them do.

How does the U.S. Environmental Protection Agency regulate E. coli?

According to EPA regulations, a system that operates at least 60 days per year, and serves 25 people or more or has 15 or more service connections, is regulated as a public water system under the Safe Drinking Water Act. If a system is not a public water system as defined by EPA regulations, it is not regulated under the Safe Drinking Water Act, although it may be regulated by state or local authorities.

Under the Safe Drinking Water Act, the EPA requires public water systems to monitor for coliform bacteria. Systems analyze first for total coliform, because this test is faster to produce results. Any time that a sample is positive for total coliform, the same sample must be analyzed for either fecal coliform or *E. coli*. Both are indicators of contamination with animal waste or human sewage.

The largest public water systems (serving millions of people) must take at least 480 samples per month. Smaller systems must take at least five samples a month unless the state has conducted a sanitary survey – a survey in which a state inspector examines system components and ensures they will protect public health – at the system within the last five years.

Systems serving 25 to 1,000 people typically take one sample per month. Some states reduce this frequency to quarterly for ground water systems if a recent sanitary survey shows that the system is free of sanitary defects. Some types of systems can qualify for annual monitoring. Systems using surface water, rather than ground water, are required to take extra steps to protect against bacterial contamination because surface water sources are more vulnerable to such contamination. At a minimum, all systems using surface waters must disinfect. Disinfection will kill *E. coli* O157:H7.

What can I do to protect myself from *E. coli* O157:H7 in drinking water?

Approximately 89 percent of Americans are receiving water from community water systems that meet all health-based standards. Your public water system is required to notify you if, for any reason, your drinking water is not safe. If you wish to take extra precautions, you can boil your water for one minute at a rolling boil, longer at higher altitudes. To find out more information about your water, see the Consumer Confidence Report from your local water supplier or contact your local water supplier directly. You can also obtain information about your local water system on the EPA's website at www.epa.gov/safewater/dwinfo.htm.

Positive Tests

If you draw water from a private well, you can contact your state health department to obtain information on how to have your well tested for total coliforms, and *E. coli* contamination. If your well tests positive for *E. coli*, there are several steps that you should take: (1) begin boiling all water intended for consumption, (2) disinfect the well according to procedures recommended by your local health department, and (3) monitor your water quality to make certain that the problem does not recur. If the contamination is a recurring problem, you should investigate the feasibility of drilling a new well or install a point-of-entry disinfection unit, which can use chlorine, ultraviolet light, or ozone.

How is *E. coli* O157:H7 spread?

The organism can be found on a small number of cattle farms and can live in the intestines of healthy cattle. Meat can become contaminated during slaughter, and organisms can be thoroughly mixed into beef when it is ground. Bacteria present on a cow's udders or on equipment may get into raw milk. Eating meat, especially ground beef that has not been cooked sufficiently to kill *E. coli* O157:H7 can cause infection. Contaminated meat looks and smells normal. Although the number of organisms required to cause disease is not known, it is suspected to be very small.

Among other known sources of infection are consumption of sprouts, lettuce, salami, unpasteurized milk and juice, and swimming in or drinking sewage-contaminated water. Bacteria in diarrheal stools of infected persons can be passed from one person to another if hygiene or hand washing habits are inadequate. This is particularly likely among toddlers who are not toilet trained. Family members and playmates of these children are at high risk of becoming infected. Young children typically shed the organism in their feces for a week or two after their illness resolves. Older children rarely carry the organism without symptoms.

What illness does E. coli O157:H7 cause?

E. coli O157:H7 infection often causes severe bloody diarrhea and abdominal cramps; sometimes the infection causes non-bloody diarrhea or no symptoms. Usually little or no fever is present, and the illness resolves in 5 to 10 days. Hemorrhagic colitis is the name of the

acute disease caused by *E. coli* O157:H7.

In some persons, particularly children under 5 years of age and the elderly, the infection can also cause a complication called hemolytic uremic syndrome, in which the red blood cells are destroyed and the kidneys fail. About 2%-7% of infections lead to this complication. In the United States, hemolytic uremic syndrome is the principal cause of acute kidney failure in children, and most cases of hemolytic uremic syndrome are caused by *E. coli* O157:H7.

How is E. coli O157:H7 infection diagnosed?

Infection with *E. coli* O157:H7 is diagnosed by detecting the bacterium in the stool. Most laboratories that culture stool do not test for *E. coli* O157:H7, so it is important to request that the stool specimen be tested on sorbitol-MacConkey (SMAC) agar for this organism. All persons who suddenly have diarrhea with blood should get their stool tested for *E. coli* O157:H7.

How is the illness treated?

Most persons recover without antibiotics or other specific treatment in 5-10 days. There is no evidence that antibiotics improve the course of disease, and it is thought that treatment with some antibiotics may precipitate kidney complications. Antidiarrheal agents, such as loperamide (Imodium), should also be avoided. Hemolytic uremic syndrome is a life-threatening condition usually treated in an intensive care unit. Blood transfusions and kidney dialysis are often required. With intensive care, the death rate for hemolytic uremic syndrome is 3%-5%.

Legionnaire's Disease Legionella Section

Introduction Genus: Legionella Species: pneumophila

The first discovery of bacteria from genus Legionella came in 1976 when an outbreak of pneumonia at an American Legion convention led to 29 deaths. The causative agent, what would come to be known as Legionella pneumophila, was isolated and given its own genus. The organisms classified in this genus are Gram-negative bacteria that are considered intracellular parasites. The disease has two distinct forms:

- Legionnaires' disease, the more severe form of infection which includes pneumonia, and
- Pontiac fever, a milder illness.

What have been the water sources for Legionnaires' disease?

The major source is water distribution systems of large buildings,

including hotels and hospitals. Cooling towers have long been thought to be a major source for *Legionella*, but new data suggest that this is an overemphasized mode of transmission. Other sources include mist machines, humidifiers, whirlpool spas, and hot springs. Air conditioners are not a source for Legionnaires' disease. They were suspected to be the source in the original American Legion outbreak in a Philadelphia hotel, but new data now suggests that the water in the hotel was the actual culprit.

Legionnaire's disease is caused most commonly by the inhalation of small droplets of water or fine aerosol containing Legionella bacteria. Legionella bacteria are naturally found in environmental water sources such as rivers, lakes and ponds and may colonize man-made water systems that include air conditioning systems, humidifiers, cooling tower waters, hot water systems, spas and pools.

How do people contract Legionella?

The most popular theory is that the organism is aerosolized in water and

people inhale the droplets containing *Legionella*. However, new evidence suggests that another way of contracting *Legionella* is more common. "Aspiration" is the most common way that bacteria enter into the lungs to cause pneumonia. Aspiration means choking such that secretions in the mouth get past the choking reflexes and instead of going into the esophagus and stomach, mistakenly, enter the lung. The protective mechanisms to prevent aspiration is defective in patients who smoke or have lung disease. Aspiration now appears to be the most common mode of transmission.

Legionella may multiply to high numbers in cooling towers, evaporative condensers, air washers, humidifiers, hot water heaters, spas, fountains, and plumbing fixtures. Within one month, Legionella can multiply, in warm water-containing systems, from less than 10 per milliliter to over 1,000 per milliliter of water. Once high numbers of Legionella have been found, a relatively simple procedure for disinfecting water systems with chlorine and detergent is available. This procedure is not part of a routine maintenance program because equipment may become corroded.

Property owners have been sued for the spread of Legionella, resulting in expensive settlements. Regular monitoring with a battery of DFA monoclonal antibodies for several serogroups and species of Legionella morphologically intact bacteria provides a means for exercising 'reasonable care' to deter potential litigation.

Currently, there are no United States government regulations concerning permissible numbers of legionella in water systems and there are no federal or state certification programs for laboratories that perform legionella testing of environmental samples.

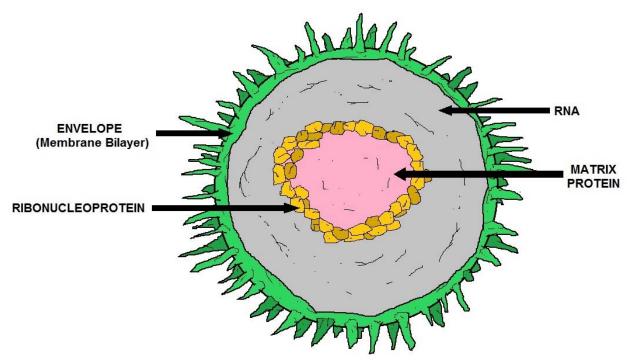
Epifluorescence Microscopy DFA Method

The epifluorescence microscopy DFA method that most labs use was published in the British Journal, Water Research 19:839-848, 1985 "Disinfection of circulating water systems by ultraviolet light and halogenation", R. Gilpin, et al. so we can count viable-but-nonculturable (VBNC) legionella.

Most labs will provide a quantitative epifluorescence microscopic analysis of your cooling tower and potable water samples for 14 serogroups of Legionella pneumophila and 15 other Legionella species (listed below).

Legionella anisa	Legionella bozemanii sg 1 & 2
Legionella dumoffi	<i>Legionella feeleii</i> sg 1 & 2
Legionella gormanii	Legionella hackeliae sg 1 & 2
Legionella jordanis	Legionella longbeachae sg 1& 2
Legionella maceachernii	Legionella micdadei
Legionella oakridgensis	Legionella parisiensis
Legionella pneumophila sg 1-14	Legionella sainthelensi
Legionella santicrucis	Legionella wadsworthii

Heterotrophic bacterial CFU are often inversely proportional to numbers of Legionella in cooling tower samples, in our experience. Routine biocide treatments will not eradicate Legionella bacteria in the environment, only in laboratory studies.


Culture methods are good during outbreaks for bio-typing; but culture methods lack sensitivity for routine, quantitative monitoring. Many factors will inhibit growth or identification of legionella on BCYE with or without antimicrobial agents, heat or acid treatment.

Culture methods will not identify non-culturable legionella that can still cause outbreaks (nonculturable, viable legionella have been reported in several peer-reviewed journals). Only DFA tests performed by trained laboratory personnel can identify these legionella. Direct fluorescent antibody (DFA) tests using a battery of monoclonal antibodies provide more useful routine monitoring information than culture methods. Legionella species of bacteria cause Legionnaire's disease. They are gram negative (but stain poorly), strictly aerobic rods.

The U.S. Environmental Protection Agency and the U.S. Occupational Safety and Health Administration recommend routine maintenance of water-containing equipment. Most State health departments recommend monthly testing for Legionella as part of a routine maintenance program.

Viruses

Viruses are acellular microorganisms. They are made up of only genetic material and a protein coat. Viruses depend on the energy and metabolic machinery of the host cell to reproduce. A virus is an infectious agent found in virtually all life forms, including humans, animals, plants, fungi, and bacteria. Viruses consist of genetic material—either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA)—surrounded by a protective coating of protein, called a capsid, with or without an outer lipid envelope. Viruses are between 20 and 100 times smaller than bacteria and hence are too small to be seen by light microscopy.

CROSS SECTIONAL VIEW OF A VIRUS

Viruses vary in size from the largest poxviruses of about 450 nanometers (about 0.000014 in) in length to the smallest polioviruses of about 30 nanometers (about 0.000001 in). Viruses are not considered free-living, since they cannot reproduce outside of a living cell; they have evolved to transmit their genetic information from one cell to another for the purpose of replication. Viruses often damage or kill the cells that they infect, causing disease in infected organisms. A few viruses stimulate cells to grow uncontrollably and produce cancers. Although many infectious diseases, such as the common cold, are caused by viruses, there are no cures for these illnesses. The difficulty in developing antiviral therapies stems from the large number of variant viruses that can cause the same disease, as well as the inability of drugs to disable a virus without disabling healthy cells. However, the development of antiviral agents is a major focus of current research, and the study of viruses has led to many discoveries important to human health.

Virions

Individual viruses, or virus particles, also called virions, contain genetic material, or genomes, in one of several forms. Unlike cellular organisms, in which the genes always are made up of DNA, viral genes may consist of either DNA or RNA. Like cell DNA, almost all viral DNA is double-stranded, and it can have either a circular or a linear arrangement. Almost all viral RNA is single-stranded; it is usually linear, and it may be either segmented (with different genes on different RNA molecules) or non-segmented (with all genes on a single piece of RNA).

Capsids

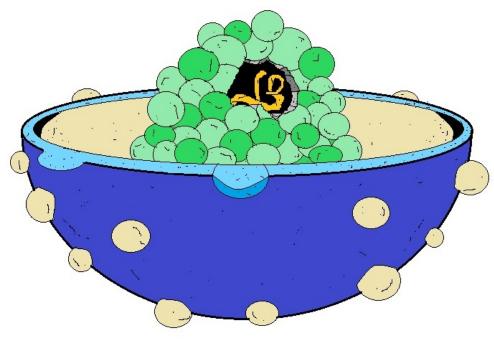
The viral protective shell, or capsid, can be either helical (spiral-shaped) or icosahedral (having 20 triangular sides). Capsids are composed of repeating units of one or a few different proteins. These units are called protomers or capsomers. The proteins that make up the virus particle are called structural proteins. Viruses also carry genes for making proteins that are never incorporated into the virus particle and are found only in infected cells. These viral proteins are called nonstructural proteins; they include factors required for the replication of the virus genome and the production of the virus particle.

Capsids and the genetic material (DNA or RNA) they contain are together referred to as nucleocapsids. Some virus particles consist only of nucleocapsids, while others contain additional structures.

Some icosahedral and helical animal viruses are enclosed in a lipid envelope acquired when the virus buds through host-cell membranes. Inserted into this envelope are glycoproteins that the viral genome directs the cell to make; these molecules bind virus particles to susceptible host cells.

Bacteriophages

The most elaborate viruses are the bacteriophages, which use bacteria as their hosts. Some bacteriophages resemble an insect with an icosahedral head attached to a tubular sheath. From the base of the sheath extend several long tail fibers that help the virus attach to the bacterium and inject its DNA to be replicated, direct capsid production, and virus particle assembly inside the cell.

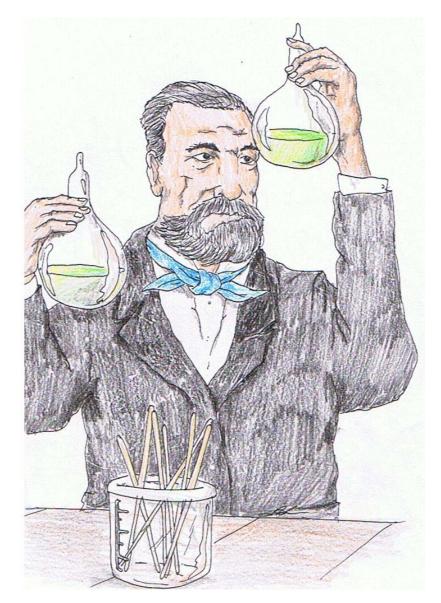

Viroids and Prions

Viroids and prions are smaller than viruses, but they are similarly associated with disease. Viroids are plant pathogens that consist only of a circular, independently replicating RNA molecule. The single-stranded RNA circle collapses on itself to form a rod-like structure. The only known mammalian pathogen that resembles plant viroids is the deltavirus (hepatitis D), which requires hepatitis B virus proteins to package its RNA into virus particles. Co-infection with hepatitis B and D can produce more severe disease than can infection with hepatitis B alone. Prions are mutated forms of a normal protein found on the surface of certain animal cells.

Virus Classification

Viruses are classified according to their type of genetic material, their strategy of replication, and their structure. The International Committee on Nomenclature of Viruses (ICNV), established in 1966, devised a scheme to group viruses into families, subfamilies, genera, and species. The ICNV report published in 1995 assigned more than 4000 viruses into 71 virus families. Hundreds of other viruses remain unclassified because of the lack of sufficient information.

Hepatitis


HEPATITUS VIRUS

There are five types of hepatitis -- A through E -- all of which cause inflammation of the liver. Type D affects only those who also have hepatitis B, and hepatitis E is extremely rare in the United States.


- Type A hepatitis is contracted through anal-oral contact, by coming in contact with the feces of someone with hepatitis A, or by eating or drinking hepatitis A contaminated food or water.
- Type B hepatitis can be contracted from infected blood, seminal fluid, vaginal secretions, or contaminated drug needles, including tattoo or body-piercing equipment. It can also be spread from a mother to her newborn.
- Type C hepatitis is not easily spread through sex. You're more likely to get it through contact with infected blood, contaminated razors, needles, tattoo and body-piercing equipment, or manicure or pedicure tools that haven't been properly sanitized, and a mother can pass it to her baby during delivery.
- Type D hepatitis can be passed through contact with infected blood, contaminated needles, or by sexual contact with an HIV-infected person.
- Type E hepatitis is most likely to be transmitted in feces, through oral contact, or in water that's been contaminated.

Peptidoglycan

Peptidoglycan, also known as murein, is a polymer consisting of sugars and amino acids that forms a mesh-like layer outside the plasma membrane of eubacteria. The sugar component consists of alternating residues of β -(1,4) linked N-acetylglucosamine and N-acetylmuramic acid residues. Attached to the N-acetylmuramic acid is a peptide chain of three to five amino acids. The peptide chain can be cross-linked to the peptide chain of another strand forming the 3D mesh-like layer.

Cyanobacteria

Cyanobacteria

Cyanobacteria, also known as blue-green algae, blue-green bacteria or Cyanophyta, is a phylum of bacteria that obtain their energy through photosynthesis. The name "cyanobacteria" comes from the color of the bacteria (Greek: kyanós = blue). They are a significant component of the marine nitrogen cycle and an important primary producer in many areas of the ocean, but are also found on land.

Cyanobacteria include unicellular and colonial species. Colonies may form filaments, sheets or even hollow balls. Some filamentous colonies show the ability to differentiate into several different cell types: vegetative cells, the normal, photosynthetic cells that are formed under favorable growing conditions; akinetes, the climate-resistant spores that may form when environmental conditions become harsh; and thick-walled heterocysts, which contain the enzyme nitrogenase, vital for nitrogen fixation. Heterocysts may also form under the appropriate environmental conditions (anoxic) wherever nitrogen is necessary. Heterocyst-forming species are specialized for nitrogen fixation and are able to fix nitrogen gas, which cannot be used by plants, into ammonia (NH₃), nitrites (NO₂) or nitrates (NO₃), which can be absorbed by plants and converted to protein and nucleic acids.

The rice paddies of Asia, which produce about 75% of the world's rice, could not do so were it not for healthy populations of nitrogen-fixing cyanobacteria in the rice paddy fertilizer too.

Many cyanobacteria also form motile filaments, called hormogonia, that travel away from the main biomass to bud and form new colonies elsewhere. The cells in a hormogonium are often thinner than in the vegetative state, and the cells on either end of the motile chain may be tapered. In order to break away from the parent colony, a hormogonium often must tear apart a weaker cell in a filament, called a necridium.

Each individual cell of a cyanobacterium typically has a thick, gelatinous cell wall. They differ from other gram-negative bacteria in that the quorum sensing molecules autoinducer-2[4] and acyl-homoserine lactones are absent. They lack flagella, but hormogonia and some unicellular species may move about by gliding along surfaces. In water columns some cyanobacteria float by forming gas vesicles, like in archaea.

TAKING A SAMPLE FROM A STREAM

Eukaryote

Eukaryotes are organisms with complex cells, in which the genetic material is organized into membranebound nuclei. They include the animals, plants, and fungi, which are mostly multicellular, as well as various other groups called protists, many of which are unicellular. In contrast, other organisms such as bacteria lack nuclei and other complex cell structures, and are called prokaryotes. The eukaryotes share a common origin, and are often treated formally as a super kingdom, empire, or domain. The name comes from the Greek *eus* or true and *karyon* or nut, referring to the nucleus.

What are Protists?

- They are **eukaryotes** because they all have a **nucleus**.
- Most have **mitochondria** although some have later lost theirs. Mitochondria were derived from aerobic alpha-proteobacteria (prokaryotes) that once lived within their cells.
- Many have **chloroplasts** with which they carry on photosynthesis. Chloroplasts were derived from photosynthetic **cyanobacteria** (also prokaryotes) living within their cells.

Eukaryotic Cells

Eukaryotic cells are generally much larger than prokaryotes, typically with a thousand times their volumes. They have a variety of internal membranes and structures, called organelles, and a cytoskeleton composed of microtubules and microfilaments, which plays an important role in defining the cell's organization. Eukaryotic DNA is divided into several bundles called chromosomes, which are separated by a microtubular spindle during nuclear division. In addition to asexual cell division, most eukaryotes have some process of sexual reproduction via cell fusion, which is not found among prokaryotes.

Eukaryotic cells include a variety of membrane-bound structures, collectively referred to as the endomembrane system. Simple compartments, called vesicles or vacuoles, can form by budding off of other membranes. Many cells ingest food and other materials through a process of endocytosis, where the outer membrane invaginates and then pinches off to form a vesicle. It is probable that most other membrane-bound organelles are ultimately derived from such vesicles.

The nucleus is surrounded by a double membrane, with pores that allow material to move in and out. Various tube- and sheet-like extensions of the nuclear membrane form what is called the endoplasmic reticulum or ER, which is involved in protein transport. It includes rough sections where ribosomes are attached, and the proteins they synthesize enter the interior space or lumen. Subsequently, they generally enter vesicles, which bud off from the smooth section. In most eukaryotes, the proteins may be further modified in stacks of flattened vesicles, called Golgi bodies or dictyosomes.

Vesicles may be specialized for various purposes. For instance, lysosomes contain enzymes that break down the contents of food vacuoles, and peroxisomes are used to break down peroxide which is toxic otherwise.

Contractile Vacuoles

Many protozoa have contractile vacuoles, which collect and expel excess water, and extrusomes, which expel material used to deflect predators or capture prey. In multicellular organisms, hormones are often produced in vesicles. In higher plants, most of a cell's volume is taken up by a central vacuole or tonoplast, which maintains its osmotic pressure. Many eukaryotes have slender motile projections, usually called flagella when long and cilia when short. These are variously involved in movement, feeding, and sensation. These are entirely distinct from prokaryotic flagella. They are supported by a bundle of microtubules arising from a basal body, also called a kinetosome or centriole, characteristically arranged as nine doublets surrounding two singlets. Flagella also may have hairs or mastigonemes, scales, connecting membranes, and internal rods. Their interior is continuous with the cell's cytoplasm. **Centrioles**

Centrioles are often present even in cells and groups that do not have flagella. They generally occur in groups of one or two, called kinetids that give rise to various microtubular roots. These form a primary component of the cytoskeletal structure, and are often assembled over the course of several cell divisions, with one flagellum retained from the parent and the other derived from it. Centrioles may also be associated in the formation of a spindle during nuclear division. Some protists have various other microtubule-supported organelles. These include the radiolaria and heliozoa, which produce axopodia used in flotation or to capture prey, and the haptophytes, which have a peculiar flagellum-like organelle called the haptonema.

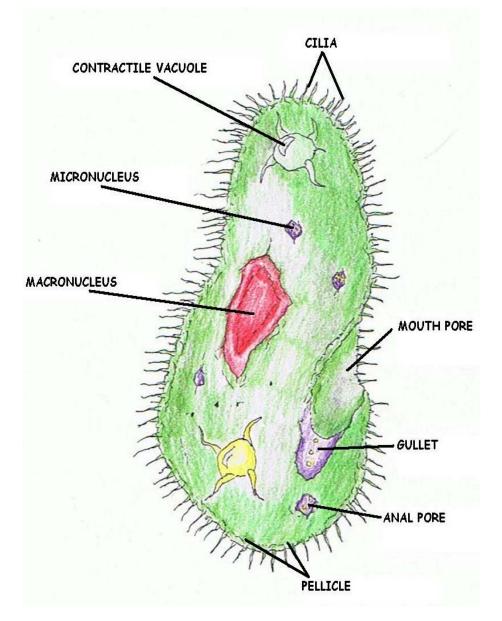
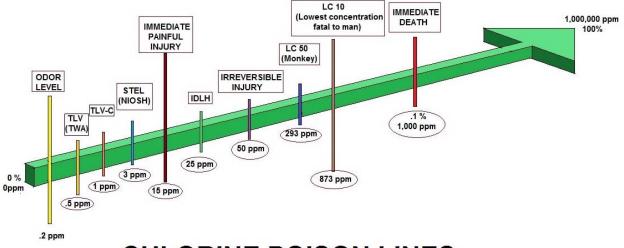
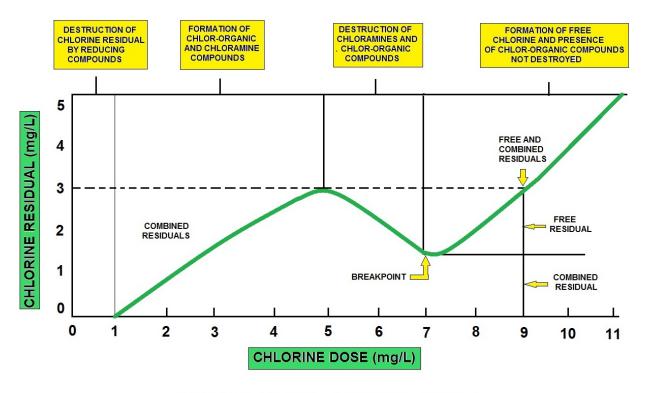
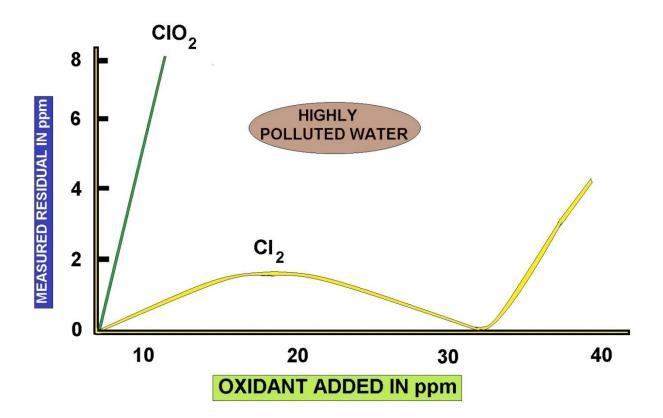
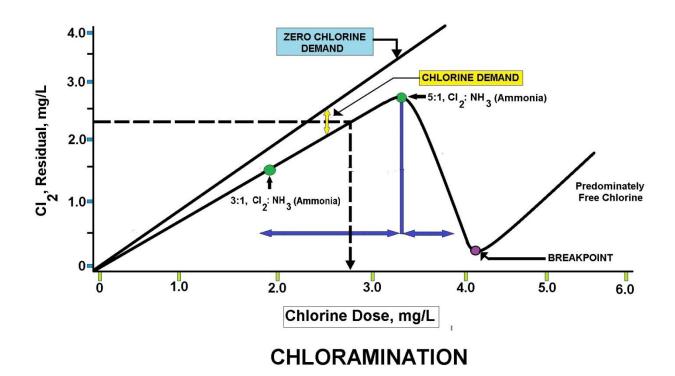
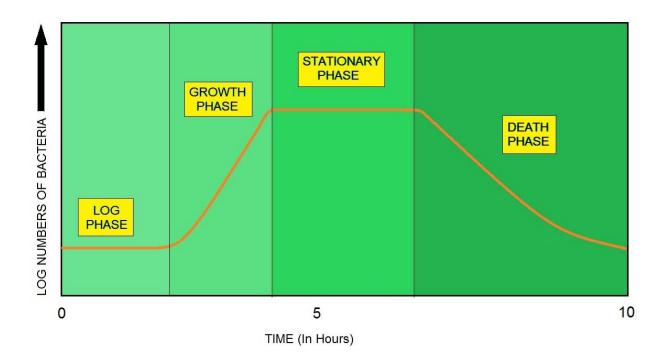




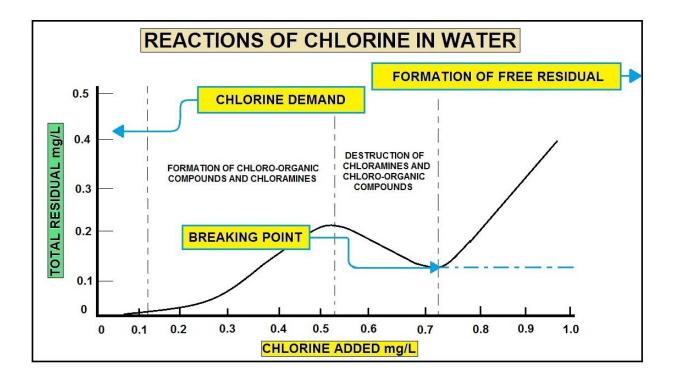
Figure 1. A diagram of *Paramecium* sp. with major organelles indicated.

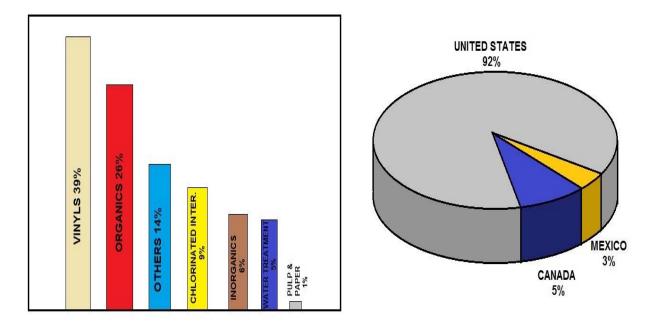
Chlorine Charts


CHLORINE POISON LINES

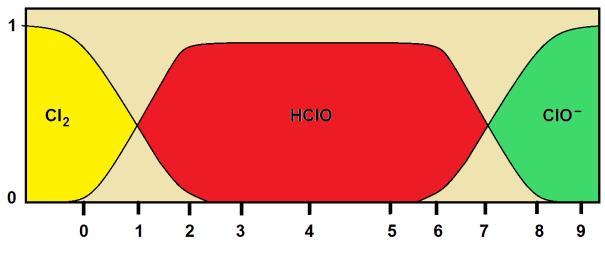

CHLORINE BREAKPOINT

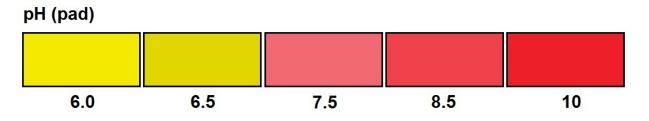



CHLORINE DECAY CURVE

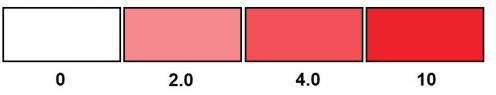


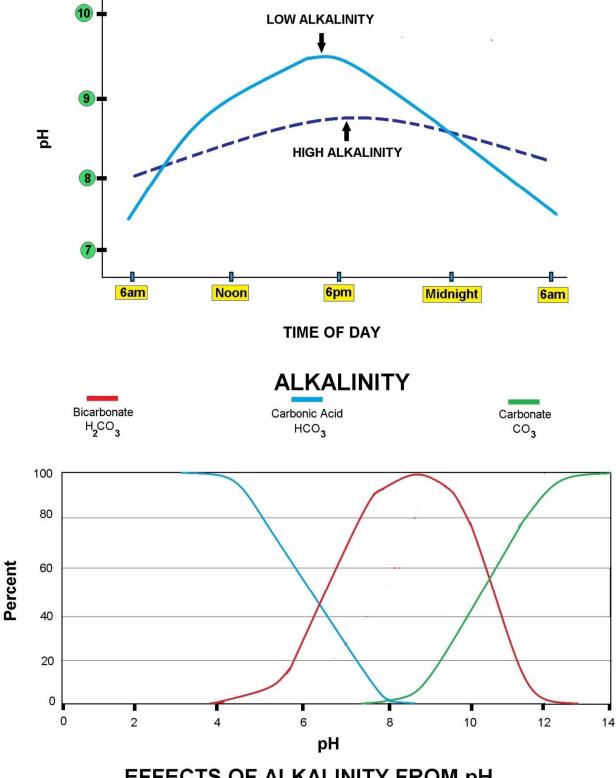
USING CHLORINE DIOXIDE vs CHLORINE



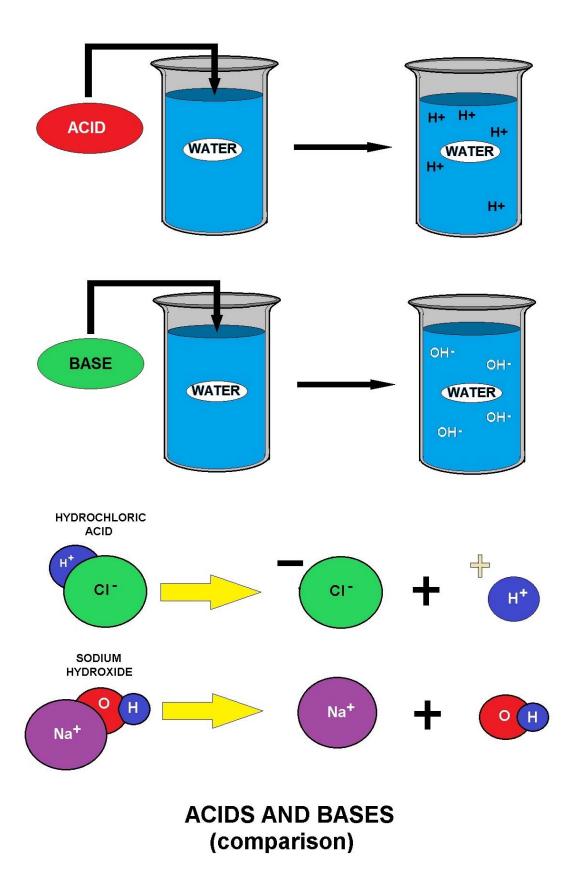


NORTH AMERICA CHLORINE DEMAND COMPARISON

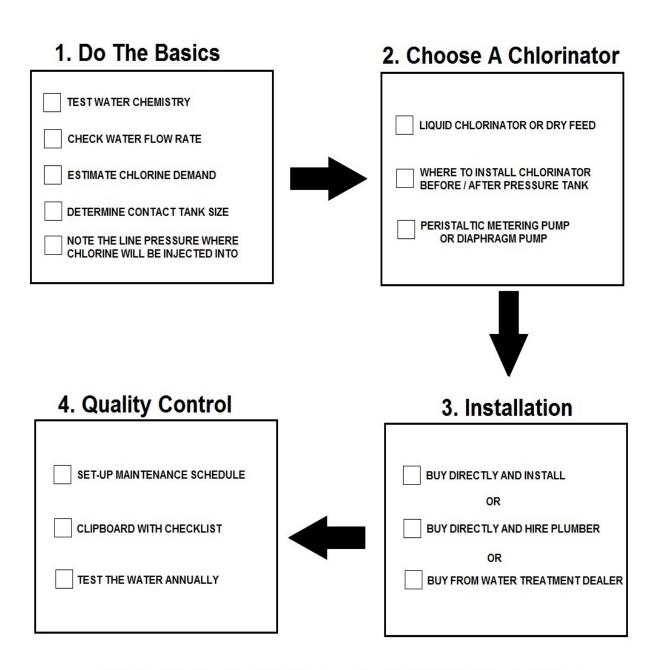

pH - VALUE


LR Total Hardness (middle pad)

0	50	120	250	425


Total Chlorine (pad nearest handle)

pH / CHLORINE / HARDNESS TEST STRIP


EFFECTS OF ALKALINITY FROM pH

WATER	BLEACHING POWDER (25 - 35 %) (g)	HIGH STRENGTH CALCIUM HYPOCHLORITE (70 %) (g)	LIQUID BLEACH (5 % SODIUM HYPOCHLORITE) (ml)
1	2.3	1.0	14
1.2	3.0	1.2	17
1.5	3.5	1.5	21
2	5.0	2.0	28
2.5	6.0	2.5	35
3	7.0	3.0	42
4	9.0	4.0	56
5	12	5.0	70
6	14	6.0	84
7	16	7.0	98
8	19	8.0	110
10	23	10	140
12	28	12	170
15	35	15	210
20	50	20	280
30	70	30	420
40	90	40	560
50	120	50	700
60	140	60	840
70	160	70	980
80	190	80	1 100
100	230	100	1 400
120	280	120	1 700
150	350	150	2 100
200	470	200	2 800
250	580	250	3 500
300	700	300	4 200
400	940	400	5 600
500	1 170	500	7 000

(* Approximate dose = 0.7 mg of applied Chlorine per litre of water)

CHLORINE DOSES WITH DIFFERENT TYPES OF CHLORINE

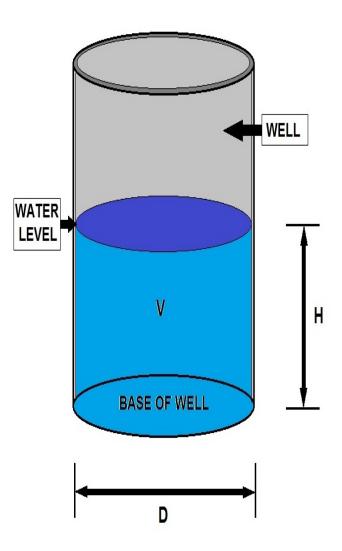
HOW TO DETERMINE A CHLORINATION SYSTEM

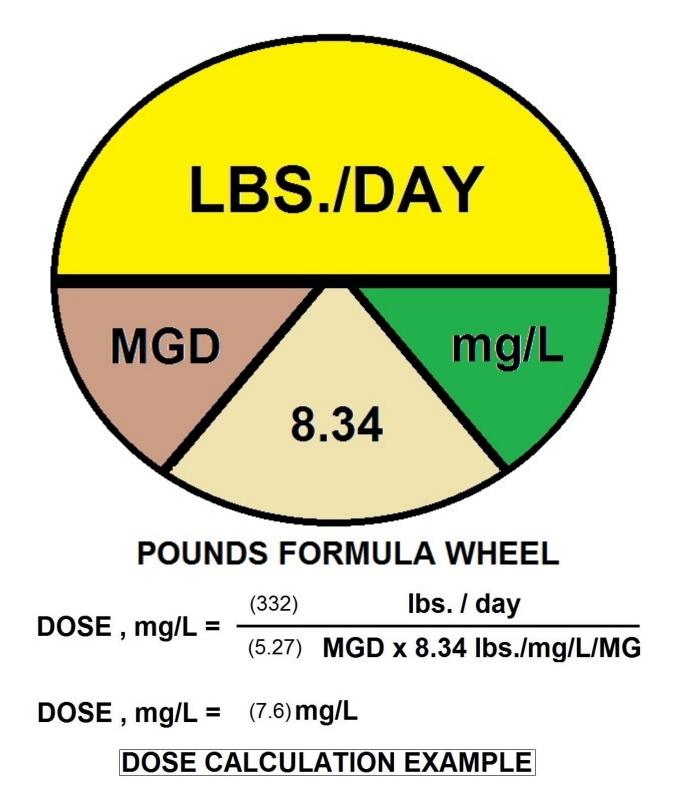
HOW TO CALCULATE CHLORINE DOSAGE TO DISINFECT A WELL USING CALCIUM HYPOCHLORITE

EQUIPMENT

- 20 litre bucket
- HSCH Chlorine granules or powder

METHOD

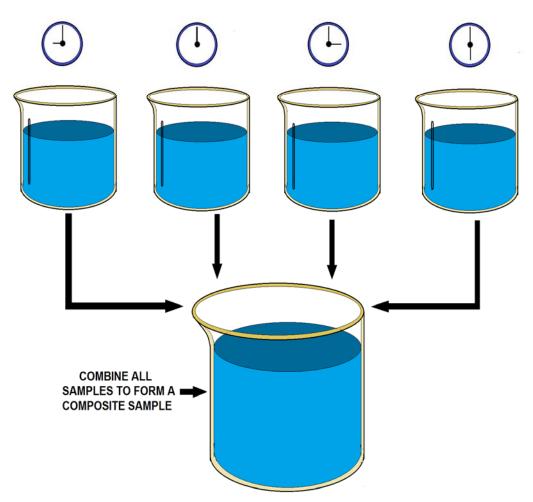

• Calculate the volume of water in the well using formula:


$$V = \frac{\pi D^2 h}{4}$$

WHERE

- V = Volume of water
- D = Diameter
- h = Depth of water

- Fill bucket with clear water from source
- Add about 300g of HSCH and stir (dissolve)
- For every cubic meter of water, add 10 litres (half bucket) of chlorine solution.
- Double the quantity of HSCH added if the solution is to be used for cleaning well lining or aprons



DENSITY (at 32 [°] F & 1 atm)	0.2006 lbs. / cu.ft.	
SPECIFIC GRAVITY (at 32°F & 1 atm)	2.482 (air = 1)	
LIQUEFYING POINT (at 1 atm)	-30.1°F	
VISCOSITY (at 68 [°] F)	0.01325 centipose	
SOLUBILITY IN WATER	60.84 lbs. / 1000 gal.	

PROPERTIES OF GASEOUS CHLORINE

SEVERAL GRAB SAMPLES TAKEN A DIFFERENT TIMES FROM THE EXACT SAME LOCATION

Math Conversion Factors and Practical Exercise

1 PSI = 2.31 Feet of Water 1 Foot of Water = .433 PSI 1.13 Feet of Water = 1 Inch of Mercury 454 Grams = 1 Pound 2.54 CM =Inch 1 Gallon of Water = 8.34 Pounds 1 mg/L = 1 PPM 17.1 mg/L = 1 Grain/Gallon 1% = 10,000 mg/L 694 Gallons per Minute = MGD 1.55 Cubic Feet per Second = 1 MGD 60 Seconds = 1 Minute 1440 Minutes = 1 Day .746 kW = 1 Horsepower

LENGTH

12 Inches = 1 Foot 3 Feet = 1 Yard 5280 Feet = 1 Mile

AREA

144 Square Inches = 1 Square Foot43,560 Square Feet =1 Acre**VOLUME**1000 Milliliters = 1 Liter3.785 Liters = 1 Gallon231 Cubic Inches = 1 Gallon7.48 Gallons = 1 Cubic Foot of water62.38 Pounds = 1 Cubic Foot of water

Dimensions

SQUARE: Area (sq.ft.) = Length X Width Volume (cu.ft.) = Length (ft) X Width (ft) X Height (ft)

CIRCLE: Area (sq.ft.) = 3.14 X Radius (ft) X Radius (ft)

CYLINDER: Volume (Cu. ft) = 3.14 X Radius (ft) X Radius (ft) X Depth (ft)

PIPE VOLUME: .785 X Diameter ² X Length = ? To obtain gallons multiply by 7.48

SPHERE: (3.14) (Diameter)³ Circumference = 3.14 X Diameter (6)

General Conversions

Flowrate

Multiply	_>	to get
to get	<	Divide
cc/min	1	mL/min
cfm (ft ³ /min)	28.31	L/min
cfm (ft ³ /min)	1.699	m³/hr
cfh (ft ³ /hr)	472	mL/min
cfh (ft³/hr)	0.125	GPM
GPH	63.1	mL/min
GPH	0.134	cfh
GPM	0.227	m³/hr
GPM	3.785	L/min
oz/min	29.57	mL/min

POUNDS PER DAY= Concentration (mg/L) X Flow (MG) X 8.34 *AKA* Solids Applied Formula = Flow X Dose X 8.34

PERCENT EFFICIENCY = In – Out X 100 In ${}^{0}F = ({}^{0}C \times 9/5) + 32$ **TEMPERATURE**: 9/5 = 1.8 $^{0}C = (^{0}F - 32) \times 5/9$ 5/9 = .555**CONCENTRATION:** Conc. (A) X Volume (A) = Conc. (B) X Volume (B) FLOW RATE (Q): Q = A X V (Quantity = Area X Velocity) **FLOW RATE** (gpm): Flow Rate (gpm) = <u>2.83 (Diameter, in)² (Distance, in)</u> Height, in % SLOPE = Rise (feet) X 100 Run (feet) ACTUAL LEAKAGE = Leak Rate (GPD) Length (mi.) X Diameter (in) **VELOCITY** = Distance (ft) Time (Sec) **N** = Manning's Coefficient of Roughness **R** = Hydraulic Radius (ft.) **S** = Slope of Sewer (ft/ft.)

HYDRAULIC RADIUS (ft) = <u>Cross Sectional Area of Flow (ft)</u> Wetted pipe Perimeter (ft)

WATER HORSEPOWER = Flow (gpm) X Head (ft) 3960

BRAKE HORSEPOWER = <u>Flow (gpm) X Head (ft)</u> X Pump Efficiency

MOTOR HORSEPOWER = <u>Flow (gpm) X Head (ft)</u> X Pump Eff. X Motor Eff.

MEAN OR AVERAGE = <u>Sum of the Values</u> Number of Values

TOTAL HEAD (ft) = Suction Lift (ft) X Discharge Head (ft)

SURFACE LOADING RATE = Flow Rate (gpm) (gal/min/sq.ft) Surface Area (sq. ft)

MIXTURE =(Volume 1, gal) (Strength 1, %) + (Volume 2, gal) (Strength 2,%)STRENGTH (%)(Volume 1, gal) + (Volume 2, gal)

INJURY FREQUENCY RATE = (Number of Injuries) 1,000,000 Number of hours worked per year

DETENTION TIME (hrs) = <u>Volume of Basin (gals) X 24 hrs</u> Flow (GPD) SLOPE = <u>Rise (ft)</u> Run (ft)

POPULATION EQUIVALENT (PE):

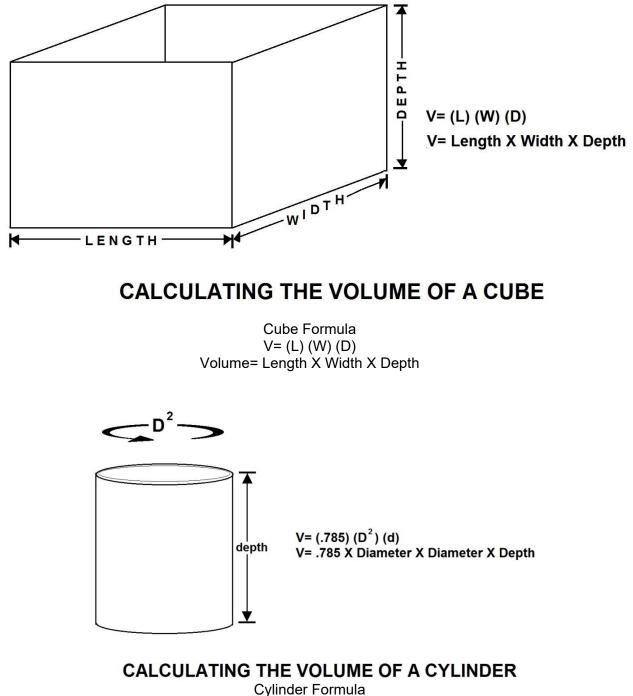
1 PE = .17 Pounds of BOD per Day 1 PE = .20 Pounds of Solids per Day 1 PE = 100 Gallons per Day

LEAKAGE (GPD/inch) = Leakage of Water per Day (GPD) Sewer Diameter (inch)

CHLORINE DEMAND (mg/L) = Chlorine Dose (mg/L) – Chlorine Residual (mg/L)

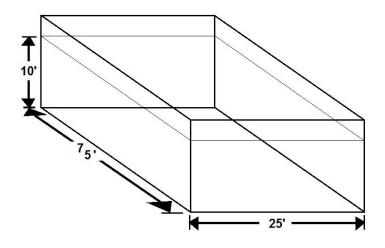
MANNING'S FORMULA

 τQ = Allowable time for decrease in pressure from 3.5 PSI to 2.5 PSI τq = As below


 $\tau Q = (0.022) (d_1^2 L_1)/Q \quad \tau q = \underline{[0.085]} [(d_1^2 L_1)/(d_1 L_1)]$

 $\begin{array}{l} \mathsf{Q} = \ 2.0 \ \text{cfm air loss} \\ \theta = \ .0030 \ \text{cfm air loss per square foot of internal pipe surface} \\ \delta = \ \text{Pipe diameter (inches)} \\ \mathsf{L} = \ \text{Pipe Length (feet)} \end{array}$

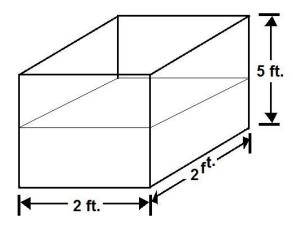
 $V = \frac{1.486}{v} R^{2/3} S^{1/2}$ V = Velocity (ft./sec.) v = Pipe Roughness R = Hydraulic Radius (ft) S = Slope (ft/ft)


HYDRAULIC RADIUS (ft) = <u>Flow Area (ft. 2)</u> Wetted Perimeter (ft.)

WIDTH OF TRENCH (ft) = Base (ft) + (2 Sides) X Depth (ft 2) Slope Scratch Paper

 $V = (.785) (D^2) (d)$

Build it, Fill it and Dose it.



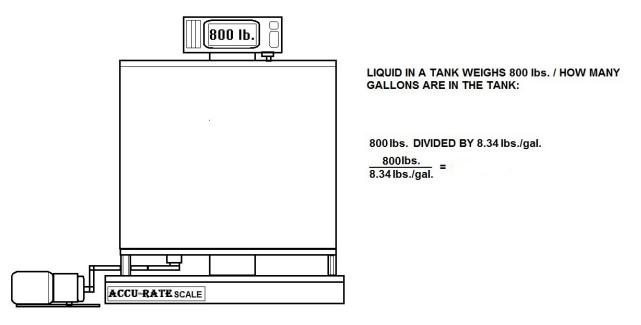
A TANK IS 25' x 75' x 10', WHAT IS THE VOLUME OF WATER IN GALLONS V= (L) (W) (D) (25) (75) (10) (7.48)

25' x 75' x 10' x 7.48 = 46750 gallons

1. Convert 10 cubic feet to gallons of water.

There is 7.48 gallons in one cubic foot.

Convert 10 cu.ft. to gallons of water :

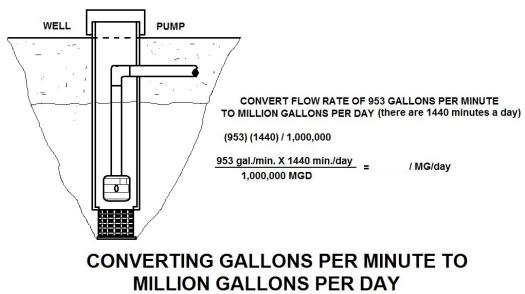

(10 ft.³) (7.48)

Multiply 10 ft.³ X 7.48 =

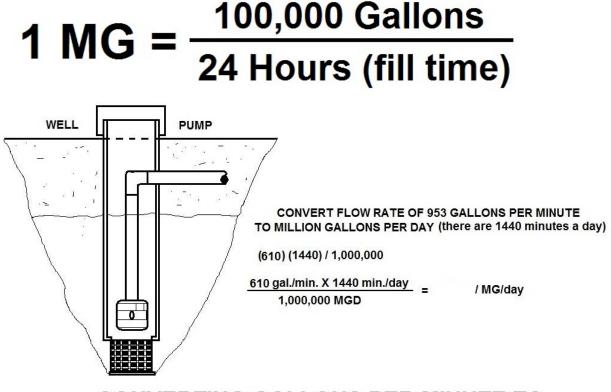
gallons

CONVERTING CUBIC FEET TO GALLONS OF WATER

2. The liquid in a tank weighs 800 pounds, how many gallons are in the tank?



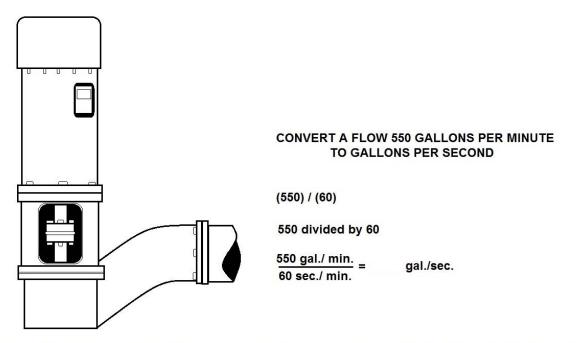
CONVERTING POUNDS TO GALLONS


Practice Questions, no answers provided

- A1. Convert 75 cubic feet to gallons of water.
- B1. The liquid in a tank weighs 50 pounds, how many gallons are in the tank?

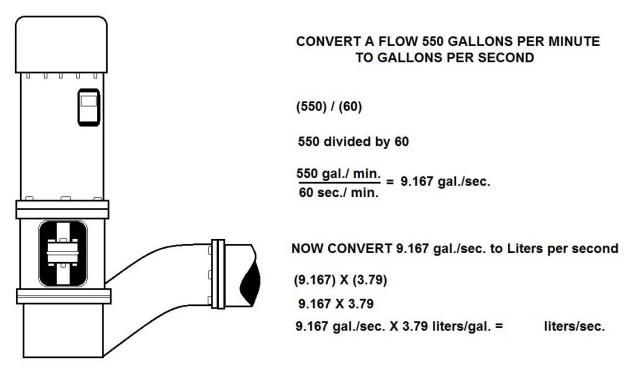
3. Convert a flow rate of 953 gallons per minute to million gallons per day. There is 1440 minutes in a day.

4. Convert a flow rate of 610 gallons per minute to millions of gallons per day.

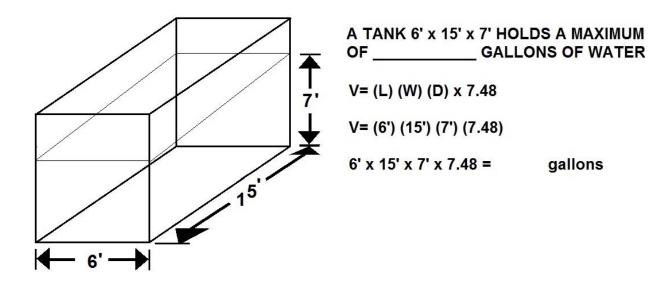


CONVERTING GALLONS PER MINUTE TO MILLION GALLONS PER DAY

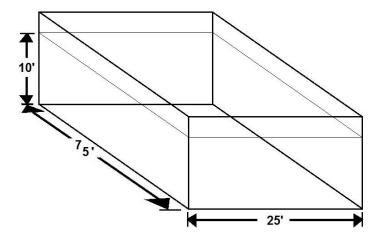
Practice Questions, no answers provided


- A2. Convert a flow rate of 14,750 gallons per minute to million gallons per day.
- B2. Convert a flow rate of 5880 gallons per minute to millions of gallons per day.

5. Convert a flow of 550 gallons per minute to gallons per second.

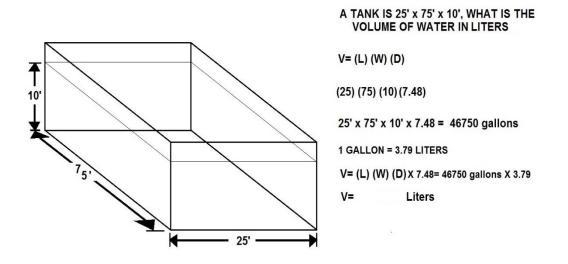

CONVERTING GALLONS PER MINUTE TO GALLONS PER SECOND

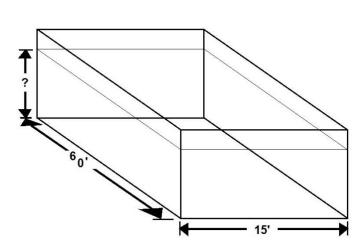
6. Now, convert this number to liters per second.


7. A tank is 6' X 15' x 7' and can hold a maximum of ______ gallons of water.

V= (L) (W) (D) X 7.48 =

8. A tank is 25' X 75' X 10' what is the volume of water in gallons?


V= (L) (W) (D) X 7.48 =


A TANK IS 25' x 75' x 10', WHAT IS THE VOLUME OF WATER IN GALLONS V= (L) (W) (D) (25) (75) (10) (7.48)

25' x 75' x 10' x 7.48 = gallons

9. In Liters?

10. A tank holds 67,320 gallons of water. The length is 60' and the width is 15'. How deep is the tank?

Gallons_____÷ 7.48 = _____ 60 X 15 =

A TANK HOLDS 67,320 GALLONS OF WATER. THE LENGTH IS 60' AND THE WIDTH IS 15'. HOW DEEP IS THE TANK?

Gallons 67,320 / 7.48 = 9000 gal.

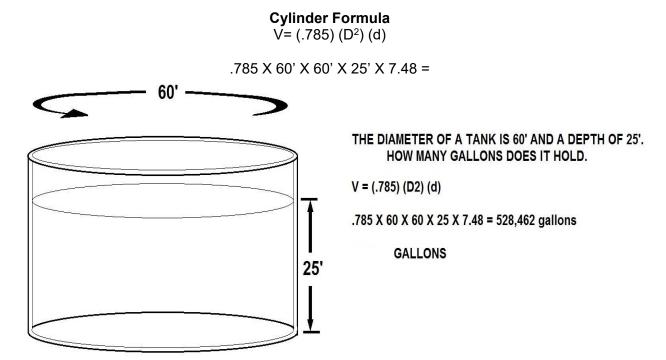
60' X 15' = 900 ft.

<u>9000 gal.</u> = ft. 900 ft.

Practice Questions, no answers provided

A3. Convert a flow of 733 gallons per minute to gallons per second.

B3. Now, convert this number to liters per second.


C3. A tank is 20' X 20' x 40' and can hold a maximum of ______ gallons of water.

D3. In Liters?

V= (L) (W) (D) X 7.48 =_____ X 3.785

E3. A tank holds 85,000 gallons of water. The length is 75' and the width is 14'. How deep is the tank?

11. The diameter of a tank is 60' and the depth is 25'. How many gallons does it hold?

678

Practice Questions, no answers provided

A4. The diameter of a tank is 30' and the depth is 5'. How many gallons does it hold?

B4. The diameter of a tank is 160' and the depth is 30'. How many gallons does it hold?

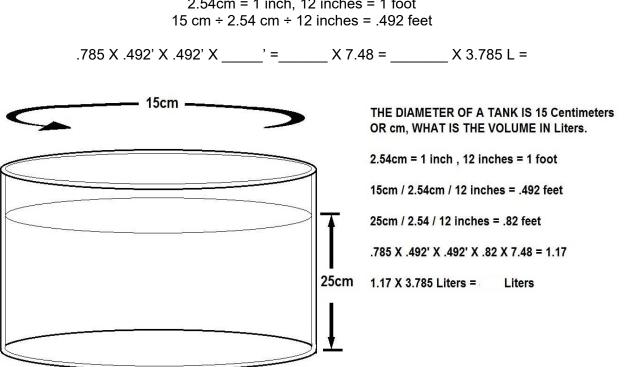
C4. The diameter of a tank is 33' and the depth is 20'. How many gallons does it hold?

D4. The diameter of a tank is 5' and the depth is .5'. How many gallons does it hold?

Cubic Feet Information

There is no universally agreed symbol but the following are used:

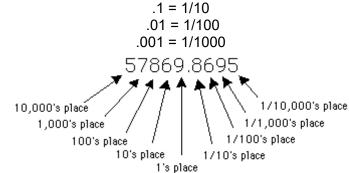
cubic feet, cubic foot, cubic ft cu ft, cu feet, cu foot ft₃, feet 3, foot 3 feet3, foot3, ft₃ feet/-3, foot/-3, ft/-3


Water/Wastewater Treatment Production Math Numbering System

In water/wastewater treatment, we express our production numbers in Million Gallon numbers. Example 2,000,000 or 2 million gallons would be expressed as 2 MG or 2 MGD.

100,000 Gallons 24 Hours (fill time) 1 MG = FILL TIME= 2.4 Hours

Hint. A million has six zeroes; you can always divide your final number by 1,000,000 or move the decimal point to the left six places. Example 528,462 would be expressed .56 MGD.


12. The diameter of a tank is 15 Centimeters or cm and the depth is 25 cm, what is the volume in liters?

2.54cm = 1 inch, 12 inches = 1 foot

Percentage and Fractions

Let's look again at the sequence of numbers 1000, 100, 10, 1, and continue the pattern to get new terms by dividing previous terms by 10:

So just as the digits to the left of the decimal represent 1's, 10's, 100's, and so forth, digits to the right of the decimal point represent 1/10's, 1/100's, 1/1000's, and so forth.

Let's express 5% as a decimal. $5 \div 100 = 0.05$ or you can move the decimal point to the left two places.

Changing a fraction to a decimal:

Divide the numerator by the denominator

A. 5/10 (five tenths) = five divided by ten:

.5 10) 5.0 5 0 ----So 5/10 (five tenths) = .5 (five tenths).

B. How about 1/2 (one half) or 1 divided by 2?

.5 _____ 2) 1.0 1 0

So 1/2 (one half) = .5 (five tenths) Notice that equivalent fractions convert to the same decimal representation.

8/12 is a good example. 8 ÷ 12 =.666666666 or rounded off to .667

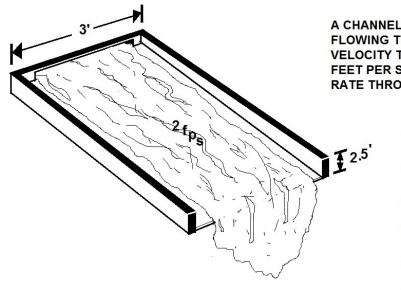
How about 6/12 or 6 inches? .5 or half a foot

Flow and Velocity

This depends on measuring the average velocity of flow and the cross-sectional area of the channel and calculating the flow from:

$$Q(m^{3}/s) = A(m^{2}) X V(m/s)$$

Or

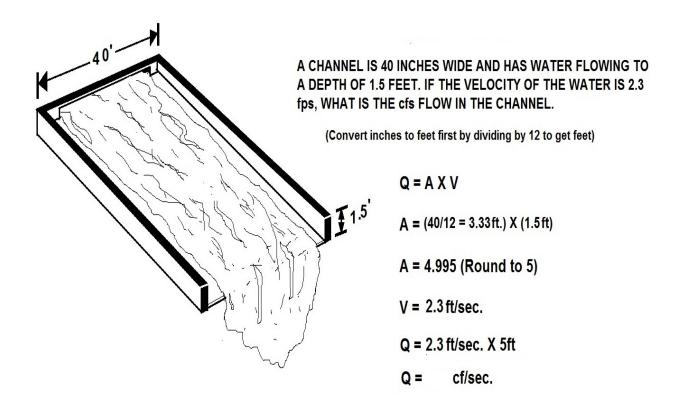

$$Q = A X V$$

Q CFM = Cubic Ft, Inches, Yards of time, Sec, Min, Hrs, Days A = Area, squared Length X Width V f/m = Inch, Ft, Yards, Per Time, Sec, Min, Ft or Speed

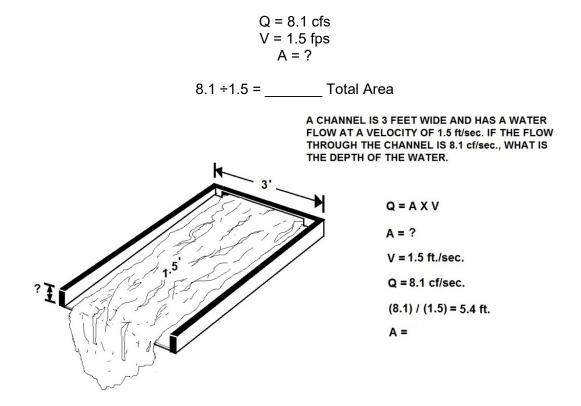
13. A channel is 3 feet wide and has water flowing to a depth of 2.5 feet. If the velocity through the channel is 2 fps or feet per second, what is the cfs flow rate through the channel? $Q = A \times V$

Q = 7.5 sq. ft. X 2 fps What is Q?

A= 3' X 2.5' = 7.5 V= 2 fps


A CHANNEL IS 3 FEET WIDE AND HAS WATER FLOWING TO A DEPTH OF 2.5 FEET. IF THE VELOCITY THROUGH THE CHANNEL IS 2 fps OR FEET PER SECOND, WHAT IS THE cfs FLOW RATE THROUGH THE CHANNEL.

14. A channel is 40 inches wide and has water flowing to a depth of 1.5 ft. If the velocity of the water is 2.3 fps, what is the cfs flow in the channel? Q = A X VFirst we must convert 40 inches to feet.


40 ÷ 12" = 3.333 feet

A = 3.333' X 1.5' = 4.999 or round up to 5 V = 2.3 fps

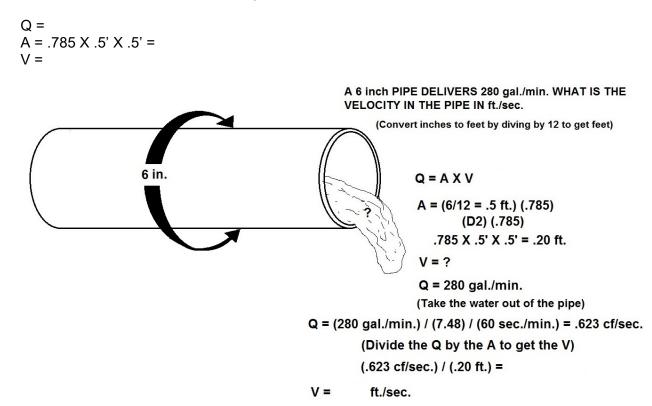
We can round this answer up.

15. A channel is 3 feet wide and has a water flow at a velocity of 1.5 fps. If the flow through the channel is 8.1 cfs, what is the depth of the water?

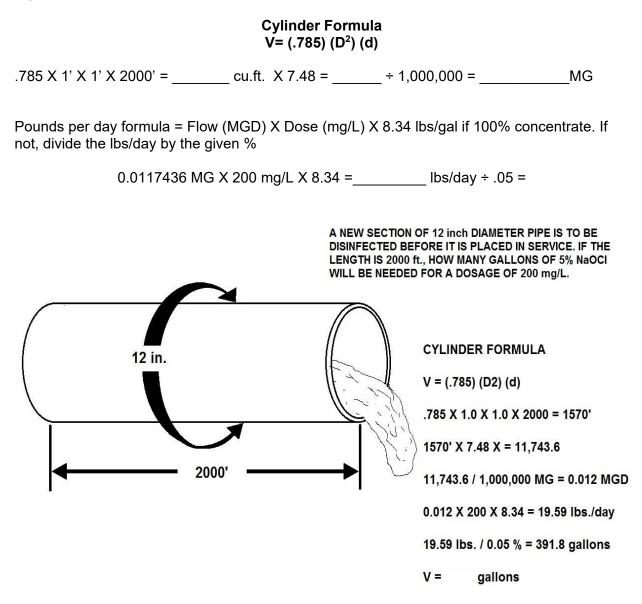
16. The flow through a 6 inch diameter pipe is moving at a velocity of 3 ft/sec. What is the cfs flow rate through the pipeline?

Q =

17. An 8 inch diameter pipe has water flowing at a velocity of 3.4 fps. What is the gpm flow rate through the pipe?


Q = _____cfs X 60 sec/min X 7.48 = _____gpm A = .785 X .667' X .667' V = 3.4 fps

AN 8 inch DIAMETER PIPE HAS WATER FLOWING AT A VELOCITY OF 3.4 ft./sec. WHAT IS THE gpm (gal./min.) FLOW RATE THROUGH THE PIPE. (Convert inches to feet by diving by 12 to get feet) 9 a X V A = (8/12 = .667 ft.) (.785) (D2) X (.785) .785 X .667' X .667' = .35 ft. V= 3.4 ft/sec. .35 ft. X 3.4 ft./sec. = 1.19 cf/sec. Q = 1.19 cf/sec. X 60 sec./min. X 7.48 =


Q = gal./min.

18. A 6 inch diameter pipe delivers 280 gpm. What is the velocity of flow in the pipe in ft/sec?

Take the water out of the pipe. 280 gpm ÷ 7.48 ÷ 60 sec/min = _____ cfs

19. A new section of 12 inch diameter pipe is to be disinfected before it is placed in service. If the length is 2000 feet, how many gallons of 5% NaOCI will be needed for a dosage of 200 mg/L?

20. A section of 6 inch diameter pipe is to be filled with water. The length of the pipe is 1320 feet long. How many kilograms of chlorine will be needed for a chlorine dose of 3 mg/L?

.785 X .5' X .5' X 1320' X 7.48 =_____ Make it MGD

Pounds per day formula = Flow X Dose X 8.34 X .454 Grams per pound

CYLINDER 6 in. CYLINDER V = (.785) (D .785 X .5 X 259.05 X 7.4 1320' 1320'

A SECTION OF 6 inch PIPE IS TO BE FILLED WITH WATER. THE LENGTH OF THE PIPE IS 1320 ft. LONG. HOW MANY KILOGRAMS OF CHLORINE WILL BE NEEDED FOR A CHLORINE DOSE OF 3 mg/L.

> CYLINDER FORMULA V = (.785) (D2) (d) .785 X .5 X .5 X 1320 = 259.05 259.05 X 7.48 X = 1937.694 1937.694 / 1,000,000 MG = 0.002 0.002 X 3mg/L X 8.34 = 0.050 lbs/day 0.050 lbs. X .454 gram = 0.023 Kg/day Kg/day

Practice Questions, no answers provided

A5. A channel is 5 feet wide and has water flowing to a depth of 2 feet. If the velocity through the channel is 2 fps or feet per second, what is the cfs flow rate through the channel?

$$Q = A X V$$

B5. A channel is 36 inches wide and has water flowing to a depth of 2.5 ft. If the velocity of the water is 2.0 fps, what is the cfs flow in the channel?

$$Q = A X V$$

C5. A channel is 2 feet wide and has a water flow at a velocity of 3.5 fps. If the flow through the channel is 5.5 cfs, what is the depth of the water?

D5. The flow through a 8 inch diameter pipe is moving at a velocity of 5 ft/sec. What is the cfs flow rate through the pipeline?

E5. An 8 inch diameter pipe has water flowing at a velocity of 3.4 fps. What is the gpm flow rate through the pipe?

F5. A 6 inch diameter pipe delivers 55 gpm. What is the velocity of flow in the pipe in ft/sec?

G5. A new section of 18 inch diameter pipe is to be disinfected before it is placed in service. If the length is 5000 feet, how many gallons of 5% NaOCI will be needed for a dosage of 200 mg/L?

Cylinder Formula V= (.785) (D²) (d)

H5. A section of 18 inch diameter pipe is to be filled with water. The length of the pipe is 1200 feet long. How many kilograms of chlorine will be needed for a chlorine dose of 2 mg/L?

Pounds per day formula = Flow X Dose X 8.34 X .454 Grams per pound

Chlorine Dose Example

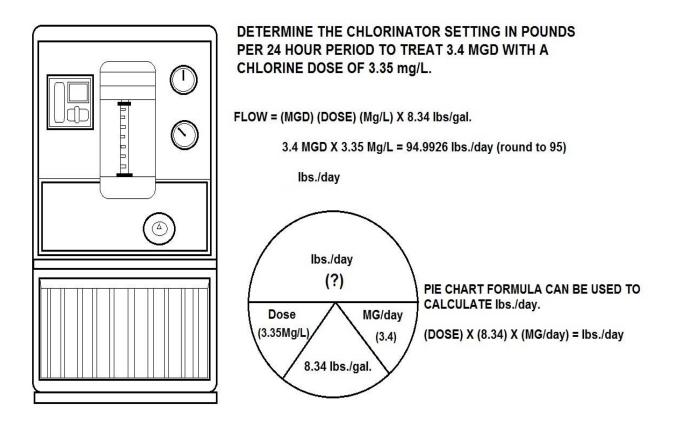
DOSE, mg/L = $\frac{(332) \text{ Ibs. / day}}{(5.27) \text{ MGD x 8.34 lbs./mg/L/MG}}$

DOSE, mg/L = (7.6) mg/L

DOSE CALCULATION EXAMPLE

Chlorine Residual Formula

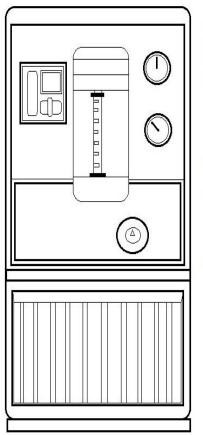
Dose, mg / L = Demand, mg / L + Residual, mg / L


How To Calculate Chlorine Dose

 $(mg / L CI_2)$ (MGD flow) (8.34 lbs. / gal.) = lbs. / day CI_2

Formula To Convert : mg/L TO lbs./day

21. Determine the chlorinator setting in pounds per 24 hour period to treat a flow of 3.4 MGD with a chlorine dose of 3.35 mg/L? Answer in rear of this section.


Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal

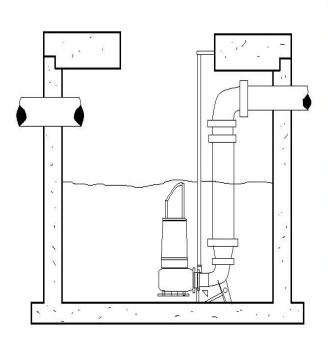
22. To correct an odor problem, you use chlorine continuously at a dosage of 15 mg/L and a flow rate of 85 GPM. Approximately how much will odor control cost annually if chlorine is \$0.17 per pound?

85 gpm X 1440 min/day = _____ gpd ÷ 1,000,000 = _____ MGD

_____ MGD X 15 mg/L X 8.34 lbs/gal X \$0.17 per pound X 365 days/year =

TO CORRECT AN ODOR PROBLEM, YOU USE CHLORINE CONTINUOUSLY AT A DOSAGE OF 15 mg/L AND A FLOW RATE OF 85 GPM. APPROXIMATELY HOW MUCH WILL ODOR CONTROL COST ANNUALLY IF CHLORINE IS \$0.17 PER POUND.

CONVERT GPM TO gal/day.: 85 GPM X 1440 min./day = 122,400 gal./day.


NOW CONVERT TO MGD: 122,400 divided by 1,000,000 = .1224 MGD.

.1224 MGD X 15 mg/L X 8.34 lbs./gal. X \$ 0.17 per/Lb. X 365 days/year =

COST =

23. A wet well measures 8 feet by 10 feet and 3 feet in depth between the high and low levels. A pump empties the wet well between the high and low levels 9 times per hour, 24 hours a day. Neglecting inflow during the pumping cycle, calculate the flow into the pump station in millions of gallons per day (MGD).

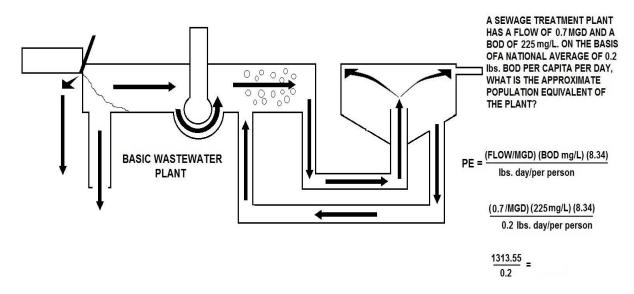
Build it, fill it, and do what it says, hint: X 9 X 24

A WET WELL MEASURES 8 feet BY 10 feet AND 3 feet IN DEPTH BETWEEN THE HIGH AND LOW LEVELS. A PUMP EMPTIES THE WET WELL BETWEEN THE HIGH AND LOW LEVELS 9 TIMES PER HOUR, 24 HOURS A DAY. NEGLECTING INFLOW DURING PUMP CYCLE, CALCULATE THE FLOW INTO THE PUMP STATION IN MILLION OF GALLONS PER DAY (MGD). (Build it / Fill it / and Do What it says, hint: X 9 X 24)

(L) (W) (d) = (8) X (10) X (3) = 240 ft3 (CONVERT TO GALLONS: X 7.48)

240 ft3 X 7.48 = 1795.2 gals.

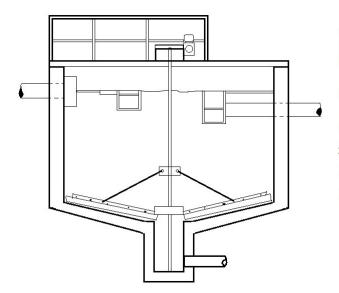
DETERMINE HOW MANY CYCLES IN 24 hrs.: 9 times hour X 24 hrs./day = 216 times/day.


1795.2 gals. X 216 times/day = 387763.2 gals./day

CONVERT THIS TO MGD BY DIVIDING BY 1,000,000.

387763.2 gals./day / 1,000,000 = .388 MGD

INFLOW = MGD


24. A sewage treatment plant has a flow of 0.7 MGD and a BOD of 225 mg/L. On the basis of a national average of 0.2 lbs BOD per capita per day, what is the approximate population equivalent of the plant?

25. What is the detention time of a clarifier with a 250,000 gallon capacity if it receives a flow of 3.0 MGD?

DT= Volume in Gallons X 24 Divided by MGD

.25 MG X 24 hrs ÷ 3.0 MGD =_____ Hours of DT

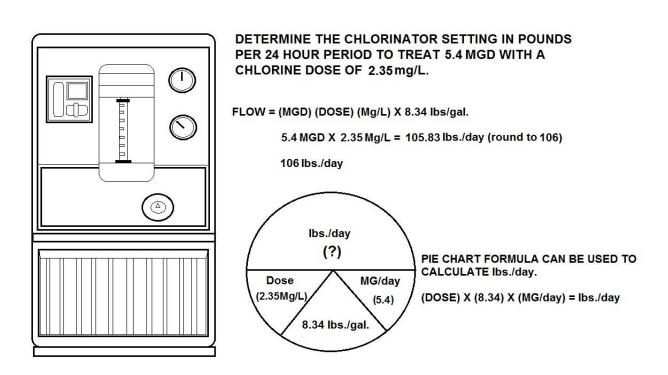
Always convert gallons to MG

WHAT IS THE DETENTION TIME OF A CLARIFIER WITH A 250,000 GALLON CAPACITY IF IT RECEIVES A FLOW OF 3.0 MGD.

DT = VOLUME IN GALLONS X 24 DIVIDED BY MDG

CONVERT GALLONS TO MG/DAY. BY DIVIDING BY 1,000,000.

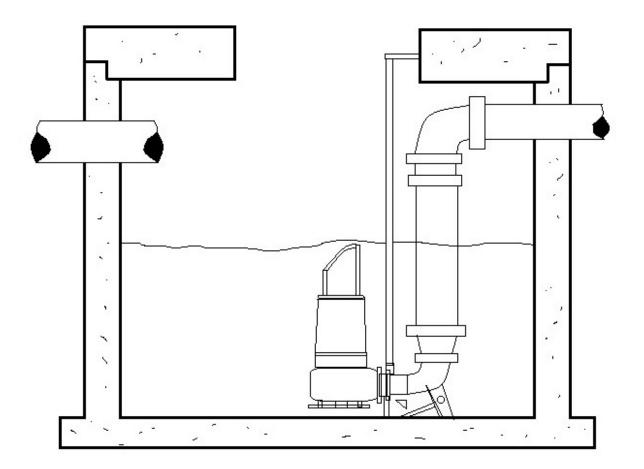
250,000 gal. / 1,000,000 = .25 MGD.

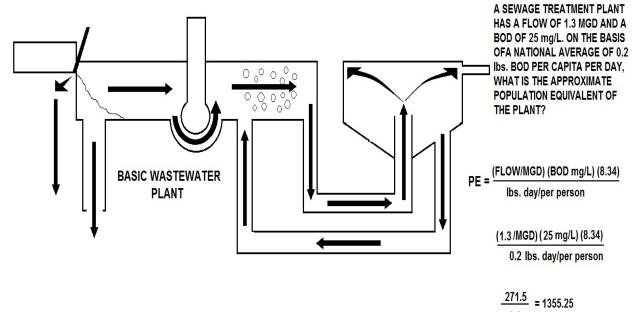

.25 MGD X 24 hrs./day divided BY 3.0 MGD = 2.0

DT = hours.

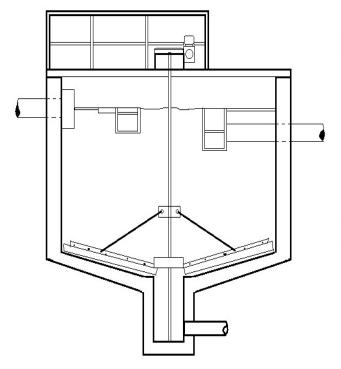
Practice Questions

A6. Determine the chlorinator setting in pounds per 24 hour period to treat a flow of 5.4 MGD with a chlorine dose of 2.35 mg/L?


Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal


B6. To correct an odor problem, you use chlorine continuously at a dosage of 15 mg/L and a flow rate of 7 GPM. Approximately how much will odor control cost annually if chlorine is \$0.15 per pound?

TO CORRECT AN ODOR PROBLEM, YOU USE CHLORINE CONTINUOUSLY AT A DOSAGE OF 15 mg/L AND A FLOW RATE OF 7 GPM. APPROXIMATELY HOW MUCH WILL ODOR CONTROL COST ANNUALLY IF CHLORINE IS \$0.15 PER POUND? FIRST CONVERT gal./min TO MGD (7gal./min.) (1440 min./day) = 10,080 gal./day DIVIDE gal./day BY 1,000,000 TO GET MGD 10,080 / 1,000,000 = 0.010 MGD (0.010 MGD) (15 mg/L) (8.34 lbs./gal.) (\$0.15/lb.) (365 days/year)= \$68.49 \$ 68.49 ANNUAL COST C6. A wet well measures 12 feet by 15 feet and 11 feet in depth between the high and low levels. A pump empties the wet well between the high and low levels 9 times per hour, 24 hours a day. Neglecting inflow during the pumping cycle, calculate the flow into the pump station in millions of gallons per day (MGD).


D6. A sewage treatment plant has a flow of 1.3 MGD and a BOD of 25 mg/L. On the basis of a national average of 0.2 lbs BOD per capita per day, what is the approximate population equivalent of the plant?

1355.25 Population Equivalent

0.2

E6. What is the detention time of a clarifier with a 750,000 gallon capacity if it receives a flow of 10.0 MGD?

DT= Volume in Gallons X 24 Divided by MGD

WHAT IS THE DETENTION TIME OF A CLARIFIER WITH A 750,000 GALLON CAPACITY IF IT RECEIVES A FLOW OF 10.0 MGD.

DT = VOLUME IN GALLONS X 24 DIVIDED BY MDG

CONVERT GALLONS TO MG/DAY. BY DIVIDING BY 1,000,000.

750,000 gal. / 1,000,000 = .75 MGD.

.75 MGD X 24 hrs./day divided BY 10.0 MGD = 1.8

DT = 1.8 hours.

Metric Math Section

The metric system is known for its simplicity. All units of measurement in the metric system are based on decimals—that is, units that increase or decrease by multiples of ten. A series of Greek decimal prefixes is used to express units of ten or greater; a similar series of Latin decimal prefixes is used to express fractions. For example, deca equals ten, hecto equals one hundred, kilo equals one thousand, mega equals one million, giga equals one billion, and tera equals one trillion.

For units below one, deci equals one-tenth, centi equals one-hundredth, milli equals one-thousandth, micro equals one-millionth, nano equals one-billionth, and pico equals one-trillionth.

1 ppm = 1 pound per million pounds / or

120,000 Gallons of Water = 1,000,000 pounds

1 ppm = 1 pound per 120,000 Gallons of Water

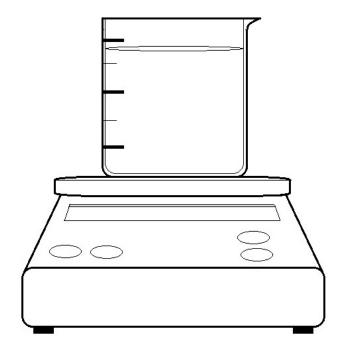
Milligrams Per liter

(Parts Per Million)

1 Gram (weight) = 1,000 milligrams (and)

1 Liter of Water Weighs 1,000 GRAMS (so)

1 Liter of Water = 1,000,000 milligrams (1,000 X 1,000) (so)

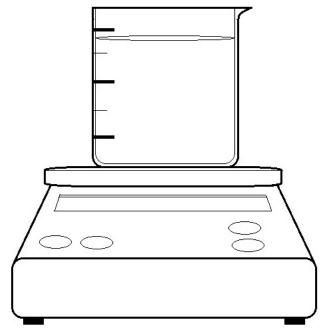

1 Milligram in one Liter of Water = 1 milligram per liter (or)

One Part in a Million Parts

Milligrams Per Liter (Refers to a Weight Ratio)

26. How many grams equal 4,500 mg?

Just simply divide by 1,000.

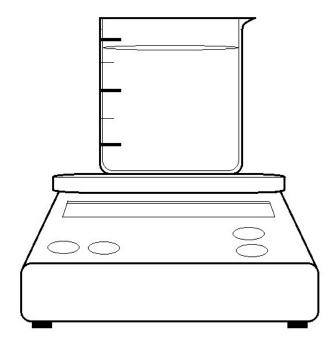

HOW MANY GRAM EQUAL 4,500mg.

Just divide by 1,000 (there are 1,000 mg in a gram)

 $\frac{4500}{1000} = \text{Grams}$

Practice Questions

A7. How many grams equal 7,500 mg?



HOW MANY GRAM EQUAL 7,500mg.

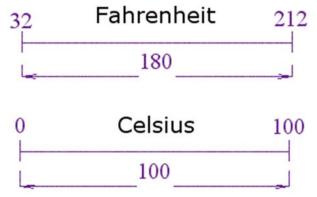
Just divide by 1,000 (there are 1,000 mg in a gram)

 $\frac{7500}{1000}$ = 7.5 Grams

B7. How many grams equal 12,500 mg?

HOW MANY GRAM EQUAL 12,500mg.

Just divide by 1,000 (there are 1,000 mg in a gram)


 $\frac{12500}{1000}$ = 12.5 Grams

Temperature

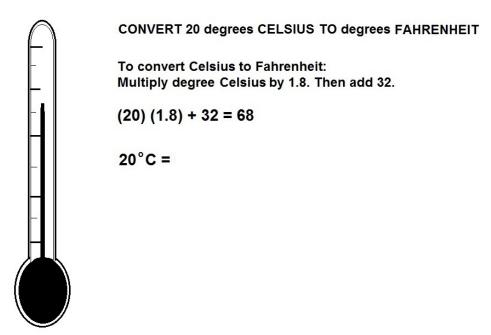
There are two main temperature scales. The Fahrenheit Scale (used in the US), and the Celsius Scale (part of the Metric System, used in most other Countries)

They both measure the same thing (temperature!), just using different numbers.

If you freeze water, it measures 0° in Celsius, but 32° in Fahrenheit If you boil water, it measures 100° in Celsius, but 212° in Fahrenheit The difference between freezing and boiling is 100° in Celsius, but 180° in Fahrenheit.

Conversion Method

Looking at the diagram, notice:


The scales start at a different number (32 vs. 0), so we will need to add or subtract 32 The scales rise at a different rate (180 vs. 100), so we will also need to multiply And this is how it works out:

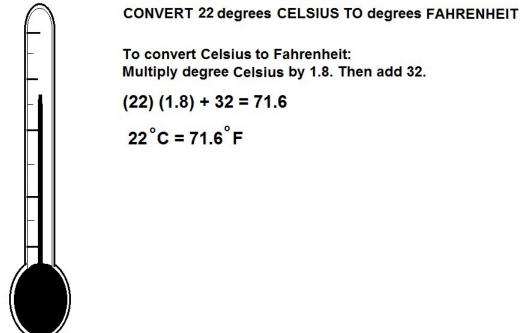
To convert from Celsius to Fahrenheit, first multiply by 180/100, then add 32 To convert from Fahrenheit to Celsius, first subtract 32, then multiply by 100/180

> Note: 180/100 can be simplified to 9/5, and likewise 100/180=5/9. ${}^{0}F = (0C \times 9/5) + 32 \qquad 9/5 = 1.8$

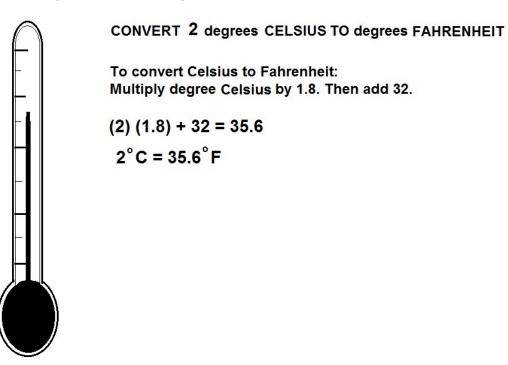
> > $^{0}C = (0F - 32) \times 5/9 = .555$

27. Convert 20 degrees Celsius to degrees Fahrenheit.

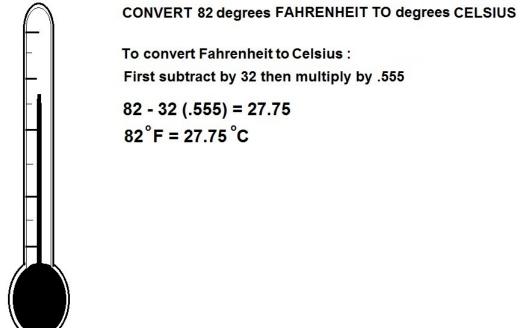
28. Convert 4 degrees Celsius to degrees Fahrenheit.

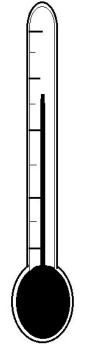

4° X 1.8 + 32 = F

CONVERT 4 degrees CELSIUS TO degrees FAHRENHEIT

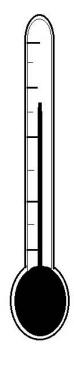

To convert Celsius to Fahrenheit: Multiply degree Celsius by 1.8. Then add 32.

Practice Questions


A8. Convert 22 degrees Celsius to degrees Fahrenheit.


B8. Convert 2 degrees Celsius to degrees Fahrenheit.

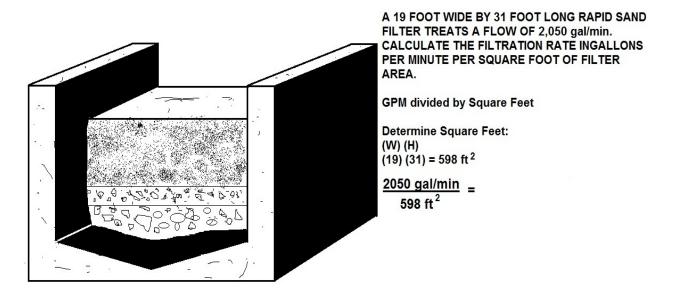
C8. Convert 82 degrees Fahrenheit to degrees Celsius.



D8. Convert 33 degrees Fahrenheit to degrees Celsius.

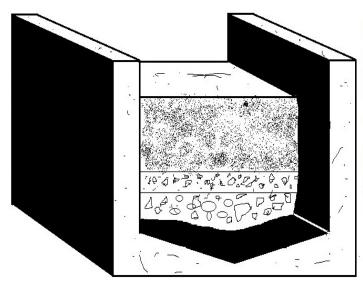
CONVERT 33 degrees FAHRENHEIT TO degrees CELSIUS

To convert Fahrenheit to Calsius : First subtract by 32 then multiply by .555 33 - 32 (.555) = .555 $33^{\circ}F = .555^{\circ}C$ E8. Convert 72 degrees Fahrenheit to degrees Celsius.



CONVERT 72 degrees FAHRENHEIT TO degrees CELCIUS

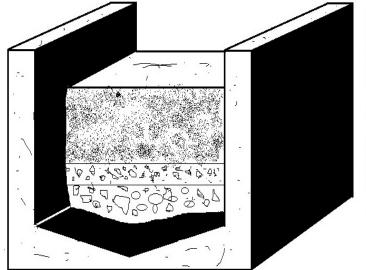
To convert Fahrenheit to Celcius: First subtract by 32 then multiply by .555 72 - 32 (.555) = 22.2 $72^{\circ}F = 22.2^{\circ}C$


Water Treatment Filters

29. A 19 foot wide by 31 foot long rapid sand filter treats a flow of 2,050 gallons per minute. Calculate the filtration rate in gallons per minute per square foot of filter area.

GPM ÷ Square Feet

30. A 26 foot wide by 36 foot wide long rapid sand filter treats a flow of 2,500 gallons per minute. Calculate the filtration rate in gallons per minute per square foot of filter area.

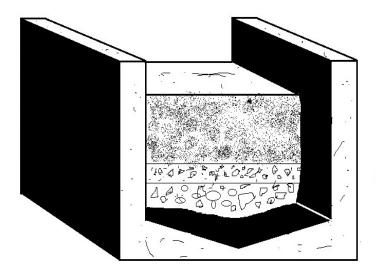

A 26 FOOT WIDE BY 36 FOOT LONG RAPID SAND FILTER TREATS A FLOW OF 2,500 gal/min. CALCULATE THE FILTRATION RATE INGALLONS PER MINUTE PER SQUARE FOOT OF FILTER AREA.

GPM divided by Square Feet

Determine Square Feet: (W) (H) (26) (36) = 936 ft² $\frac{2500 \text{ gal/min}}{936 \text{ ft}^2} =$

Practice Questions

A9. A 25 foot wide by 25 foot long rapid sand filter treats a flow of 300 gallons per minute. Calculate the filtration rate in gallons per minute per square foot of filter area.


A 25 FOOT WIDE BY 25 FOOT LONG RAPID SANE FILTER TREATS A FLOW OF 300 gal/min. CALCULATE THE FILTRATION RATE INGALLONS PER MINUTE PER SQUARE FOOT OF FILTER AREA.

GPM divided by Square Feet

Determine Square Feet: (W) (H) (25) (25) = 625 ft² $300 \text{ gal/min} = .48 \text{ gal/min./ft}^2$

625 ft²

B9. A 30 foot wide by 30 foot wide long rapid sand filter treats a flow of 1,500 gallons per minute. Calculate the filtration rate in gallons per minute per square foot of filter area.

A 30 FOOT WIDE BY 30 FOOT LONG RAPID SAND FILTER TREATS A FLOW OF 1,500 gal/min. CALCULATE THE FILTRATION RATE INGALLONS PER MINUTE PER SQUARE FOOT OF FILTER AREA.

GPM divided by Square Feet

Determine Square Feet: (W) (H) (30) (30) = 900 ft² <u>1500 gal/min</u> = 1.67 gal/min./ft²

Chemical Dose

31. A pond has a surface area of 51,500 square feet and the desired dose of a chemical is 6.5 lbs per acre. How many pounds of the chemical will be needed?

43,560 Square feet in an acre

51,500 ÷ 43,560 = _____ X 6.5 =

32. A pond having a volume of 6.85 acre feet equals how many millions of gallons?

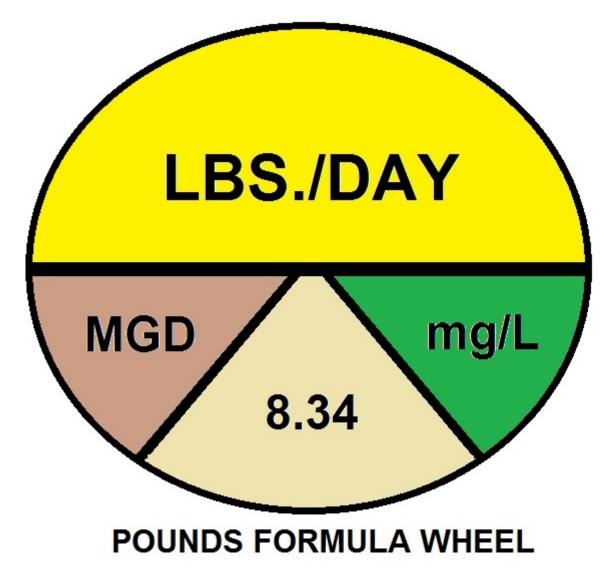
Practice Questions, no answers provided

A10. A pond has a surface area of 75,000 square feet and the desired dose of a chemical is 5.5 lbs per acre. How many pounds of the chemical will be needed?

B10. A pond having a volume of 13,000 acre feet equals how many millions of gallons?

33. Alum is added in a treatment plant process at a concentration of 10.5 mg/L. What should the setting on the feeder be in pounds per day if the plant is treating 3.5 MGD?

Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal


 $GPD = \frac{GALLONS}{MINUTE} \times \frac{60 \text{ MINUTES}}{HOUR} \times \frac{24 \text{ HOURS}}{DAY}$ $GT = \frac{CHLORINE \% \times 10,000}{1 \text{ PPM}}$ GPD

GPD GT = GALLONS OF CHLORINE PER 24 HOURS

> GPD= Gallon Per Day GT= Gallons Treated

 $(mg / L Cl_2)$ (MGD flow) (8.34 lbs. / gal.) = lbs. / day Cl₂

Formula To Convert : mg/L TO lbs./day

Practice Questions, no answers provided

A11. Alum is added in a treatment plant process at a concentration of 4.5 mg/L. What should the setting on the feeder be in pounds per day if the plant is treating 23.5 MGD?

Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal

Q=AV Review

34. An 8 inch diameter pipe has water flowing at a velocity of 3.4 fps. What is the GPM flow rate through the pipe? Q = 1.18 CFS x 60 Seconds x 7.48 GAL/CU.FT = 532 GPM A = .785 X .667 X .667 X 1 = .349 Sq. Ft. V= 3.4 Feet per second

35. A 6 inch diameter pipe delivers 280 GPM. What is the velocity of flow in the pipe in Ft/Sec?
280 GPM ÷ 60 seconds in a minute ÷ 7.48 gallons in a cu.ft. = .623 CFS

Q = .623 A = .785 X.5 X .5 =.196 Sq. Ft. V = 3.17 Ft/Second

Practice Questions, no answers provided

A12. An 36 inch diameter pipe has water flowing at a velocity of 1.4 fps. What is the GPM flow rate through the pipe?

B12. An 18 inch diameter pipe delivers 80 GPM. What is the velocity of flow in the pipe in Ft/Sec?

Collection Math Section

36. A 24-inch sewer carries an average daily flow of 5 MGD. If the average daily flow per person from the area served is 110 GPCD (gallons per capita per day), approximately how many people discharge into the wastewater collection system?

5,000,000 divided by 110 =

37. Using a dose rate of 5 mg/L, how many pounds of chlorine per day should be used if the flow rate is 1.2 MGD?

Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal

38. What capacity blower will be required to ventilate a manhole which is 3.5 feet in diameter and 17 feet deep? The air exchange rate is 16 air changes per hour.
.785 X 3.5' X 3.5' X 17' X 16 = _____ CFH

39. Approximately how many feet of drop are in 455 feet of 8-inch sewer with a 0.0475 ft/ft. slope?

SLOPE = Rise (ft) Run (ft) 455' X 0.0475 =

40. How much brake horsepower is required to meet the following conditions: 250 gpm, total head = 110 feet? The submersible pump that is being specified is a combined 64% efficient?

(250 X 110) ÷ (3960 X .64)

41. How wide is a trench at ground surface if a sewer trench is 2 feet wide at the bottom, 10 feet deep, and the sides have been sloped at a 4/5 horizontal to 1 vertical (3/4:1) ratio?

(3/4:1) or $3 \div 4 = .75$ X every foot of depth

Short Math Answers

1. 46750 2. 800 ÷ 8.34 = 95.92 gallons 3. 1372320 or 1.3 MGD 4. 610 X 1441 = 878400 or 0.87 MGD 5. 550 ÷ 60 = 9.167 gpm 6. 9.167 X 3.785 = 34.697 Liters 7. 630 Area 4712.4 gallons 8. 18,750 cu. ft. X 7.48 = 140250 gallons 9. 177182.5 10. 10 feet deep 11. 528462 or .5 MG 12. 1.166 Gallons X 3.785 = 4.4131 Liters 13. 15 cfs 14. 11.5 cfs 15. 5.4 16. .58875 or .6 cfs 17. 534.7 or 533 gpm 18. 3.115 or 3.2 ft/sec 19. 46.9 gal 20. .02 kg 21. 94.9 lbs/day 22. \$950.12 23. .388 or .39 MGD 24. 6567.75 25. 2 hrs 26. 4.5 grams 27. 68° F 28. 39.2°F 29. 3.43 gpm/sq.ft. 30. 2.67 gpm/sq.ft. 31. 7.68 lbs 32. 2.231 MG 33. 306.495 34. 532 gpm 35. 3.2 fps 36. 45454.5 people 37. 50.04 lbs 38. 2615.6 cfh 39. 21.61 ft 40. 10.85 bhp

41. 17 ft

REFERENCES

Benenson, Abram S., editor. 1990. *Control of Communicable Diseases in Man.* 15th ed. Baltimore: Victor Graphics, Inc.

Bick, H. 1972. Ciliated protozoa. An illustrated guide to the species used as biological indicators in freshwater biology. World Health Organization, Geneva. 198 pp.

Born, Stephen M., Douglas A. Yanggen, and Alexander Zaporozec. A *Guide to Groundwater Quality Planning and Management for Local Governments*. Wisconsin Geological and Natural History Survey, Madison, WI, 1987.

Cairns, J., and J.A. Ruthven. 1972. A test of the cosmopolitan distribution of fresh-water protozoans. Hydrobiologia 39:405-427.

Cairns, J., and W.H. Yongue. 1977. Factors affecting the number of species of freshwater protozoan communities. Pages 257-303 in J. Cairns, ed. Aquatic microbial communities. Garland, New York.

Cairns, J., G.R. Lanza, and B.C. Parker. 1972. Pollution related structural and functional changes in aquatic communities with emphasis on freshwater algae and protozoa. Proceedings of the National Academy of Sciences 124:79-127.

Concern, Inc. Groundwater: A Community Action Guide. Washington, D.C., 1989.

Cross, Brad L and Jack Schulze. *City of Hurst (A Public Water Supply Protection Strategy)*. Texas Water Commission, Austin, TX, 1989.

Curds, C.R. 1992. Protozoa and the water industry. Cambridge University Press, MA. 122 pp. Curtis, Christopher and Teri Anderson. *A Guidebook for Organizing a Community Collection Event: Household Hazardous Waste*. Pioneer Valley Planning Commission and Western Massachusetts Coalition for Safe Waste Management, West Springfield, MA, 1984.

Curtis, Christopher, Christopher Walsh, and Michael Przybyla. *The Road Salt Management Handbook: Introducing a Reliable Strategy to Safeguard People & Water Resources.* Pioneer Valley Planning Commission, West Springfield, MA, 1986.

Fenchel, T. 1974. Intrinsic rate increase: the relationship with body size. Oecologia 14:317-326.

Fenchel, T., T. Perry, and A. Thane. 1977. Anaerobiosis and symbiosis with bacteria in freeliving ciliates. Journal of Protozoology 24:154-163.

Foissner, W. 1987. Soil protozoa: fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Progress in Protistology 2:69-212.

Foissner, W. 1988. Taxonomic and nomenclatural revision of Stádecek's list of ciliates (Protozoa: Ciliophora) as indicators of water quality. Hydrobiologia 166:1-64.

Foster, Laurence, M.D. 1985. "Waterborne Disease - It's Our Job to Prevent It". PIPELINE newsletter, Oregon Health Division, Drinking Water Program, Portland, Oregon 1(4): 1-3. Foster, Laurence, M.D. 1990. "Waterborne *Disease,*" *Methods for the Investigation and Prevention of Waterborne Disease Outbreaks.* Ed. Gunther F. Craun. Cincinnati: U.S. Environmental Protection Agency.

Giese, A.C. 1973. Blepharisma. Stanford University Press, CA. 366 pp.

Gordon, Wendy. *A Citizen's Handbook on Groundwater Protection*. Natural Resources Defense Council, New York, NY 1984.

Harrison, Ellen Z. and Mary Ann Dickinson. *Protecting Connecticut's Groundwater: A Guide to Groundwater Protection for Local Officials*. Connecticut Department of Environmental Protection, Hartford, CT, 1984.

Hrezo, Margaret and Pat Nickinson. *Protecting Virginia's Groundwater A Handbook for Local Government Officials*. Virginia Polytechnic Institute and State University, Blacksburg, VA, 1986.

Jaffe, Martin and Frank Dinovo. *Local Groundwater Protection*. American Planning Association, Chicago, IL, 1987.

Kreier, J.P., and J.R. Baker. 1987. Parasitic protozoa. Allen and Unwin, Boston, MA. 241 pp. Laybourn, J., and B.J. Finlay. 1976. Respiratory energy losses related to cell weight and temperature in ciliated protozoa. Oecologia 44:165-174.

Lee, C.C., and T. Fenchel. 1972. Studies on ciliates associated with sea ice from Antarctica. II. Temperature responses and tolerances in ciliates from Antarctica, temperate and tropical habitats. Archive für Protistenkunde 114:237-244.

Loomis, George and Yael Calhoon. "Natural Resource Facts: Maintaining Your Septic System." University of Rhode Island, Providence, RI, 1988.

Macozzi, Maureen. *Groundwater- Protecting Wisconsin's Buried Treasure*. Wisconsin Department of Natural Resources, Madison, WI, 1989.

Maine Association of Conservation Commissions. *Ground Water... Maine's Hidden Resource*. Hallowell, ME, 1985.

Massachusetts Audubon Society "Local Authority for Groundwater Protection." Groundwater Information Flyer #4. Lincoln, MA, 1984.

Massachusetts Audubon Society. "Groundwater and Contamination: From the Watershed into the Well." Groundwater Information Flyer # 2. Lincoln, MA, 1984.

Massachusetts Audubon Society. "Mapping Aquifers and Recharge Areas." Groundwater Information Flyer # 3. Lincoln, MA, 1984.

Massachusetts Audubon Society. "Road Salt and Groundwater Protection." Groundwater Information Flyer # 9. Lincoln, MA, 1987.

McCann, Alyson and Thomas P Husband. "Natural Resources Facts: Household Hazardous Waste." University of Rhode Island, Providence, RI; 1988.

Miller, David W. *Groundwater Contamination: A Special Report*. Geraghty & Miller, Inc., Syosset, NY 1982.

Montagnes, D.J.S., D.H. Lynn, J.C. Roff, and W.D. Taylor. 1988. The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Marine Biology 99:21-30.

Mullikin, Elizabeth B. An Ounce of Prevention: A Ground Water Protection Handbook for Local Officials. Vermont Departments of Water Resources and Environmental Engineering, Health, and Agriculture, Montpelier, VT, 1984.

Murphy, Jim. "Groundwater and Your Town: What Your Town Can Do Right Now." Connecticut Department of Environmental Protection, Hartford, CT.

National Research Council. *Ground Water Quality Protection: State and Local Strategies.* National Academy Press, Washington, D.C., 1986.

New England Interstate Water Pollution Control Commission. "Groundwater: Out of Sight Not Out of Danger." Boston, MA, 1989.

Niederlehner, B.R., K.W. Pontasch, J.R. Pratt, and J. Cairns. 1990. Field evaluation of predictions of environmental effects from multispecies microcosm toxicity test. Archives of Environmental Contamination and Toxicology 19:62-71.

Noake, Kimberly D. Guide to *Contamination Sources for Wellhead Protection*. Draft. Massachusetts Department of Environmental Quality Engineering, Boston, MA, 1988. Office of Drinking Water. *A Local Planning Process for Groundwater Protection*. U.S. EPA, Washington, D.C., 1989.

Office of Ground-Water Protection. *Guidelines for Delineation of Wellhead Protection Areas*. U.S. EPA, Washington, D.C., 1987.

Office of Ground-Water Protection. *Survey of State Ground Water Quality Protection Legislation Enacted From 1985 Through 1987*. U.S. EPA, Washington, D.C., 1988. Office of Ground-Water Protection. *Wellhead Protection Programs. - Tools for Local Governments*. U.S. EPA, Washington, D.C., 1989.

Office of Ground-Water Protection. *Wellhead Protection: A Decision-Makers' Guide.* U.S. EPA, Washington, D.C., 1987

Office of Pesticides and Toxic Substances. *Citizen's Guide to Pesticides.* U.S. EPA, Washington, D.C., 1989.

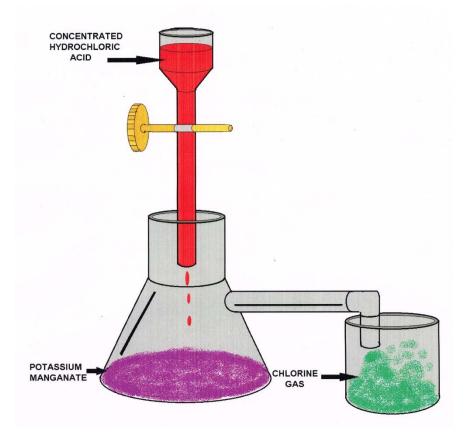
Office of Underground Storage Tanks. *Musts for USGS. - A Summary of the New Regulations for Underground Storage Tank Systems*. U.S. EPA, Washington, D.C., 1988.

Ohio Environmental Protection Agency. Ground Water. Columbus, OH.

Redlich, Susan. *Summary of Municipal Actions for Groundwater Protection in the New England/New York Region.* New England Interstate Water Pollution Control Commission, Boston, MA, 1988.

Southern Arizona Water Resources Association. "Water Warnings: Our Drinking Water.... It Takes Everyone to Keep It Clean." Tucson, AZ.

Sponenberg, Torsten D. and Jacob H. Kahn. *A Groundwater Primer for Virginians*. Virginia Polytechnic Institute and State University, Blacksburg, VA, 1984.


Taylor, W., and R. Sanders. 1991. Protozoa. Pages 37-93 in J.H. Thorp and A.P. Covich, eds. Ecology and classification of North American freshwater invertebrates. Academic Press, New York.

Texas Water Commission. "On Dangerous Ground: The Problem of Abandoned Wells in Texas." Austin, TX, 1989.

Texas Water Commission. *The Underground Subject: An Introduction to Ground Water Issues in Texas.* Austin, TX, 1989.

U.S. Environmental Protection Agency. *Seminar Publication: Protection of Public Water Supplies from Ground-Water Contaminants.* Center for Environmental Research Information, Cincinnati, OH, 1985.

Waller, Roger M. *Ground Water and the Rural Homeowner.* U.S. Geological Survey, Reston, VA, 1988.

We welcome you to complete the assignment in Microsoft Word. You can find the assignment at www.abctlc.com. Once complete, just simply fax or e-mail the answer key along with the registration page to us and allow two weeks for grading. Once we grade it, we will mail a certificate of completion to you.

Call us if you need any help. If you need your certificate back within 48 hours, you may be asked to pay a rush service fee of \$50.00.

You can download the assignment in Microsoft Word from TLC's website under the Assignment Page. www.abctlc.com

You will have 90 days to successfully complete this assignment with a score of 70% or better. If you need any assistance, please contact TLC's Student Services.